Skip to main content

Austria

Market Forecast Tables 2023

These tables show forest products production and trade forecasts for 2023 and 2024. These cover roundwood (logs, pulpwood and fuel wood), sawnwood (coniferous and non-coniferous), wood-based panels (plywood, particle board, OSB and fibreboard), pulp, paper and wood pellets.  The forecast data are provided by national correspondents and approved at the meeting of the Committee on Forests and the Forest Industry.

Languages and translations
English

List of tables

List of Tables and Notes
Table 1 - Sawn Softwood
Table 2 - Sawn Hardwood (total)
Table 2a - Sawn Hardwood (temperate)
Table 2b - Sawn Hardwood (tropical)
Table 3 - Veneer Sheets
Table 4 - Plywood
Table 5 - Particle Board (excluding OSB)
Table 5a - Oriented Strand Board
Table 6 - Fibreboard
Table 6a - Hardboard
Table 6b - MDF/HDF
Table 6c - Other Fibreboard
Table 7 - Wood Pulp
Table 8 - Paper and Paperboard
Table 9 - Removals of wood in the rough
Table 9a - Removals of wood in the rough (softwood)
Table 9b - Removals of wood in the rough (hardwood)
Table 10 - Softwood sawlogs
Table 11 - Hardwood sawlogs
Table 11a - Hardwood logs (temperate)
Table 11b - Hardwood logs (tropical)
Table 12 - Pulpwood
Table 12a - Pulpwood (softwood)
Table 12b - Pulpwood (hardwood)
Table 12c - Wood Residues, Chips and Particles
Table 13 - Wood Pellets
Table 14 - Europe: Summary table of market forecasts for 2023 and 2024
Table 15 - North America: Summary table of market forecasts for 2023 and 2024
Source: UNECE Committee on Forests and the Forest Industry , November 2023, http://www.unece.org/forests/fpm/timbercommittee.html
Notes: Data in italics are estimated by the secretariat. EECCA is Eastern Europe, Caucasus and Central Asia.
Data for the two latest years are forecasts.
In contrast to previous years, data are shown only for countries providing forecasts. Sub-regional totals are only for reporting countries.
In contrast to years prior to 2020, data are shown only for countries providing forecasts. Sub-regional totals thus reflect only the reporting countries of the subregion.
Confidential data have not been included. Please inform secretariat in case you notice any confidential data which might have been included inadvertently.
Wherever the forecast data is incomplete, then data is repeated to avoid skewing.
For tables 1-13, data in italics are secretariat estimates or repeated data. All other data are from national sources and are of course estimates for the current and future year.
Countries with nil, missing or confidential data for all years on a table are not shown.
Consumption figures are the sum of production and national imports minus national exports. Softwood = coniferous, hardwood = non-coniferous. United Kingdom production figures for OSB is secretariat estimate.
Uzbekistan – data extrapolated by the Secretariat based on national data for the first eight months 2023.
Poland - The trade turnover is based on data that includes the estimated value of trade turnover by entities exempt from the reporting obligation. These trade turnover figures are estimated at 3%. Roundwood: sawlogs and veneer logs and pulpwood and wood fuel - with removals from trees and shrubs outside the forest, including forest chips, with stump. Residues - production excluding recovered wood.
Softwood = coniferous, hardwood = non-coniferous
For tables 1-13, data in italics are secretariat estimates or repeated data. All other data are from national sources and are of course estimates for the current and future year.
Countries with nil, missing or confidential data for all years on a table are not shown.

Table1

TABLE 1
SAWN SOFTWOOD SCIAGES CONIFERES
Data only for those countries providing forecasts - Données uniquement pour les pays fournissant des prévisions
1000 m3
Apparent Consumption Imports Exports
Country Consommation Apparente Production Imports - Importations Exports - Exportations Pays
2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024
Austria 6,141 4,978 4,978 10,104 8,588 8,588 1,784 1,270 1,270 5,747 4,880 4,880 Autriche
Cyprus 33 34 34 1 1 1 32 33 33 0 0 0 Chypre
Czech Republic 2,965 2,343 2,470 4,720 3,776 4,040 583 414 350 2,338 1,847 1,920 République tchèque
Estonia 2,068 1,550 1,550 1,725 1,500 1,500 1,209 700 700 866 650 650 Estonie
Finland 2,938 2,420 2,420 11,200 10,300 10,400 305 20 20 8,567 7,900 8,000 Finlande
France 8,633 8,750 8,800 7,168 7,200 7,300 2,350 2,450 2,400 885 900 900 France
Germany 17,294 14,900 13,300 24,309 21,400 19,800 4,146 2,700 3,000 11,162 9,200 9,500 Allemagne
Hungary 788 902 918 85 96 86 717 821 842 14 15 11 Hongrie
Italy 4,790 4,302 4,302 400 400 400 4,608 4,157 4,157 217 255 255 Italie
Latvia 1,025 950 950 3,102 3,000 3,000 829 750 750 2,906 2,800 2,800 Lettonie
Luxembourg 71 122 122 39 39 39 43 91 91 11 8 8 Luxembourg
Malta 7 9 9 0 0 0 7 9 9 0 0 0 Malte
Montenegro 30 30 29 118 115 112 10 9 7 98 94 90 Monténégro
Netherlands 2,259 2,088 2,029 115 115 115 2,659 2,473 2,399 515 500 485 Pays-Bas
Poland 4,631 4,630 4,800 4,144 4,100 4,200 1,219 1,240 1,300 732 710 700 Pologne
Portugal 696 686 685 807 815 820 130 130 125 242 259 260 Portugal
Serbia 367 361 383 91 95 98 281 270 290 5 4 5 Serbie
Slovakia 847 810 860 1,430 1,360 1,400 480 450 460 1,063 1,000 1,000 Slovaquie
Slovenia 665 670 660 983 990 980 530 530 530 848 850 850 Slovénie
Spain 4,029 4,001 4,001 3,006 3,189 3,189 1,166 956 956 143 144 144 Espagne
Sweden 5,709 5,050 5,650 18,870 18,400 18,300 587 500 450 13,748 13,850 13,100 Suède
Switzerland 1,271 1,300 1,325 1,186 1,200 1,210 300 310 320 215 210 205 Suisse
United Kingdom 8,663 8,125 8,214 3,108 2,860 2,860 5,719 5,385 5,474 165 120 120 Royaume-Uni
Total Europe 75,919 69,011 68,490 96,712 89,540 88,439 29,694 25,668 25,934 50,487 46,197 45,883 Total Europe
Uzbekistan 2,256 1,498 1,498 0 0 0 2,256 1,498 1,498 0 0 0 Ouzbékistan
Total EECCA Total EOCAC
Canada a 3,707 2,691 2,242 36,398 33,228 31,331 891 988 948 33,581 31,525 30,037 Canada a
United States a 87,925 87,155 88,151 64,039 64,178 64,399 26,202 25,492 26,149 2,316 2,515 2,397 Etats-Unis a
Total North America 91,632 89,846 90,393 100,437 97,406 95,730 27,093 26,480 27,097 35,898 34,040 32,434 Total Amérique du Nord
a converted from nominal to actual size using factor of 0.72 a convertis du dimension nominale au véritable avec une facteur du 0.72

Table2

TABLE 2
SAWN HARDWOOD (total) SCIAGES NON-CONIFERES (total)
Data only for those countries providing forecasts - Données uniquement pour les pays fournissant des prévisions
1000 m3
Apparent Consumption Imports Exports
Country Consommation Apparente Production Imports - Importations Exports - Exportations Pays
2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024
Austria 310 222 222 238 202 202 217 140 140 145 120 120 Autriche
Cyprus 11 7 7 0 0 0 11 7 7 0 0 0 Chypre
Czech Republic 324 245 240 222 167 175 136 103 105 34 24 40 République tchèque
Estonia 232 125 125 175 125 125 147 60 60 90 60 60 Estonie
Finland 84 44 44 73 40 40 34 24 24 23 20 20 Finlande
France 1,124 1,140 1,150 1,446 1,300 1,400 264 420 350 586 580 600 France
Germany 693 650 650 997 800 800 395 300 300 699 450 450 Allemagne
Hungary 258 150 131 414 343 342 45 38 30 200 231 241 Hongrie
Italy 798 776 776 500 500 500 637 578 578 339 302 302 Italie
Latvia 5 105 105 720 800 800 54 55 55 769 750 750 Lettonie
Luxembourg 96 98 98 39 39 39 64 65 65 7 6 6 Luxembourg
Malta 7 8 9 0 0 0 7 8 9 0 0 0 Malte
Montenegro 11 8 10 39 35 34 2 1 1 30 28 25 Monténégro
Netherlands 238 213 203 34 34 34 314 289 279 110 110 110 Pays-Bas
Poland 495 470 500 487 450 460 267 270 300 259 250 260 Pologne
Portugal 369 295 290 182 185 190 287 200 190 100 90 90 Portugal
Serbia 172 215 225 343 370 385 64 60 70 235 215 230 Serbie
Slovakia 235 240 275 385 400 420 55 50 55 205 210 200 Slovaquie
Slovenia 106 145 145 143 145 145 83 80 80 121 80 80 Slovénie
Spain 425 467 467 302 321 321 175 193 193 53 47 47 Espagne
Sweden 142 140 140 100 100 100 83 80 80 41 40 40 Suède
Switzerland 78 79 81 52 53 54 50 51 52 24 25 25 Suisse
United Kingdom 807 810 810 37 40 40 787 790 790 17 20 20 Royaume-Uni
Total Europe 7,019 6,652 6,703 6,928 6,449 6,606 4,177 3,862 3,813 4,086 3,658 3,716 Total Europe
Uzbekistan 228 208 208 195 195 195 33 16 16 0 3 3 Ouzbékistan
Total EECCA Total EOCAC
Canada 1,208 1,324 1,242 859 893 815 793 826 738 444 395 311 Canada
United States 14,647 14,835 15,217 17,637 17,827 18,214 798 805 820 3,788 3,797 3,817 Etats-Unis
Total North America 15,855 16,159 16,459 18,496 18,720 19,029 1,591 1,631 1,558 4,231 4,192 4,128 Total Amérique du Nord

Table 2a

TABLE 2a
SAWN HARDWOOD (temperate) SCIAGES NON-CONIFERES (zone tempérée)
Data only for those countries providing forecasts - Données uniquement pour les pays fournissant des prévisions
1000 m3
Apparent Consumption Imports Exports
Country Consommation Apparente Production Imports - Importations Exports - Exportations Pays
2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024
Austria 306 219 219 238 202 202 213 136 136 144 119 119 Autriche
Cyprus 9 5 5 0 0 0 8 5 5 0 0 0 Chypre
Czech Republic 307 229 223 222 167 175 119 86 88 34 24 40 République tchèque
Estonia 230 122 122 175 125 125 142 56 56 87 59 59 Estonie
Finland 80 40 40 73 40 40 26 16 16 19 16 16 Finlande
France 960 988 988 1,420 1,285 1,375 123 280 210 583 577 597 France
Germany 664 630 630 997 800 800 315 240 240 649 410 410 Allemagne
Hungary 257 147 127 414 343 342 43 35 26 200 230 241 Hongrie
Italy 819 791 791 495 495 495 476 423 423 152 127 127 Italie
Latvia 5 105 105 720 800 800 54 55 55 769 750 750 Lettonie
Luxembourg 92 96 96 39 39 39 60 63 63 7 6 6 Luxembourg
Malta 6 7 8 0 0 0 6 7 8 0 0 0 Malte
Montenegro 11 8 10 39 35 34 2 1 1 30 28 25 Monténégro
Netherlands 89 80 77 27 27 27 117 108 105 55 55 55 Pays-Bas
Poland 484 459 488 487 450 460 254 257 286 257 248 258 Pologne
Portugal 319 272 268 170 172 178 180 150 140 31 50 50 Portugal
Serbia 167 211 220 342 369 384 59 57 66 234 215 230 Serbie
Slovakia 235 240 275 385 400 420 55 50 55 205 210 200 Slovaquie
Slovenia 104 143 143 143 145 145 81 78 78 120 80 80 Slovénie
Spain 383 417 417 300 318 318 128 142 142 45 43 43 Espagne
Sweden 142 139 139 100 100 100 83 79 79 41 40 40 Suède
Switzerland 69 70 72 49 50 51 44 45 46 24 25 25 Suisse
United Kingdom 716 720 720 37 40 40 693 700 700 14 20 20 Royaume-Uni
Total Europe 6,453 6,138 6,183 6,872 6,402 6,550 3,281 3,069 3,025 3,700 3,334 3,392 Total Europe
Uzbekistan 227 207 207 195 195 195 33 15 15 0 3 3 Ouzbékistan
Total EECCA Total EOCAC
Canada 1,191 1,316 1,236 859 893 815 762 805 715 430 382 294 Canada
United States 14,379 14,578 14,957 17,637 17,827 18,214 523 529 544 3,782 3,778 3,801 Etats-Unis
Total North America 15,569 15,893 16,193 18,496 18,720 19,029 1,285 1,334 1,259 4,212 4,160 4,095 Total Amérique du Nord

Table 2b

5.NC.T
TABLE 2b
SAWN HARDWOOD (tropical) SCIAGES NON-CONIFERES (tropicale)
Data only for those countries providing forecasts - Données uniquement pour les pays fournissant des prévisions
1000 m3
Apparent Consumption Imports Exports
Country Consommation Apparente Production Imports - Importations Exports - Exportations Pays
2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024
Austria 3 3 3 0 0 0 4 4 4 1 1 1 Autriche
Bulgaria 0 0 0 0 0 0 0 0 0 0 0 0 Bulgarie
Cyprus 3 2 2 0 0 0 3 2 2 0 0 0 Chypre
Czech Republic 17 17 17 0 0 0 17 17 17 0 0 0 République tchèque
Estonia 2 3 3 0 0 0 5 4 4 3 1 1 Estonie
Finland 4 4 4 0 0 0 8 8 8 4 4 4 Finlande
France 164 152 162 26 15 25 141 140 140 3 3 3 France
Germany 29 20 20 0 0 0 79 60 60 50 40 40 Allemagne
Hungary 2 3 4 0 0 0 2 4 4 0 0 0 Hongrie
Italy -21 -15 -15 5 5 5 161 154 154 187 175 175 Italie
Luxembourg 4 2 2 0 0 0 4 2 2 0 0 0 Luxembourg
Malta 1 1 1 0 0 0 1 1 1 0 0 0 Malte
Netherlands 149 133 126 7 7 7 197 181 174 55 55 55 Pays-Bas
Poland 10 11 12 0 0 0 12 13 14 2 2 2 Pologne
Portugal 50 23 22 12 13 12 107 50 50 69 40 40 Portugal
Serbia 5 4 5 1 1 1 5 3 4 1 0 0 Serbie
Slovenia 2 2 2 0 0 0 2 2 2 0 0 0 Slovénie
Spain 42 49 49 2 2 2 47 50 50 7 4 4 Espagne
Sweden 1 1 1 0 0 0 1 1 1 0 0 0 Suède
Switzerland 9 9 9 3 3 3 6 6 6 0 0 0 Suisse
United Kingdom 91 90 90 0 0 0 94 90 90 3 0 0 Royaume-Uni
Total Europe 566 515 519 56 46 55 896 793 788 386 324 324 Total Europe
Canada 17 8 7 0 0 0 31 21 23 14 13 16 Canada
United States 269 257 260 0 0 0 275 276 276 6 19 16 Etats-Unis
Total North America 286 266 266 0 0 0 305 297 299 20 31 32 Total Amérique du Nord

Table 3

TABLE 3
VENEER SHEETS FEUILLES DE PLACAGE
Data only for those countries providing forecasts - Données uniquement pour les pays fournissant des prévisions
1000 m3
Apparent Consumption Imports Exports
Country Consommation Apparente Production Imports - Importations Exports - Exportations Pays
2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024
Austria 74 39 39 8 8 8 83 45 45 17 14 14 Autriche
Cyprus 1 1 1 0 0 0 1 1 1 0 0 0 Chypre
Czech Republic 28 28 27 28 16 17 58 53 50 58 41 40 République tchèque
Estonia 111 125 125 105 110 110 87 95 95 82 80 80 Estonie
Finland 27 21 21 190 160 160 12 10 10 175 149 149 Finlande
France 366 366 366 157 157 157 273 273 273 64 64 64 France
Germany 157 143 125 110 105 105 99 78 70 52 40 50 Allemagne
Hungary 23 25 20 13 18 13 39 39 39 28 31 32 Hongrie
Italy 344 308 308 107 107 107 274 234 234 37 33 33 Italie
Latvia 105 105 105 40 50 50 140 140 140 75 85 85 Lettonie
Luxembourg 1 0 0 0 0 0 1 0 0 0 0 0 Luxembourg
Malta 1 2 3 0 0 0 1 2 3 0 0 0 Malte
Netherlands 15 13 13 0 0 0 17 15 15 3 3 3 Pays-Bas
Poland 121 121 129 45 42 45 92 94 98 16 15 14 Pologne
Portugal 12 20 35 20 30 25 38 40 50 46 50 40 Portugal
Serbia 4 4 5 30 28 30 8 6 8 34 30 33 Serbie
Slovakia 17 25 25 21 25 25 27 30 30 31 30 30 Slovaquie
Slovenia 9 8 9 28 27 25 13 14 14 32 33 30 Slovénie
Spain 122 92 92 40 36 36 127 90 90 45 34 34 Espagne
Sweden 32 31 31 60 50 50 19 10 10 47 29 29 Suède
Switzerland 3 3 3 0 0 0 4 4 4 1 1 1 Suisse
United Kingdom 6 10 10 0 0 0 7 10 10 1 0 0 Royaume-Uni
Total Europe 1,577 1,490 1,491 1,002 969 962 1,419 1,283 1,288 843 762 760 Total Europe
Uzbekistan 4 4 4 3 3 3 2 1 1 0 0 0 Ouzbékistan
Total EECCA 0 Total EOCAC
Canada 204 262 267 581 581 581 212 218 230 590 537 544 Canada
United States 2,643 2,670 2,699 2,284 2,306 2,329 652 658 664 293 294 294 Etats-Unis
Total North America 2,847 2,932 2,966 2,866 2,887 2,910 864 876 894 883 831 838 Total Amérique du Nord
Note: Definition of veneers excludes domestic use for plywood.
La définition des placages exclus la conversion directe en contreplaqué.

Table 4

TABLE 4
PLYWOOD CONTREPLAQUES
Data only for those countries providing forecasts - Données uniquement pour les pays fournissant des prévisions
1000 m3
Apparent Consumption Imports Exports
Country Consommation Apparente Production Imports - Importations Exports - Exportations Pays
2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024
Austria 19 15 15 131 155 155 183 150 150 296 290 290 Autriche
Cyprus 14 15 15 0 0 0 14 15 15 0 0 0 Chypre
Czech Republic 193 116 123 240 236 238 230 115 115 277 235 230 République tchèque
Estonia 145 50 50 200 210 210 151 50 50 205 210 210 Estonie
Finland 297 240 240 1,110 940 940 87 60 60 900 760 760 Finlande
France 589 583 583 253 270 270 476 452 452 140 139 139 France
Germany 1,073 1,154 840 85 80 80 1,319 1,281 1,000 330 207 240 Allemagne
Hungary 136 110 107 60 61 63 138 138 138 62 90 94 Hongrie
Italy 602 537 537 288 290 290 525 442 442 211 195 195 Italie
Latvia 92 55 55 331 300 300 94 95 95 333 340 340 Lettonie
Luxembourg 33 29 29 0 0 0 33 29 29 0 0 0 Luxembourg
Malta 10 11 12 0 0 0 10 11 12 0 0 0 Malte
Montenegro 2 2 2 1 1 1 2 2 2 1 1 1 Monténégro
Netherlands 488 457 441 0 0 0 586 551 529 98 94 88 Pays-Bas
Poland 650 640 670 539 515 530 468 475 480 357 350 340 Pologne
Portugal 154 180 166 103 100 110 95 110 100 44 30 44 Portugal
Serbia 40 36 38 19 18 19 34 30 33 13 12 14 Serbie
Slovakia 67 63 63 153 150 150 59 59 59 146 146 146 Slovaquie
Slovenia 49 50 58 94 90 98 26 30 30 71 70 70 Slovénie
Spain 231 326 326 462 416 416 132 117 117 363 207 207 Espagne
Sweden 278 160 160 90 90 90 236 120 120 48 50 50 Suède
Switzerland 206 206 206 7 7 7 203 203 203 4 4 4 Suisse
United Kingdom 1,254 1,180 1,180 0 0 0 1,320 1,250 1,250 66 70 70 Royaume-Uni
Total Europe 6,623 6,215 5,916 4,166 3,930 3,967 6,422 5,786 5,482 3,965 3,501 3,532 Total Europe
Uzbekistan 62 46 46 0 0 0 63 47 47 0 0 0 Ouzbékistan
Total EECCA 0 Total EOCAC
Canada 2,174 2,028 2,123 1,604 1,557 1,526 1,224 1,058 1,241 654 587 644 Canada
United States 14,742 14,890 15,188 9,254 9,345 9,528 6,259 6,317 6,436 771 772 776 Etats-Unis
Total North America 16,916 16,918 17,311 10,858 10,902 11,054 7,483 7,375 7,677 1,425 1,359 1,420 Total Amérique du Nord

Table 5

TABLE 5
PARTICLE BOARD (excluding OSB) PANNEAUX DE PARTICULES (ne comprennent pas l'OSB)
Data only for those countries providing forecasts - Données uniquement pour les pays fournissant des prévisions
1000 m3
Apparent Consumption Imports Exports
Country Consommation Apparente Production Imports - Importations Exports - Exportations Pays
2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024
Austria 951 630 630 2,280 2,170 2,170 313 355 355 1,642 1,895 1,895 Autriche
Cyprus 49 46 46 0 0 0 49 46 46 0 0 0 Chypre
Czech Republic 793 811 835 962 866 910 530 484 485 699 538 560 République tchèque
Estonia 123 67 67 90 0 0 77 68 68 44 2 1 Estonie
Finland 113 75 75 54 54 54 85 44 44 26 23 23 Finlande
France 2,224 2,148 2,148 3,177 3,094 3,094 299 355 355 1,253 1,301 1,301 France
Germany 5,572 5,220 4,970 5,526 5,195 5,020 1,970 1,934 1,900 1,924 1,909 1,950 Allemagne
Hungary 408 384 379 447 428 438 264 282 272 303 326 331 Hongrie
Italy 3,070 2,813 2,813 2,646 2,500 2,500 956 821 821 532 508 508 Italie
Latvia 52 85 85 306 300 300 69 25 25 322 240 240 Lettonie
Luxembourg 20 12 12 0 0 0 21 13 13 1 1 1 Luxembourg
Malta 10 11 11 0 0 0 10 11 11 0 0 0 Malte
Montenegro 32 33 34 0 0 0 32 33 34 0 0 0 Monténégro
Netherlands 464 440 432 0 0 0 514 488 479 50 48 47 Pays-Bas
Poland 6,501 6,450 6,740 5,227 5,150 5,450 2,173 2,180 2,200 899 880 910 Pologne
Portugal 537 473 514 766 750 760 281 300 290 510 577 536 Portugal
Serbia 373 351 371 219 210 220 196 184 198 42 43 47 Serbie
Slovakia 352 343 340 676 675 675 148 140 137 473 473 472 Slovaquie
Slovenia 137 110 110 0 0 0 143 114 114 6 4 4 Slovénie
Spain 2,392 2,213 2,213 2,566 2,310 2,310 626 621 621 800 718 718 Espagne
Sweden 1,055 868 868 636 600 600 475 335 335 57 67 67 Suède
Switzerland 281 286 286 420 425 425 141 141 141 280 280 280 Suisse
United Kingdom 2,606 2,542 2,542 2,012 1,982 1,982 648 610 610 55 50 50 Royaume-Uni
Total Europe 28,115 26,410 26,521 28,012 26,710 26,908 10,021 9,584 9,555 9,917 9,883 9,942 Total Europe
Uzbekistan 880 542 542 252 252 252 654 317 317 26 27 27 Ouzbékistan
Total EECCA 27 Total EOCAC
Canada 1,466 1,886 1,894 1,625 2,032 2,012 552 504 491 710 650 609 Canada
United States 5,196 5,565 5,562 4,488 4,552 4,534 1,193 1,465 1,487 485 452 459 Etats-Unis
Total North America 6,663 7,451 7,456 6,113 6,584 6,546 1,745 1,969 1,978 1,195 1,102 1,068 Total Amérique du Nord
Data are calculated by subtracting OSB from the particleboard/OSB total - les données sont calculées en soustrayant les OSB du total des panneaux de particules et OSB.

Table 5a

TABLE 5a
ORIENTED STRAND BOARD (OSB) PANNEAUX STRUCTURAUX ORIENTES (OSB)
Data only for those countries providing forecasts - Données uniquement pour les pays fournissant des prévisions
1000 m3
Apparent Consumption Imports Exports
Country Consommation Apparente Production Imports - Importations Exports - Exportations Pays
2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024
Austria 205 135 135 0 0 0 212 140 140 7 5 5 Autriche
Cyprus 11 14 14 0 0 0 11 14 14 0 0 0 Chypre
Czech Republic 380 342 350 689 620 655 126 113 115 435 392 420 République tchèque
Estonia 55 32 32 0 0 0 55 32 32 1 0 0 Estonie
Finland 56 56 56 0 0 0 56 56 56 0 0 0 Finlande
France 427 522 522 302 406 406 222 165 165 96 49 49 France
Germany 1,316 1,238 1,130 1,164 1,105 1,080 679 669 600 526 536 550 Allemagne
Hungary 133 147 152 379 419 443 56 60 59 302 331 350 Hongrie
Italy 346 287 287 100 100 100 346 274 274 100 87 87 Italie
Latvia 196 165 165 674 650 650 76 75 75 554 560 560 Lettonie
Luxembourg 110 135 135 338 338 338 6 14 14 234 217 217 Luxembourg
Montenegro 2 2 2 0 0 0 2 2 2 0 0 0 Monténégro
Netherlands 222 222 227 0 0 0 286 286 292 64 64 65 Pays-Bas
Poland 655 650 760 647 650 750 302 320 350 294 320 340 Pologne
Portugal 46 37 41 0 0 0 50 40 45 4 3 4 Portugal
Serbia 40 35 41 0 0 0 41 36 42 1 1 1 Serbie
Slovakia 48 58 60 0 0 0 48 60 63 1 3 3 Slovaquie
Slovenia 31 24 24 0 0 0 33 26 26 2 2 2 Slovénie
Spain 26 15 15 3 3 3 35 33 33 12 20 20 Espagne
Sweden 94 92 92 0 0 0 97 95 95 3 3 3 Suède
Switzerland 95 95 95 0 0 0 96 96 96 1 1 1 Suisse
United Kingdom 773 758 758 598 598 598 365 350 350 190 190 190 Royaume-Uni
Total Europe 5,268 5,060 5,092 4,894 4,888 5,023 3,200 2,956 2,938 2,826 2,784 2,868 Total Europe
Uzbekistan 7 5 5 0 0 0 7 5 5 0 0 0 Ouzbékistan
Total EECCA 0 Total EOCAC
Canada 1,546 1,253 1,153 7,270 6,820 6,798 82 65 61 5,806 5,632 5,706 Canada
United States 19,658 19,834 20,197 13,592 13,783 14,059 6,198 6,236 6,326 132 185 188 Etats-Unis
Total North America 21,204 21,087 21,350 20,862 20,603 20,857 6,280 6,301 6,387 5,938 5,817 5,894 Total Amérique du Nord

Table 6

TABLE 6
FIBREBOARD PANNEAUX DE FIBRES
Data only for those countries providing forecasts - Données uniquement pour les pays fournissant des prévisions
1000 m3
Apparent Consumption Imports Exports
Country Consommation Apparente Production Imports - Importations Exports - Exportations Pays
2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024
Austria 421 386 386 470 395 395 331 308 308 381 316 316 Autriche
Cyprus 20 15 16 0 0 0 20 15 16 0 0 0 Chypre
Czech Republic 328 276 280 41 41 42 438 347 360 151 112 122 République tchèque
Estonia 70 46 47 75 40 40 65 46 47 70 40 40 Estonie
Finland 139 105 105 44 44 44 141 102 102 46 41 41 Finlande
France 828 915 915 1,238 1,035 1,035 721 772 772 1,130 892 892 France
Germany 3,791 3,437 3,325 5,194 4,900 4,800 1,590 1,543 1,470 2,993 3,006 2,945 Allemagne
Hungary 9 -17 -13 21 0 0 204 235 244 215 253 258 Hongrie
Italy 1,862 1,661 1,661 827 818 818 1,281 974 974 245 131 131 Italie
Latvia 60 50 40 48 50 50 62 65 65 50 65 75 Lettonie
Luxembourg 100 90 90 147 147 147 34 19 19 80 76 76 Luxembourg
Malta 6 7 7 0 0 0 6 7 7 0 0 0 Malte
Montenegro 32 32 33 0 0 0 32 32 33 0 0 0 Monténégro
Netherlands 332 310 296 29 29 29 465 431 412 162 150 145 Pays-Bas
Poland 3,808 3,765 4,020 4,960 4,920 5,080 590 585 630 1,743 1,740 1,690 Pologne
Portugal 534 485 529 526 520 560 338 315 335 330 350 366 Portugal
Serbia 74 74 88 19 20 22 71 73 88 16 19 22 Serbie
Slovakia 210 218 223 0 0 0 248 256 262 39 38 39 Slovaquie
Slovenia 24 15 15 132 120 125 28 25 30 136 130 140 Slovénie
Spain 920 894 894 1,430 1,287 1,287 462 355 355 972 748 748 Espagne
Sweden 301 260 260 0 0 0 425 360 360 124 100 100 Suède
Switzerland 238 238 238 97 97 97 308 308 308 167 167 167 Suisse
United Kingdom 1,692 1,630 1,630 856 850 850 895 840 840 60 60 60 Royaume-Uni
Total Europe 15,799 14,892 15,085 16,153 15,313 15,421 8,755 8,013 8,037 9,110 8,434 8,373 Total Europe
Uzbekistan 1,092 809 809 47 47 47 1,057 771 771 13 9 9 Ouzbékistan
Total EECCA Total EOCAC
Canada 1,236 1,183 1,181 1,277 1,288 1,299 818 628 605 859 733 723 Canada
United States 8,684 8,749 8,888 6,362 6,420 6,571 3,359 3,289 3,310 1,038 960 993 Etats-Unis
Total North America 9,920 9,932 10,069 7,639 7,708 7,870 4,177 3,917 3,915 1,896 1,693 1,716 Total Amérique du Nord

Table 6a

TABLE 6a
HARDBOARD PANNEAUX DURS
Data only for those countries providing forecasts - Données uniquement pour les pays fournissant des prévisions
1000 m3
Apparent Consumption Imports Exports
Country Consommation Apparente Production Imports - Importations Exports - Exportations Pays
2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024
Austria 29 28 28 54 43 43 18 16 16 43 32 32 Autriche
Cyprus 2 1 2 0 0 0 2 1 2 0 0 0 Chypre
Czech Republic 43 45 45 0 0 0 61 59 60 18 14 15 République tchèque
Estonia 23 15 19 0 0 0 30 16 20 7 1 1 Estonie
Finland 23 21 21 44 44 44 21 15 15 41 38 38 Finlande
France 55 55 55 221 221 221 207 207 207 373 373 373 France
Germany 176 183 165 0 0 0 200 203 180 23 20 15 Allemagne
Hungary 27 41 45 2 0 0 65 81 85 40 40 40 Hongrie
Italy 280 280 280 16 16 16 283 283 283 19 19 19 Italie
Latvia 1 5 5 15 15 15 18 20 20 32 30 30 Lettonie
Luxembourg -31 -12 -12 0 0 0 3 8 8 34 20 20 Luxembourg
Montenegro 1 1 1 0 0 0 1 1 1 0 0 0 Monténégro
Netherlands 44 41 39 0 0 0 63 58 56 19 17 17 Pays-Bas
Poland -179 -120 -50 80 80 80 88 100 120 347 300 250 Pologne
Portugal 50 30 39 0 0 0 61 40 50 11 10 11 Portugal
Serbia 39 35 38 19 20 22 33 31 34 13 16 18 Serbie
Slovakia 21 20 21 0 0 0 21 21 22 1 1 1 Slovaquie
Slovenia -1 0 1 0 0 0 4 2 4 4 2 3 Slovénie
Spain 17 15 15 32 29 29 46 46 46 61 60 60 Espagne
Sweden 47 30 30 0 0 0 116 110 110 70 80 80 Suède
Switzerland 19 19 19 0 0 0 24 24 24 5 5 5 Suisse
United Kingdom 101 90 90 0 0 0 110 100 100 9 10 10 Royaume-Uni
Total Europe 787 822 895 482 468 470 1,474 1,441 1,463 1,169 1,087 1,037 Total Europe
Uzbekistan 89 50 50 0 0 0 90 50 50 0 0 0 Ouzbékistan
Total EECCA Total EOCAC
Canada 33 47 42 90 90 90 52 27 28 109 70 76 Canada
United States 481 509 514 437 504 509 259 255 258 215 250 253 Etats-Unis
Total North America 514 556 556 527 594 599 311 282 286 324 320 329 Total Amérique du Nord

Table 6b

TABLE 6b
MDF/HDF
Data only for those countries providing forecasts - Données uniquement pour les pays fournissant des prévisions
1000 m3
Apparent Consumption Imports Exports
Country Consommation Apparente Production Imports - Importations Exports - Exportations Pays
2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024
Austria 260 230 230 416 351 351 177 160 160 333 281 281 Autriche
Cyprus 16 12 12 0 0 0 16 12 12 0 0 0 Chypre
Czech Republic 199 157 160 41 41 42 180 135 140 22 19 22 République tchèque
Estonia 18 21 18 0 0 0 33 28 25 15 7 7 Estonie
Finland 82 67 67 0 0 0 86 70 70 4 3 3 Finlande
France 708 794 794 954 751 751 337 388 388 583 345 345 France
Germany 1,870 1,728 1,720 3,792 3,700 3,650 424 395 370 2,345 2,367 2,300 Allemagne
Hungary -39 -65 -62 0 0 0 136 148 156 175 213 218 Hongrie
Italy 1,501 1,299 1,299 809 800 800 913 606 606 221 107 107 Italie
Latvia 52 40 30 33 35 35 22 25 25 2 20 30 Lettonie
Luxembourg 128 98 98 147 147 147 27 7 7 46 56 56 Luxembourg
Malta 5 5 5 0 0 0 5 5 5 0 0 0 Malte
Montenegro 31 31 32 0 0 0 31 31 32 0 0 0 Monténégro
Netherlands 220 205 196 0 0 0 361 336 322 141 131 126 Pays-Bas
Poland 3,066 3,020 3,130 3,052 3,030 3,100 470 450 470 456 460 440 Pologne
Portugal 447 440 465 494 500 530 257 260 265 305 320 330 Portugal
Serbia 31 35 46 0 0 0 34 38 50 3 3 4 Serbie
Slovakia 135 135 135 0 0 0 170 170 170 35 35 35 Slovaquie
Slovenia 24 15 14 132 120 125 24 23 26 131 128 137 Slovénie
Spain 835 821 821 1,334 1,201 1,201 397 302 302 897 682 682 Espagne
Sweden 254 225 225 0 0 0 284 230 230 30 5 5 Suède
Switzerland 24 24 24 97 97 97 88 88 88 161 161 161 Suisse
United Kingdom 1,553 1,510 1,510 856 850 850 739 700 700 42 40 40 Royaume-Uni
Total Europe 11,419 10,847 10,969 12,157 11,623 11,679 5,210 4,606 4,618 5,948 5,382 5,328 Total Europe
Uzbekistan 671 513 513 46 46 46 629 469 469 3 2 2 Ouzbékistan
Total EECCA Total EOCAC
Canada 1,053 999 1,005 1,087 1,098 1,109 608 472 449 641 570 553 Canada
United States 5,156 5,228 5,226 2,746 2,778 2,786 2,939 2,874 2,866 529 424 426 Etats-Unis
Total North America 6,209 6,227 6,231 3,833 3,876 3,895 3,547 3,346 3,315 1,170 994 979 Total Amérique du Nord

Table 6c

TABLE 6c
OTHER FIBREBOARD AUTRES PANNEAUX DE FIBRES
Data only for those countries providing forecasts - Données uniquement pour les pays fournissant des prévisions
1000 m3
Apparent Consumption Imports Exports
Country Consommation Apparente Production Imports - Importations Exports - Exportations Pays
2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024
Austria 131 128 128 0 0 0 136 132 132 4 3 3 Autriche
Cyprus 2 2 2 0 0 0 3 2 2 0 0 0 Chypre
Czech Republic 86 74 75 0 0 0 197 154 160 111 80 85 République tchèque
Estonia 29 10 10 75 40 40 3 2 2 49 32 32 Estonie
Finland 33 17 17 0 0 0 34 17 17 0 0 0 Finlande
France 65 66 66 63 63 63 177 177 177 174 174 174 France
Germany 1,745 1,526 1,440 1,402 1,200 1,150 966 945 920 624 619 630 Allemagne
Hungary 21 7 4 19 0 0 3 7 4 0 0 0 Hongrie
Italy 82 82 82 3 3 3 85 85 85 6 6 6 Italie
Latvia 7 5 5 0 0 0 23 20 20 16 15 15 Lettonie
Luxembourg 4 4 4 0 0 0 4 4 4 0 0 0 Luxembourg
Malta 1 2 2 0 0 0 1 2 2 0 0 0 Malte
Netherlands 68 64 61 29 29 29 41 37 34 2 2 2 Pays-Bas
Poland 920 865 940 1,828 1,810 1,900 33 35 40 940 980 1,000 Pologne
Portugal 37 15 25 32 20 30 20 15 20 15 20 25 Portugal
Serbia 4 4 4 0 0 0 4 4 4 0 0 0 Serbie
Slovakia 54 63 67 0 0 0 57 65 70 3 2 3 Slovaquie
Slovenia 0 0 0 0 0 0 0 0 0 0 0 0 Slovénie
Spain 69 59 59 64 58 58 20 7 7 15 6 6 Espagne
Sweden 0 5 5 0 0 0 25 20 20 24 15 15 Suède
Switzerland 195 195 195 0 0 0 196 196 196 1 1 1 Suisse
United Kingdom 38 30 30 0 0 0 47 40 40 9 10 10 Royaume-Uni
Total Europe 3,592 3,223 3,221 3,514 3,222 3,272 2,071 1,965 1,956 1,993 1,965 2,007 Total Europe
Uzbekistan 331 246 246 2 2 2 339 252 252 10 7 7 Ouzbékistan
Total EECCA Total EOCAC
Canada 150 137 134 100 100 100 158 129 128 108 92 94 Canada
United States 3,047 3,012 3,148 3,179 3,138 3,276 161 160 186 294 286 314 Etats-Unis
Total North America 3,196 3,149 3,282 3,279 3,238 3,376 319 289 314 402 378 408 Total Amérique du Nord

Table 7

TABLE 7
WOOD PULP PATE DE BOIS
Data only for those countries providing forecasts - Données uniquement pour les pays fournissant des prévisions
1000 mt
Apparent Consumption Imports Exports
Country Consommation Apparente Production Imports - Importations Exports - Exportations Pays
2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024
Austria 2,209 1,950 2,030 1,977 1,700 1,800 630 610 630 399 360 400 Autriche
Czech Republic 847 688 700 640 525 540 324 259 260 117 96 100 République tchèque
Estonia 70 75 80 227 180 180 42 50 50 199 155 150 Estonie
Finland a 5,468 4,483 4,614 9,200 8,690 9,360 355 150 150 4,087 4,357 4,896 Finlande a
France 2,898 2,420 2,500 1,666 1,300 1,350 1,715 1,450 1,500 483 330 350 France
Germany 5,092 4,600 5,000 2,172 1,850 2,000 4,173 3,900 4,200 1,253 1,150 1,200 Allemagne
Hungary 205 206 214 66 77 87 141 133 131 3 3 4 Hongrie
Italy 3,466 3,466 3,466 223 223 223 3,536 3,536 3,536 293 293 293 Italie
Latvia 7 7 7 12 13 13 7 7 7 12 13 13 Lettonie
Netherlands 443 442 442 37 37 37 1,717 1,717 1,717 1,312 1,312 1,312 Pays-Bas
Poland 2,836 2,830 2,930 1,729 1,710 1,750 1,291 1,300 1,320 183 180 140 Pologne
Portugal 1,757 1,735 1,760 2,869 2,870 2,870 140 145 150 1,252 1,280 1,260 Portugal
Serbia 82 88 92 0 0 0 82 88 92 0 0 0 Serbie
Slovakia 700 700 715 692 700 725 173 170 170 166 170 180 Slovaquie
Slovenia 322 321 316 73 63 68 249 260 250 1 2 2 Slovénie
Spain 1,520 1,328 1,328 1,120 1,120 1,120 1,176 976 976 775 768 768 Espagne
Sweden 8,438 7,600 7,950 11,631 10,900 11,400 641 600 600 3,834 3,900 4,050 Suède
Switzerland 188 188 188 87 87 87 101 101 101 0 0 0 Suisse
United Kingdom 1,057 940 950 220 200 200 838 740 750 1 0 0 Royaume-Uni
Total Europe 37,604 34,067 35,282 34,641 32,244 33,809 17,333 16,193 16,590 14,369 14,369 15,118 Total Europe
Uzbekistan 38 28 28 1 1 1 37 28 28 0 0 0 Ouzbékistan
Total EECCA Total EOCAC
Canada 6,007 5,851 5,616 14,200 13,102 12,638 472 582 640 8,665 7,833 7,662 Canada
United States 39,787 42,269 42,815 40,822 41,230 41,478 6,948 7,643 8,254 7,983 6,603 6,917 Etats-Unis
Total North America 45,794 48,121 48,431 55,022 54,332 54,116 7,420 8,224 8,894 16,648 14,436 14,579 Total Amérique du Nord
a imports exclude dissolving pulp a les importations excluent pâte à dissoudre

Table 8

TABLE 8
PAPER AND PAPERBOARD PAPIERS ET CARTONS
Data only for those countries providing forecasts - Données uniquement pour les pays fournissant des prévisions
1000 mt
Apparent Consumption Imports Exports
Country Consommation Apparente Production Imports - Importations Exports - Exportations Pays
2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024
Austria 2,133 1,750 2,050 4,633 3,500 4,000 1,231 1,050 1,150 3,730 2,800 3,100 Autriche
Cyprus 56 48 48 0 0 0 56 48 48 0 0 0 Chypre
Czech Republic 1,467 1,234 1,258 938 769 785 1,531 1,286 1,312 1,002 822 838 République tchèque
Estonia 120 111 111 57 35 35 123 102 102 59 26 26 Estonie
Finland 514 475 460 7,200 5,990 6,150 333 275 280 7,019 5,790 5,970 Finlande
France 8,272 7,290 7,400 7,092 6,240 6,600 4,845 4,650 4,600 3,665 3,600 3,800 France
Germany 17,836 14,600 17,000 21,612 17,500 21,000 9,302 8,000 9,500 13,078 10,900 13,500 Allemagne
Hungary 1,213 1,167 1,212 1,057 1,003 1,034 877 892 898 720 727 721 Hongrie
Italy 11,390 11,390 11,390 8,696 8,696 8,696 5,800 5,800 5,800 3,106 3,106 3,106 Italie
Latvia 168 175 175 29 30 30 173 180 180 33 35 35 Lettonie
Luxembourg 26 14 14 0 0 0 27 15 15 1 1 1 Luxembourg
Malta 26 27 28 0 0 0 26 27 28 0 0 0 Malte
Netherlands 2,814 2,760 2,760 2,884 2,827 2,827 2,180 2,096 2,096 2,250 2,163 2,163 Pays-Bas
Poland 7,532 7,400 7,550 5,237 5,130 5,250 4,869 4,870 4,950 2,574 2,600 2,650 Pologne
Portugal 1,090 1,200 1,240 2,123 2,200 2,240 948 940 945 1,981 1,940 1,945 Portugal
Serbia 790 762 778 483 481 490 514 490 500 207 209 212 Serbie
Slovakia 565 575 600 967 975 1,000 457 450 475 859 850 875 Slovaquie
Slovenia 412 390 390 591 500 500 367 390 390 545 500 500 Slovénie
Spain 7,060 6,778 6,778 6,355 6,355 6,355 2,997 2,577 2,577 2,291 2,154 2,154 Espagne
Sweden 834 700 750 8,531 7,300 8,100 894 700 750 8,591 7,300 8,100 Suède
Switzerland 1,020 1,015 1,010 1,160 1,155 1,150 640 635 630 780 775 770 Suisse
United Kingdom 7,420 6,280 6,440 3,460 3,190 3,250 5,015 4,150 4,250 1,055 1,060 1,060 Royaume-Uni
Total Europe 72,758 66,140 69,442 83,103 73,876 79,492 43,204 39,623 41,476 53,549 47,358 51,526 Total Europe
Uzbekistan 335 297 297 142 142 142 214 171 171 21 17 17 Ouzbékistan
Total EECCA Total EOCAC
Canada 5,505 6,069 6,231 9,094 9,124 9,155 2,516 2,242 2,235 6,105 5,298 5,159 Canada
United States 64,243 62,896 63,029 65,959 64,476 64,476 8,202 8,180 8,159 9,917 9,761 9,606 Etats-Unis
Total North America 69,748 68,964 69,260 75,053 73,600 73,631 10,718 10,423 10,395 16,023 15,059 14,765 Total Amérique du Nord

Table 9

TABLE 9
REMOVALS OF WOOD IN THE ROUGH QUANTITES ENLEVEES DE BOIS BRUT
TOTAL TOTAL
1000 m3 - Data only for those countries providing forecasts - Données uniquement pour les pays fournissant des prévisions
Country Industrial wood - Bois industriels Wood fuel c Bois de chauffage c Pays
Total Logs Pulpwood a Other b Total
Grumes Bois de trituration a Autre b
2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024
Austria 13,935 11,716 12,225 10,711 8,904 9,338 3,223 2,812 2,887 0 0 0 5,424 5,115 5,234 19,359 16,831 17,459 Autriche
Cyprus 3 2 2 2 2 2 0 0 0 0 0 0 11 9 8 14 11 10 Chypre
Czech Republic 20,708 15,535 14,897 14,635 10,617 10,106 5,965 4,804 4,675 108 113 115 4,405 3,965 3,900 25,113 19,499 18,797 République tchèque
Estonia 6,474 6,401 6,401 4,276 4,200 4,200 2,148 2,150 2,150 51 51 51 4,066 3,800 3,800 10,541 10,201 10,201 Estonie
Finland 56,246 53,397 55,435 25,699 22,749 23,412 30,547 30,648 32,023 0 0 0 9,340 9,340 9,340 65,586 62,737 64,775 Finlande
France 25,648 25,270 25,070 17,198 17,200 17,300 7,891 7,500 7,200 559 570 570 24,173 24,500 25,600 49,821 49,770 50,670 France
Germany 56,534 53,930 49,630 44,756 41,200 39,500 11,644 12,600 10,000 135 130 130 22,338 22,700 22,700 78,872 76,630 72,330 Allemagne
Hungary 2,901 2,881 2,881 1,410 1,374 1,399 912 995 1,008 579 512 475 3,626 3,284 3,397 6,527 6,165 6,278 Hongrie
Italy 2,838 3,540 3,540 1,890 1,890 1,890 316 1,018 1,018 632 632 632 10,839 10,839 10,839 13,677 14,379 14,379 Italie
Latvia 12,491 12,150 12,350 7,603 7,250 7,450 3,868 3,800 3,800 1,020 1,100 1,100 2,936 3,000 3,000 15,427 15,150 15,350 Lettonie
Luxembourg 231 197 193 147 144 133 56 38 38 27 15 22 40 45 43 271 242 235 Luxembourg
Montenegro 751 697 678 515 492 487 201 198 186 35 7 5 194 193 190 945 890 868 Monténégro
Netherlands 614 599 589 221 220 215 352 340 335 41 39 39 2,382 2,380 2,385 2,996 2,979 2,974 Pays-Bas
Poland 38,735 39,880 40,850 18,533 18,800 19,150 19,350 20,100 20,550 852 980 1,150 6,958 7,420 7,750 45,693 47,300 48,600 Pologne
Portugal 12,235 12,330 12,190 2,038 2,040 2,060 9,799 9,850 9,700 399 440 430 2,383 2,380 2,300 14,619 14,710 14,490 Portugal
Serbia 1,478 1,520 1,561 1,077 1,104 1,130 265 275 283 136 141 148 6,574 6,646 6,760 8,052 8,166 8,321 Serbie
Slovakia 6,827 6,820 6,880 4,130 4,080 4,100 2,672 2,710 2,750 25 30 30 609 610 650 7,435 7,430 7,530 Slovaquie
Slovenia 2,928 3,752 3,482 2,184 2,780 2,600 698 920 830 45 52 52 1,149 1,290 1,270 4,076 5,042 4,752 Slovénie
Spain 14,366 15,244 15,244 4,150 4,404 4,404 9,813 10,413 10,413 403 427 427 3,555 3,772 3,772 17,921 19,016 19,016 Espagne
Sweden 71,165 69,076 69,310 38,280 37,480 37,080 32,585 31,296 31,930 300 300 300 6,000 6,016 6,016 77,165 75,092 75,326 Suède
Switzerland 3,011 3,082 3,142 2,555 2,625 2,680 444 445 450 12 12 12 1,938 2,000 2,025 4,949 5,082 5,167 Suisse
United Kingdom 7,604 7,193 7,193 5,509 5,236 5,236 1,646 1,529 1,529 448 428 428 2,184 2,184 2,184 9,788 9,377 9,377 Royaume-Uni
Total Europe 357,723 345,212 343,742 207,519 194,791 193,872 144,397 144,441 143,754 5,807 5,980 6,116 121,124 121,488 123,163 478,847 466,699 466,905 Total Europe
Canada 142,131 140,499 140,499 124,900 123,350 123,350 15,040 14,864 14,864 2,190 2,285 2,285 1,683 1,908 1,908 143,814 142,407 142,407 Canada
United States 382,544 384,963 388,611 186,157 188,221 191,211 182,650 182,996 183,637 13,737 13,746 13,763 76,230 76,240 76,278 458,774 461,203 464,889 Etats-Unis
Total North America 524,675 525,462 529,110 311,057 311,571 314,561 197,690 197,861 198,501 15,927 16,031 16,048 77,913 78,148 78,186 602,587 603,610 607,296 Total Amérique du Nord
a Pulpwood, round and split, as well as chips and particles produced directly a Bois de trituration, rondins et quartiers, ainse que plaquettes et particules fabriquées
therefrom and used as pulpwood directement à partir des rondins et quartiers et utilisées comme bois de trituration
b Pitprops, poles, piling, posts etc. b Bois de mine, poteaux, pilotis, piquets etc.
c Including chips and particles produced from wood in the rough and c Y compris plaquettes et particules fabriquées à partir du bois brut et utilisées
used for energy purposes à des fins energétiques

Table 9a

TABLE 9a
REMOVALS OF WOOD IN THE ROUGH QUANTITES ENLEVEES DE BOIS BRUT
SOFTWOOD CONIFERES
1000 m3 - Data only for those countries providing forecasts - Données uniquement pour les pays fournissant des prévisions
Country Industrial wood - Bois industriels Wood fuel c Bois de chauffage c Pays
Total Logs Pulpwood a Other b Total
Grumes Bois de trituration a Autre b
2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024
Austria 12,958 10,873 11,338 10,382 8,638 9,038 2,576 2,235 2,300 0 0 0 3,248 3,069 3,140 16,206 13,942 14,478 Autriche
Cyprus 2 2 2 2 2 2 0 0 0 0 0 0 10 8 7 12 10 9 Chypre
Czech Republic 19,440 14,455 13,825 14,019 10,094 9,589 5,316 4,253 4,125 105 109 111 3,610 3,249 3,200 23,050 17,704 17,025 République tchèque
Estonia 4,023 3,927 3,927 3,118 3,000 3,000 878 900 900 26 27 27 1,486 1,400 1,400 5,509 5,327 5,327 Estonie
Finland 47,408 45,464 47,590 24,662 21,700 22,351 22,746 23,764 25,239 0 0 0 4,593 4,593 4,593 52,001 50,057 52,183 Finlande
France 17,300 17,070 16,770 12,491 12,500 12,500 4,559 4,300 4,000 250 270 270 2,417 2,500 2,600 19,717 19,570 19,370 France
Germany 52,425 50,120 46,120 41,761 38,500 37,000 10,541 11,500 9,000 123 120 120 8,834 9,200 9,200 61,259 59,320 55,320 Allemagne
Hungary 688 759 743 175 201 208 411 488 481 102 70 53 383 294 333 1,071 1,053 1,076 Hongrie
Italy 1,797 2,502 2,502 1,169 1,169 1,169 148 853 853 480 480 480 1,180 1,180 1,180 2,977 3,682 3,682 Italie
Latvia 8,253 7,900 8,100 5,873 5,500 5,700 1,850 1,800 1,800 530 600 600 298 300 300 8,551 8,200 8,400 Lettonie
Luxembourg 162 143 145 124 122 115 10 6 8 27 15 22 17 11 12 178 154 158 Luxembourg
Montenegro 573 553 537 372 352 349 201 198 186 0 3 2 66 65 63 639 618 600 Monténégro
Netherlands 449 440 430 173 170 165 244 240 235 32 30 30 457 450 450 906 890 880 Pays-Bas
Poland 31,941 32,800 33,470 15,775 16,000 16,250 15,411 15,950 16,250 754 850 970 3,627 3,820 3,950 35,568 36,620 37,420 Pologne
Portugal 3,045 3,210 3,150 1,682 1,710 1,700 1,213 1,350 1,300 150 150 150 996 990 980 4,041 4,200 4,130 Portugal
Serbia 279 290 301 178 184 190 66 70 73 35 36 38 141 146 160 420 436 461 Serbie
Slovakia 3,325 3,160 3,120 2,559 2,430 2,400 748 710 700 18 20 20 259 260 275 3,584 3,420 3,395 Slovaquie
Slovenia 1,966 2,586 2,386 1,687 2,150 2,000 275 430 380 4 6 6 191 240 220 2,157 2,826 2,606 Slovénie
Spain 7,435 7,889 7,889 3,420 3,629 3,629 3,754 3,984 3,984 261 277 277 2,243 2,380 2,380 9,678 10,269 10,269 Espagne
Sweden 64,603 62,760 62,873 38,100 37,300 36,900 26,353 25,310 25,823 150 150 150 3,000 3,008 3,008 67,603 65,768 65,881 Suède
Switzerland 2,578 2,639 2,689 2,290 2,350 2,400 279 280 280 9 9 9 769 770 775 3,347 3,409 3,464 Suisse
United Kingdom 7,486 7,076 7,076 5,453 5,180 5,180 1,633 1,516 1,516 400 380 380 1,571 1,571 1,571 9,058 8,647 8,647 Royaume-Uni
Total Europe 288,136 276,619 274,984 185,467 172,881 171,836 99,212 100,136 99,433 3,458 3,602 3,715 39,396 39,504 39,798 327,533 316,123 314,781 Total Europe
Canada 114,659 112,907 112,907 110,046 108,424 108,424 4,229 4,021 4,021 384 462 462 806 946 946 115,465 113,853 113,853 Canada
United States 306,119 309,360 313,639 152,799 154,479 156,695 141,226 142,779 144,827 12,094 12,102 12,117 37,619 37,609 37,606 343,738 346,969 351,245 Etats-Unis
Total North America 420,778 422,267 426,546 262,845 262,903 265,119 145,455 146,800 148,848 12,478 12,564 12,579 38,425 38,555 38,552 459,203 460,822 465,098 Total Amérique du Nord
a Pulpwood, round and split, as well as chips and particles produced directly a Bois de trituration, rondins et quartiers, ainse que plaquettes et particules fabriquées
therefrom and used as pulpwood directement à partir des rondins et quartiers et utilisées comme bois de trituration
b Pitprops, poles, piling, posts etc. b Bois de mine, poteaux, pilotis, piquets etc.
c Including chips and particles produced from wood in the rough and c Y compris plaquettes et particules fabriquées à partir du bois brut et utilisées
used for energy purposes à des fins energétiques

Table 9b

TABLE 9b
REMOVALS OF WOOD IN THE ROUGH QUANTITES ENLEVEES DE BOIS BRUT
HARDWOOD NON-CONIFERES
1000 m3 - Data only for those countries providing forecasts - Données uniquement pour les pays fournissant des prévisions
Country Industrial wood - Bois industriels Wood fuel c Bois de chauffage c Pays
Total Logs Pulpwood a Other b Total
Grumes Bois de trituration a Autre b
2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024
Austria 977 843 887 329 266 300 647 577 587 0 0 0 2,176 2,046 2,094 3,153 2,889 2,981 Autriche
Cyprus 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 Chypre
Czech Republic 1,268 1,079 1,071 616 524 517 649 552 550 3 4 4 795 716 700 2,063 1,795 1,771 République tchèque
Estonia 2,452 2,474 2,474 1,158 1,200 1,200 1,270 1,250 1,250 24 24 24 2,580 2,400 2,400 5,032 4,874 4,874 Estonie
Finland 8,838 7,933 7,845 1,037 1,049 1,061 7,801 6,884 6,784 0 0 0 4,747 4,747 4,747 13,585 12,680 12,592 Finlande
France 8,348 8,200 8,300 4,707 4,700 4,800 3,332 3,200 3,200 309 300 300 21,756 22,000 23,000 30,104 30,200 31,300 France
Germany 4,110 3,810 3,510 2,995 2,700 2,500 1,103 1,100 1,000 12 10 10 13,504 13,500 13,500 17,613 17,310 17,010 Allemagne
Hungary 2,213 2,122 2,138 1,234 1,173 1,191 502 507 526 477 442 421 3,244 2,990 3,064 5,456 5,112 5,202 Hongrie
Italy 1,041 1,038 1,038 721 721 721 168 166 166 152 152 152 9,659 9,659 9,659 10,700 10,697 10,697 Italie
Latvia 4,238 4,250 4,250 1,730 1,750 1,750 2,018 2,000 2,000 490 500 500 2,638 2,700 2,700 6,876 6,950 6,950 Lettonie
Luxembourg 69 54 47 23 22 18 46 32 30 0 0 0 23 34 30 92 89 78 Luxembourg
Montenegro 178 144 141 143 140 138 0 0 0 35 4 3 128 128 127 306 272 268 Monténégro
Netherlands 165 159 159 48 50 50 108 100 100 9 9 9 1,925 1,930 1,935 2,090 2,089 2,094 Pays-Bas
Poland 6,794 7,080 7,380 2,757 2,800 2,900 3,939 4,150 4,300 98 130 180 3,331 3,600 3,800 10,125 10,680 11,180 Pologne
Portugal 9,190 9,120 9,040 356 330 360 8,586 8,500 8,400 249 290 280 1,387 1,390 1,320 10,578 10,510 10,360 Portugal
Serbia 1,199 1,230 1,260 899 920 940 199 205 210 101 105 110 6,433 6,500 6,600 7,632 7,730 7,860 Serbie
Slovakia 3,502 3,660 3,760 1,570 1,650 1,700 1,924 2,000 2,050 8 10 10 350 350 375 3,851 4,010 4,135 Slovaquie
Slovenia 962 1,166 1,096 497 630 600 424 490 450 41 46 46 957 1,050 1,050 1,919 2,216 2,146 Slovénie
Spain 6,931 7,354 7,354 730 775 775 6,059 6,429 6,429 142 151 151 1,312 1,392 1,392 8,243 8,746 8,746 Espagne
Sweden 6,562 6,316 6,437 180 180 180 6,232 5,986 6,107 150 150 150 3,000 3,008 3,008 9,562 9,324 9,445 Suède
Switzerland 433 443 453 265 275 280 165 165 170 3 3 3 1,169 1,230 1,250 1,602 1,673 1,703 Suisse
United Kingdom 118 117 117 56 56 56 13 13 13 48 48 48 613 613 613 730 730 730 Royaume-Uni
Total Europe 69,587 68,593 68,759 22,052 21,910 22,036 45,185 44,305 44,322 2,350 2,377 2,401 81,728 81,984 83,365 151,314 150,576 152,124 Total Europe
Canada 27,472 27,592 27,592 14,854 14,926 14,926 10,812 10,843 10,843 1,806 1,823 1,823 877 961 961 28,349 28,554 28,554 Canada
United States 76,425 75,603 74,972 33,358 33,742 34,516 41,424 40,217 38,810 1,643 1,644 1,646 38,611 38,631 38,672 115,036 114,234 113,644 Etats-Unis
Total North America 103,897 103,196 102,564 48,212 48,668 49,442 52,236 51,060 49,653 3,449 3,467 3,469 39,488 39,592 39,633 143,385 142,788 142,197 Total Amérique du Nord
a Pulpwood, round and split, as well as chips and particles produced directly a Bois de trituration, rondins et quartiers, ainse que plaquettes et particules fabriquées
therefrom and used as pulpwood directement à partir des rondins et quartiers et utilisées comme bois de trituration
b Pitprops, poles, piling, posts etc. b Bois de mine, poteaux, pilotis, piquets etc.
c Including chips and particles produced from wood in the rough and c Y compris plaquettes et particules fabriquées à partir du bois brut et utilisées
used for energy purposes à des fins energétiques

Table 10

TABLE 10
SOFTWOOD SAWLOGS GRUMES DE SCIAGES DES CONIFERES
Data only for those countries providing forecasts - Données uniquement pour les pays fournissant des prévisions
1000 m3
Apparent Consumption a Imports Exports
Country Consommation Apparente a Production Imports - Importations Exports - Exportations Pays
2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024
Austria 16,101 13,943 13,638 10,382 8,638 9,038 6,664 5,710 5,000 945 405 400 Autriche
Cyprus 2 2 2 2 2 2 0 0 0 0 0 0 Chypre
Czech Republic 8,002 6,511 6,962 14,019 10,094 9,589 411 596 715 6,428 4,178 3,343 République tchèque
Estonia 3,533 3,270 3,270 3,118 3,000 3,000 522 450 450 107 180 180 Estonie
Finland 24,310 21,336 21,991 24,662 21,700 22,351 127 79 83 479 443 443 Finlande
France 12,053 12,120 12,120 12,491 12,500 12,500 335 360 360 773 740 740 France
Germany 39,391 35,800 34,900 41,761 38,500 37,000 3,300 3,000 3,100 5,670 5,700 5,200 Allemagne
Hungary 175 201 208 175 201 208 0 0 0 0 0 0 Hongrie
Italy 1,645 1,396 1,396 1,169 1,169 1,169 580 457 457 104 230 230 Italie
Latvia 6,471 5,830 6,200 5,873 5,500 5,700 1,147 900 900 549 570 400 Lettonie
Luxembourg 465 403 396 124 122 115 693 424 424 352 143 143 Luxembourg
Montenegro 382 361 357 372 352 349 10 9 8 0 0 0 Monténégro
Netherlands 133 145 145 173 170 165 77 80 80 117 105 100 Pays-Bas
Poland 14,243 14,500 14,800 15,775 16,000 16,250 1,245 1,400 1,550 2,777 2,900 3,000 Pologne
Portugal 1,880 1,905 1,900 1,682 1,710 1,700 241 230 240 43 35 40 Portugal
Serbia 188 187 194 178 184 190 12 9 12 2 6 8 Serbie
Slovakia 3,059 3,030 3,100 2,559 2,430 2,400 900 950 1,000 400 350 300 Slovaquie
Slovenia 1,643 1,650 1,630 1,687 2,150 2,000 239 150 180 283 650 550 Slovénie
Spain 3,223 3,307 3,307 3,420 3,629 3,629 240 185 185 437 507 507 Espagne
Sweden 38,103 37,725 37,325 38,100 37,300 36,900 964 1,128 1,128 961 703 703 Suède
Switzerland 2,035 2,100 2,155 2,290 2,350 2,400 55 60 65 310 310 310 Suisse
United Kingdom 5,810 5,538 5,538 5,453 5,180 5,180 457 457 457 99 99 99 Royaume-Uni
Total Europe 182,849 171,260 171,534 185,467 172,881 171,836 18,218 16,634 16,394 20,836 18,255 16,696 Total Europe
Canada 105,870 103,492 103,916 110,046 108,424 108,424 1,346 1,402 1,309 5,522 6,333 5,816 Canada
United States 148,043 150,509 153,391 152,799 154,479 156,695 586 570 555 5,342 4,540 3,859 Etats-Unis
Total North America 253,913 254,001 257,307 262,845 262,903 265,119 1,931 1,972 1,864 10,863 10,873 9,675 Total Amérique du Nord
a Countries which did not provide trade data are included in consumption data a La consommation comprend les pays qui n'ont pas fournies des données sur la commerce

Table 11

TABLE 11
HARDWOOD SAWLOGS (total) GRUMES DE SCIAGES DES NON-CONIFERES
Data only for those countries providing forecasts - Données uniquement pour les pays fournissant des prévisions
1000 m3
Apparent Consumption a Imports Exports
Country Consommation Apparente a Production Imports - Importations Exports - Exportations Pays
2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024
Austria 406 311 300 329 266 300 134 90 50 57 45 50 Autriche
Czech Republic 544 457 447 616 524 517 144 120 125 216 186 195 République tchèque
Estonia 1,187 1,244 1,244 1,158 1,200 1,200 46 60 60 16 16 16 Estonie
Finland 1,068 1,041 1,061 1,037 1,049 1,061 32 1 9 1 9 9 Finlande
France 3,453 4,020 4,120 4,707 4,700 4,800 116 120 120 1,370 800 800 France
Germany 2,532 2,290 2,130 2,995 2,700 2,500 111 110 110 574 520 480 Allemagne
Hungary 1,234 1,173 1,191 1,234 1,173 1,191 0 0 0 0 0 0 Hongrie
Italy 2,088 1,718 1,718 721 721 721 1,413 1,055 1,055 47 59 59 Italie
Latvia 1,221 1,190 1,410 1,730 1,750 1,750 87 40 60 596 600 400 Lettonie
Luxembourg 226 148 144 23 22 18 221 160 160 18 34 34 Luxembourg
Montenegro 143 140 138 143 140 138 0 0 0 0 0 0 Monténégro
Netherlands 54 60 60 48 50 50 54 60 60 48 50 50 Pays-Bas
Poland 2,687 2,730 2,830 2,757 2,800 2,900 80 80 80 150 150 150 Pologne
Portugal 997 885 925 356 330 360 663 580 590 22 25 25 Portugal
Serbia 894 922 946 899 920 940 15 20 28 20 18 22 Serbie
Slovakia 1,670 1,700 1,750 1,570 1,650 1,700 500 450 450 400 400 400 Slovaquie
Slovenia 281 290 280 497 630 600 31 30 30 247 370 350 Slovénie
Spain 833 854 854 730 775 775 164 174 174 61 94 94 Espagne
Sweden 217 217 217 180 180 180 37 37 37 0 0 0 Suède
Switzerland 145 155 160 265 275 280 35 40 40 155 160 160 Suisse
United Kingdom 78 77 77 56 56 56 26 26 26 5 5 5 Royaume-Uni
Total Europe 21,959 21,622 22,002 22,052 21,910 22,036 3,910 3,253 3,265 4,003 3,541 3,299 Total Europe
Canada 15,890 15,923 15,895 14,854 14,926 14,926 1,106 1,060 1,027 70 64 59 Canada
United States 31,550 32,311 33,431 33,358 33,742 34,516 221 156 156 2,028 1,587 1,241 Etats-Unis
Total North America 47,441 48,234 49,326 48,212 48,668 49,442 1,327 1,216 1,183 2,098 1,650 1,300 Total Amérique du Nord
a Countries which did not provide trade data are included in consumption data a La consommation comprend les pays qui n'ont pas fournies des données sur la commerce

Table 11a

TABLE 11a
HARDWOOD LOGS (temperate) GRUMES DE NON-CONIFERES (zone tempérée)
Data only for those countries providing forecasts - Données uniquement pour les pays fournissant des prévisions
1000 m3
Apparent Consumption a Imports Exports
Country Consommation Apparente a Production Imports - Importations Exports - Exportations Pays
2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024
Austria 406 311 300 329 266 300 134 90 50 57 45 50 Autriche
Czech Republic 544 457 447 616 524 517 144 120 125 216 186 195 République tchèque
Estonia 1,187 1,244 1,244 1,158 1,200 1,200 46 60 60 16 16 16 Estonie
Finland 1,068 1,041 1,061 1,037 1,049 1,061 32 1 9 1 9 9 Finlande
France 3,412 3,978 4,078 4,707 4,700 4,800 72 75 75 1,367 797 797 France
Germany 2,527 2,285 2,125 2,995 2,700 2,500 101 100 100 569 515 475 Allemagne
Hungary 1,234 1,173 1,191 1,234 1,173 1,191 0 0 0 0 0 0 Hongrie
Italy 2,068 1,729 1,729 721 721 721 1,389 1,047 1,047 42 39 39 Italie
Latvia 1,221 1,190 1,410 1,730 1,750 1,750 87 40 60 596 600 400 Lettonie
Luxembourg 226 148 144 23 22 18 221 160 160 18 34 34 Luxembourg
Montenegro 143 140 138 143 140 138 0 0 0 0 0 0 Monténégro
Netherlands 46 55 55 48 50 50 42 50 50 44 45 45 Pays-Bas
Poland 2,685 2,727 2,827 2,757 2,800 2,900 78 77 77 150 150 150 Pologne
Portugal 981 870 912 356 330 360 642 560 571 17 20 19 Portugal
Serbia 893 921 945 899 920 940 14 19 27 20 18 22 Serbie
Slovakia 1,670 1,700 1,750 1,570 1,650 1,700 500 450 450 400 400 400 Slovaquie
Slovenia 280 290 280 497 630 600 30 30 30 247 370 350 Slovénie
Spain 827 847 847 730 775 775 158 167 167 61 94 94 Espagne
Sweden 217 217 217 180 180 180 37 37 37 0 0 0 Suède
Switzerland 145 155 160 265 275 280 35 40 40 155 160 160 Suisse
United Kingdom 76 75 75 56 56 56 24 24 24 5 5 5 Royaume-Uni
Total Europe 21,857 21,553 21,935 22,052 21,910 22,036 3,786 3,146 3,158 3,980 3,503 3,260 Total Europe
Canada 15,890 15,923 15,895 14,854 14,926 14,926 1,106 1,060 1,027 70 64 59 Canada
United States 31,549 32,308 33,429 33,358 33,742 34,516 219 152 154 2,027 1,586 1,240 Etats-Unis
Total North America 47,440 48,231 49,324 48,212 48,668 49,442 1,325 1,212 1,181 2,097 1,649 1,299 Total Amérique du Nord
a Countries which did not provide trade data are included in consumption data a La consommation comprend les pays qui n'ont pas fournies des données sur la commerce

Table 11b

TABLE 11b
HARDWOOD LOGS (tropical) GRUMES DE NON-CONIFERES (tropicale)
Data only for those countries providing forecasts - Données uniquement pour les pays fournissant des prévisions
1000 m3
Net Trade Imports Exports
Country Commerce Net Production Imports - Importations Exports - Exportations Pays
2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024
France -41 -42 -42 44 45 45 3 3 3 France
Germany -5 -5 -5 10 10 10 5 5 5 Allemagne
Italy -20 11 11 25 9 9 4 20 20 Italie
Netherlands -8 -5 -5 12 10 10 4 5 5 Pays-Bas
Poland -2 -3 -3 2 3 3 0 0 0 Pologne
Portugal -16 -15 -13 21 20 19 5 5 6 Portugal
Serbia -1 -1 -1 1 1 1 0 0 0 Serbie
Slovenia -1 -0 -0 1 0 1 0 0 0 Slovénie
Spain -6 -7 -7 6 7 7 0 0 0 Espagne
United Kingdom -2 -2 -2 2 2 2 0 0 0 Royaume-Uni
Total Europe -102 -69 -67 124 107 106 22 38 39 Total Europe
United States -1 -3 -1 2 4 2 1 1 1 Etats-Unis
Total North America -1 -3 -1 2 4 2 1 1 1 Total Amérique du Nord

Table12

TABLE 12
PULPWOOD (total) BOIS DE TRITURATION (total)
Data only for those countries providing forecasts - Données uniquement pour les pays fournissant des prévisions
1000 m3
Apparent Consumption a Imports Exports
Country Consommation Apparente a Production Imports - Importations Exports - Exportations Pays
2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024
Austria 13,844 12,627 12,592 11,047 9,212 9,287 3,676 4,070 4,020 879 655 715 Autriche
Cyprus 8 9 10 7 8 9 1 1 1 0 0 0 Chypre
Czech Republic 5,559 5,135 5,154 7,664 6,164 6,130 1,270 1,146 1,162 3,375 2,175 2,138 République tchèque
Estonia 3,117 2,380 2,435 6,548 6,550 6,550 256 330 285 3,687 4,500 4,400 Estonie
Finland 48,404 47,241 49,358 44,923 44,026 45,568 5,037 4,969 5,545 1,556 1,755 1,755 Finlande
France 24,495 24,350 24,050 24,257 24,000 23,700 2,527 2,600 2,600 2,289 2,250 2,250 France
Germany 26,555 26,580 23,090 27,936 27,100 23,500 4,474 3,870 3,770 5,855 4,390 4,180 Allemagne
Hungary 2,122 2,017 2,065 2,049 1,984 2,023 112 73 82 39 39 39 Hongrie
Italy 4,508 5,210 5,210 3,916 4,618 4,618 1,288 1,288 1,288 696 696 696 Italie
Latvia 5,540 5,150 5,150 9,484 8,800 8,800 1,084 950 950 5,028 4,600 4,600 Lettonie
Luxembourg 583 589 589 577 559 559 182 130 130 176 100 100 Luxembourg
Malta 2 3 3 0 0 0 2 3 3 0 0 0 Malte
Montenegro 245 241 227 245 241 227 0 0 0 0 0 0 Monténégro
Netherlands 604 1,100 1,095 1,267 1,240 1,230 289 100 105 952 240 240 Pays-Bas
Poland 35,250 36,265 37,135 33,531 34,600 35,450 3,652 3,660 3,710 1,933 1,995 2,025 Pologne
Portugal 15,954 15,330 15,365 11,664 11,720 11,590 4,657 4,000 4,140 368 390 365 Portugal
Serbia 981 1,007 1,045 967 1,000 1,033 15 8 13 1 1 1 Serbie
Slovakia 3,634 3,650 3,760 3,821 3,860 3,950 1,023 1,030 1,050 1,210 1,240 1,240 Slovaquie
Slovenia 926 770 790 2,058 2,280 2,230 625 490 530 1,757 2,000 1,970 Slovénie
Spain 13,959 14,358 14,358 14,383 15,261 15,261 1,435 1,564 1,564 1,859 2,467 2,467 Espagne
Sweden 55,632 54,193 54,727 50,015 48,196 48,730 7,036 7,750 7,750 1,419 1,753 1,753 Suède
Switzerland 1,823 1,824 1,829 1,216 1,217 1,222 795 795 795 188 188 188 Suisse
United Kingdom 4,590 4,471 4,471 4,293 4,175 4,175 406 405 405 109 109 109 Royaume-Uni
Total Europe 268,336 264,500 264,508 261,870 256,811 255,841 39,843 39,232 39,898 33,377 31,543 31,231 Total Europe
Canada 37,044 35,822 35,734 35,326 32,985 32,975 2,578 3,462 3,467 860 625 708 Canada
United States 238,450 239,587 240,850 244,912 246,110 247,536 348 324 308 6,809 6,848 6,994 Etats-Unis
Total North America 275,495 275,409 276,585 280,238 279,096 280,511 2,926 3,786 3,776 7,670 7,473 7,702 Total Amérique du Nord
Includes wood residues, chips and particles for all purposes Comprend les dechets de bois, plaquettes et particules pour toute utilisation
a Countries which did not provide trade data are included in consumption data a La consommation comprend les pays qui n'ont pas fournies des données sur la commerce

Table 12a

TABLE 12a
PULPWOOD LOGS (ROUND AND SPLIT) BOIS DE TRITURATION (RONDINS ET QUARTIERS)
Softwood Conifères
1000 m3 - Data only for those countries providing forecasts - Données uniquement pour les pays fournissant des prévisions
Apparent Consumption a Imports Exports
Country Consommation Apparente a Production Imports - Importations Exports - Exportations Pays
2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024
Austria 3,681 3,895 3,850 2,576 2,235 2,300 1,312 1,750 1,700 206 90 150 Autriche
Czech Republic 3,927 3,744 3,675 5,316 4,253 4,125 811 811 830 2,200 1,320 1,280 République tchèque
Estonia 476 245 245 878 900 900 56 45 45 458 700 700 Estonie
Finland 22,913 24,189 25,835 22,746 23,764 25,239 1,163 1,410 1,581 996 985 985 Finlande
France 4,689 4,400 4,100 4,559 4,300 4,000 608 550 550 478 450 450 France
Germany 10,311 11,900 9,500 10,541 11,500 9,000 2,200 2,100 2,000 2,430 1,700 1,500 Allemagne
Hungary 411 488 481 411 488 481 0 0 0 0 0 0 Hongrie
Italy 148 853 853 148 853 853 0 0 0 0 0 0 Italie
Latvia 1,775 1,700 1,700 1,850 1,800 1,800 374 400 400 449 500 500 Lettonie
Luxembourg -16 -18 -16 10 6 8 9 3 3 35 27 27 Luxembourg
Montenegro 201 198 186 201 198 186 0 0 0 0 0 0 Monténégro
Netherlands 146 150 145 244 240 235 70 80 85 168 170 175 Pays-Bas
Poland 15,378 15,900 16,300 15,411 15,950 16,250 1,428 1,500 1,650 1,462 1,550 1,600 Pologne
Portugal 1,323 1,430 1,375 1,213 1,350 1,300 122 100 90 12 20 15 Portugal
Serbia 66 70 74 66 70 73 0 0 1 0 0 0 Serbie
Slovakia 598 600 610 748 710 700 600 630 650 750 740 740 Slovaquie
Slovenia 264 200 220 275 430 380 268 170 200 278 400 360 Slovénie
Spain 3,369 3,467 3,467 3,754 3,984 3,984 179 138 138 564 655 655 Espagne
Sweden 28,513 27,431 27,944 26,353 25,310 25,823 3,114 3,269 3,269 954 1,148 1,148 Suède
Switzerland 209 210 210 279 280 280 20 20 20 90 90 90 Suisse
United Kingdom 1,894 1,776 1,776 1,633 1,516 1,516 291 291 291 31 31 31 Royaume-Uni
Total Europe 100,275 102,827 102,530 99,212 100,136 99,433 12,625 13,267 13,503 11,562 10,576 10,406 Total Europe
Canada 4,531 4,347 4,410 4,229 4,021 4,021 324 336 401 22 10 12 Canada
United States 141,231 142,785 144,831 141,226 142,779 144,827 5 6 4 0 0 0 Etats-Unis
Total North America 145,762 147,132 149,241 145,455 146,800 148,848 329 341 405 22 10 12 Total Amérique du Nord
a Countries which did not provide trade data are included in consumption data a La consommation comprend les pays qui n'ont pas fournies des données sur la commerce

Table 12b

TABLE 12b
PULPWOOD LOGS (ROUND AND SPLIT) BOIS DE TRITURATION (RONDINS ET QUARTIERS)
Hardwood Non-conifères
1000 m3 - Data only for those countries providing forecasts - Données uniquement pour les pays fournissant des prévisions
Apparent Consumption a Imports Exports
Country Consommation Apparente a Production Imports - Importations Exports - Exportations Pays
2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024
Austria 1,217 997 1,007 647 577 587 668 500 500 98 80 80 Autriche
Czech Republic 450 380 384 649 552 550 3 2 2 202 174 168 République tchèque
Estonia 363 200 250 1,270 1,250 1,250 154 250 200 1,060 1,300 1,200 Estonie
Finland 8,997 7,940 8,052 7,801 6,884 6,784 1,550 1,633 1,845 354 577 577 Finlande
France 2,386 2,250 2,250 3,332 3,200 3,200 43 50 50 989 1,000 1,000 France
Germany 1,116 1,180 1,090 1,103 1,100 1,000 259 270 270 246 190 180 Allemagne
Hungary 502 507 526 502 507 526 0 0 0 0 0 0 Hongrie
Italy 168 166 166 168 166 166 0 0 0 0 0 0 Italie
Latvia 172 200 200 2,018 2,000 2,000 244 100 100 2,090 1,900 1,900 Lettonie
Luxembourg 77 71 69 46 32 30 36 48 48 5 9 9 Luxembourg
Netherlands 62 50 55 108 100 100 21 20 20 67 70 65 Pays-Bas
Poland 4,424 4,635 4,785 3,939 4,150 4,300 560 560 560 75 75 75 Pologne
Portugal 10,495 10,300 10,260 8,586 8,500 8,400 2,100 2,000 2,050 191 200 190 Portugal
Serbia 199 205 210 199 205 210 0 0 0 0 0 0 Serbie
Slovakia 1,874 1,950 2,000 1,924 2,000 2,050 100 100 100 150 150 150 Slovaquie
Slovenia 137 120 130 424 490 450 84 80 90 371 450 410 Slovénie
Spain 5,422 5,288 5,288 6,059 6,429 6,429 269 291 291 906 1,432 1,432 Espagne
Sweden 8,517 8,412 8,533 6,232 5,986 6,107 2,313 2,481 2,481 28 55 55 Suède
Switzerland 128 128 133 165 165 170 3 3 3 40 40 40 Suisse
United Kingdom 23 22 22 13 13 13 18 18 18 9 9 9 Royaume-Uni
Total Europe 46,729 45,001 45,410 45,185 44,305 44,322 8,426 8,406 8,628 6,881 7,711 7,540 Total Europe
Canada 10,554 10,654 10,644 10,812 10,843 10,843 38 36 30 296 225 228 Canada
United States 41,407 40,200 38,795 41,424 40,217 38,810 58 32 18 75 50 33 Etats-Unis
Total North America 51,961 50,854 49,439 52,236 51,060 49,653 96 68 48 371 275 261 Total Amérique du Nord
a Countries which did not provide trade data are included in consumption data a La consommation comprend les pays qui n'ont pas fournies des données sur la commerce

Table 12c

TABLE 12c
WOOD RESIDUES, CHIPS AND PARTICLES DECHETS DE BOIS, PLAQUETTES ET PARTICULES
Data only for those countries providing forecasts - Données uniquement pour les pays fournissant des prévisions
1000 m3
Apparent Consumption Imports Exports
Country Consommation Apparente Production Imports - Importations Exports - Exportations Pays
2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024
Austria 8,945 7,735 7,735 7,824 6,400 6,400 1,696 1,820 1,820 575 485 485 Autriche
Cyprus 8 9 10 7 8 9 1 1 1 0 0 0 Chypre
Czech Republic 1,182 1,011 1,094 1,699 1,359 1,454 456 333 330 973 681 690 République tchèque
Estonia 2,278 1,935 1,940 4,400 4,400 4,400 47 35 40 2,169 2,500 2,500 Estonie
Finland 16,494 15,112 15,471 14,376 13,378 13,545 2,324 1,926 2,119 206 193 193 Finlande
France 17,420 17,700 17,700 16,366 16,500 16,500 1,876 2,000 2,000 822 800 800 France
Germany 15,128 13,500 12,500 16,292 14,500 13,500 2,015 1,500 1,500 3,179 2,500 2,500 Allemagne
Hungary 1,209 1,022 1,057 1,137 989 1,015 112 73 82 39 39 39 Hongrie
Italy 4,192 4,192 4,192 3,600 3,600 3,600 1,288 1,288 1,288 696 696 696 Italie
Latvia 3,593 3,250 3,250 5,616 5,000 5,000 466 450 450 2,489 2,200 2,200 Lettonie
Luxembourg 522 536 536 521 521 521 137 79 79 136 64 64 Luxembourg
Malta 2 3 3 0 0 0 2 3 3 0 0 0 Malte
Montenegro 44 43 41 44 43 41 0 0 0 0 0 0 Monténégro
Netherlands 396 900 895 915 900 895 198 0 0 717 0 0 Pays-Bas
Poland 15,448 15,730 16,050 14,181 14,500 14,900 1,664 1,600 1,500 396 370 350 Pologne
Portugal 4,136 3,600 3,730 1,865 1,870 1,890 2,435 1,900 2,000 165 170 160 Portugal
Serbia 716 732 761 702 725 750 15 8 12 1 1 1 Serbie
Slovakia 1,162 1,100 1,150 1,149 1,150 1,200 323 300 300 310 350 350 Slovaquie
Slovenia 525 450 440 1,360 1,360 1,400 273 240 240 1,107 1,150 1,200 Slovénie
Spain 5,169 5,603 5,603 4,570 4,849 4,849 987 1,135 1,135 388 380 380 Espagne
Sweden 18,602 18,350 18,250 17,430 16,900 16,800 1,609 2,000 2,000 437 550 550 Suède
Switzerland 1,486 1,486 1,486 772 772 772 772 772 772 58 58 58 Suisse
United Kingdom 2,673 2,673 2,673 2,646 2,646 2,646 96 96 96 69 69 69 Royaume-Uni
Total Europe 121,332 116,673 116,568 117,472 112,370 112,087 18,793 17,559 17,767 14,933 13,256 13,285 Total Europe
Canada 21,959 20,821 20,680 20,285 18,121 18,111 2,216 3,090 3,037 542 390 467 Canada
United States 55,812 56,602 57,224 62,262 63,114 63,899 285 286 286 6,734 6,798 6,961 Etats-Unis
Total North America 77,771 77,423 77,904 82,547 81,235 82,010 2,500 3,376 3,323 7,277 7,188 7,428 Total Amérique du Nord

Table 13

TABLE 13
WOOD PELLETS GRANULES DE BOIS
Data only for those countries providing forecasts - Données uniquement pour les pays fournissant des prévisions
1000 mt
Apparent Consumption Imports Exports
Country Consommation Apparente Production Imports - Importations Exports - Exportations Pays
2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024
Austria 1,290 1,497 1,450 1,691 1,938 2,050 344 309 300 745 750 900 Autriche
Cyprus 8 5 5 0 0 0 8 5 5 0 0 0 Chypre
Czech Republic 234 215 225 540 459 482 38 38 40 344 282 296 République tchèque
Estonia 284 300 230 1,650 1,350 1,300 12 50 30 1,378 1,100 1,100 Estonie
Finland 530 541 562 360 380 405 188 163 160 18 2 3 Finlande
France 2,735 3,260 3,660 2,050 2,250 2,450 775 1,100 1,300 90 90 90 France
Germany 3,328 3,540 3,720 3,569 3,700 3,900 443 480 420 684 640 600 Allemagne
Hungary 63 44 50 62 43 49 11 13 12 11 12 12 Hongrie
Italy 2,359 2,359 2,359 450 450 450 1,916 1,916 1,916 7 7 7 Italie
Latvia 621 750 750 1,980 2,000 2,000 326 350 350 1,685 1,600 1,600 Lettonie
Luxembourg 61 72 72 63 63 63 17 11 11 19 2 2 Luxembourg
Malta 1 1 1 0 0 0 1 1 1 0 0 0 Malte
Montenegro 18 25 26 83 84 84 0 0 0 65 59 58 Monténégro
Netherlands 5,354 5,354 5,354 268 268 268 5,551 5,551 5,551 465 465 465 Pays-Bas
Poland 842 920 1,100 1,152 1,200 1,350 366 370 380 677 650 630 Pologne
Portugal 228 225 220 747 740 735 4 5 5 523 520 520 Portugal
Serbia 478 460 485 418 450 480 83 70 80 23 60 75 Serbie
Slovakia 22 175 175 390 450 450 47 75 75 415 350 350 Slovaquie
Slovenia 125 155 150 164 175 180 126 120 130 165 140 160 Slovénie
Spain 867 907 907 1,007 1,007 1,007 65 46 46 206 146 146 Espagne
Sweden 1,776 1,800 1,850 1,809 1,750 1,800 199 210 210 232 160 160 Suède
Switzerland 410 415 420 330 335 340 80 80 80 0 0 0 Suisse
United Kingdom 7,819 7,830 7,830 327 330 330 7,516 7,520 7,520 23 20 20 Royaume-Uni
Total Europe 29,451 30,850 31,601 19,110 19,422 20,173 18,114 18,482 18,621 7,774 7,055 7,194 Total Europe
Canada 368 420 179 3,830 3,830 3,830 31 52 56 3,493 3,462 3,707 Canada
United States 761 273 152 9,544 9,744 9,948 194 174 155 8,977 9,644 9,951 Etats-Unis
Total North America 1,129 694 331 13,374 13,574 13,778 225 226 211 12,470 13,106 13,659 Total Amérique du Nord

Table 14

TABLE 14
Europe: Summary table of market forecasts for 2023 and 2024
Europe: Tableau récapitulatif des prévisions du marché pour 2023 et 2024
Data only for those countries providing forecasts - Données uniquement pour les pays fournissant des prévisions
million m3 (pulp, paper and pellets million m.t. - pâte de bois, papiers et cartons, et granulés en millions de tonnes métriques)
Apparent Consumption
Consommation Apparente Production Imports - Importations Exports - Exportations
2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024
actual forecasts actual forecasts actual forecasts actual forecasts
réels prévisions réels prévisions réels prévisions réels prévisions
Sawn softwood 75.92 69.01 68.49 96.71 89.54 88.44 29.69 25.67 25.93 50.49 46.20 45.88 Sciages conifères
Softwood logs a 182.85 171.26 171.53 185.47 172.88 171.84 18.22 16.63 16.39 20.84 18.25 16.70 Grumes de conifères a
Sawn hardwood 7.02 6.65 6.70 6.93 6.45 6.61 4.18 3.86 3.81 4.09 3.66 3.72 Sciages non-conifères
– temperate zone b 6.45 6.14 6.18 6.87 6.40 6.55 3.28 3.07 3.02 3.70 3.33 3.39 – zone tempérée b
– tropical zone b 0.57 0.51 0.52 0.06 0.05 0.06 0.90 0.79 0.79 0.39 0.32 0.32 – zone tropicale b
Hardwood logs a 21.96 21.62 22.00 22.05 21.91 22.04 3.91 3.25 3.26 4.00 3.54 3.30 Grumes de non-conifères a
– temperate zone b 21.86 21.55 21.93 22.05 21.91 22.04 3.79 3.15 3.16 3.98 3.50 3.26 – zone tempérée b
– tropical zone b 0.10 0.07 0.07 0.12 0.11 0.11 0.02 0.04 0.04 – zone tropicale b
Veneer sheets 1.58 1.49 1.49 1.00 0.97 0.96 1.42 1.28 1.29 0.84 0.76 0.76 Feuilles de placage
Plywood 6.62 6.21 5.92 4.17 3.93 3.97 6.42 5.79 5.48 3.96 3.50 3.53 Contreplaqués
Particle board (excluding OSB) 28.12 26.41 26.52 28.01 26.71 26.91 10.02 9.58 9.55 9.92 9.88 9.94 Pann. de particules (sauf OSB)
OSB 5.27 5.06 5.09 4.89 4.89 5.02 3.20 2.96 2.94 2.83 2.78 2.87 OSB
Fibreboard 15.80 14.89 15.09 16.15 15.31 15.42 8.76 8.01 8.04 9.11 8.43 8.37 Panneaux de fibres
– Hardboard 0.79 0.82 0.90 0.48 0.47 0.47 1.47 1.44 1.46 1.17 1.09 1.04 – Durs
– MDF 11.42 10.85 10.97 12.16 11.62 11.68 5.21 4.61 4.62 5.95 5.38 5.33 – MDF
– Other board 3.59 3.22 3.22 3.51 3.22 3.27 2.07 1.97 1.96 1.99 1.96 2.01 – Autres panneaux
Pulpwood a 268.34 264.50 264.51 261.87 256.81 255.84 39.84 39.23 39.90 33.38 31.54 31.23 Bois de trituration a
– Pulp logs 147.00 147.83 147.94 144.40 144.44 143.75 21.05 21.67 22.13 18.44 18.29 17.95 – Bois ronds de trituration
– softwood 100.28 102.83 102.53 99.21 100.14 99.43 12.63 13.27 13.50 11.56 10.58 10.41 – conifères
– hardwood 46.73 45.00 45.41 45.18 44.31 44.32 8.43 8.41 8.63 6.88 7.71 7.54 – non-conifères
– Residues, chips and particles 121.33 116.67 116.57 117.47 112.37 112.09 18.79 17.56 17.77 14.93 13.26 13.29 – Déchets, plaquettes et part.
Wood pulp 37.60 34.07 35.28 34.64 32.24 33.81 17.33 16.19 16.59 14.37 14.37 15.12 Pâte de bois
Paper and paperboard 72.76 66.14 69.44 83.10 73.88 79.49 43.20 39.62 41.48 53.55 47.36 51.53 Papiers et cartons
Wood Pellets 29.45 30.85 31.60 19.11 19.42 20.17 18.11 18.48 18.62 7.77 7.05 7.19 Granulés de bois
a Countries which did not provide trade data are included in consumption data a La consommation comprend les pays qui n'ont pas fourni des données sur le commerce
b Trade figures by zone do not equal the total as some countries cannot provide data for both zones b Les chiffres du commerce par zone ne correspondent pas aux totaux
en raison du fait que certains pays ne peuvent les différencier.

Table 15

TABLE 15
North America: Summary table of market forecasts for 2023 and 2024
Amérique du Nord: Tableau récapitulatif des prévisions du marché pour 2023 et 2024
Data only for those countries providing forecasts - Données uniquement pour les pays fournissant des prévisions
million m3 (pulp, paper and pellets million m.t. - pâte de bois, papiers et cartons, et granulés en millions de tonnes métriques)
Apparent Consumption
Consommation Apparente Production Imports - Importations Exports - Exportations
2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024
actual forecasts actual forecasts actual forecasts actual forecasts
réels prévisions réels prévisions réels prévisions réels prévisions
Sawn softwood 91.63 89.85 90.39 100.44 97.41 95.73 27.09 26.48 27.10 35.90 34.04 32.43 Sciages conifères
Softwood logs 253.91 254.00 257.31 262.84 262.90 265.12 1.93 1.97 1.86 10.86 10.87 9.68 Grumes de conifères
Sawn hardwood 15.85 16.16 16.46 18.50 18.72 19.03 1.59 1.63 1.56 4.23 4.19 4.13 Sciages non-conifères
– temperate zone 15.57 15.89 16.19 18.50 18.72 19.03 1.29 1.33 1.26 4.21 4.16 4.10 – zone tempérée
– tropical zone 0.29 0.27 0.27 0.00 0.00 0.00 0.31 0.30 0.30 0.02 0.03 0.03 – zone tropicale
Hardwood logs 47.44 48.23 49.33 48.21 48.67 49.44 1.33 1.22 1.18 2.10 1.65 1.30 Grumes de non-conifères
– temperate zone 47.44 48.23 49.32 48.21 48.67 49.44 1.32 1.21 1.18 2.10 1.65 1.30 – zone tempérée
– tropical zone 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 – zone tropicale
Veneer sheets 2.85 2.93 2.97 2.87 2.89 2.91 0.86 0.88 0.89 0.88 0.83 0.84 Feuilles de placage
Plywood 16.92 16.92 17.31 10.86 10.90 11.05 7.48 7.37 7.68 1.43 1.36 1.42 Contreplaqués
Particle board (excluding OSB) 6.66 7.45 7.46 6.11 6.58 6.55 1.75 1.97 1.98 1.19 1.10 1.07 Pann. de particules (sauf OSB)
OSB 21.20 21.09 21.35 20.86 20.60 20.86 6.28 6.30 6.39 5.94 5.82 5.89 OSB
Fibreboard 9.92 9.93 10.07 7.64 7.71 7.87 4.18 3.92 3.92 1.90 1.69 1.72 Panneaux de fibres
– Hardboard 0.51 0.56 0.56 0.53 0.59 0.60 0.31 0.28 0.29 0.32 0.32 0.33 – Durs
– MDF 6.21 6.23 6.23 3.83 3.88 3.89 3.55 3.35 3.32 1.17 0.99 0.98 – MDF
– Other board 3.20 3.15 3.28 3.28 3.24 3.38 0.32 0.29 0.31 0.40 0.38 0.41 – Autres panneaux
Pulpwood 275.49 275.41 276.58 280.24 279.10 280.51 2.93 3.79 3.78 7.67 7.47 7.70 Bois de trituration
– Pulp logs 197.72 197.99 198.68 197.69 197.86 198.50 0.43 0.41 0.45 0.39 0.28 0.27 – Bois ronds de trituration
– softwood 145.76 147.13 149.24 145.45 146.80 148.85 0.33 0.34 0.41 0.02 0.01 0.01 – conifères
– hardwood 51.96 50.85 49.44 52.24 51.06 49.65 0.10 0.07 0.05 0.37 0.27 0.26 – non-conifères
– Residues, chips and particles 77.77 77.42 77.90 82.55 81.23 82.01 2.50 3.38 3.32 7.28 7.19 7.43 – Déchets, plaquettes et part.
Wood pulp 45.79 48.12 48.43 55.02 54.33 54.12 7.42 8.22 8.89 16.65 14.44 14.58 Pâte de bois
Paper and paperboard 69.75 68.96 69.26 75.05 73.60 73.63 10.72 10.42 10.39 16.02 15.06 14.77 Papiers et cartons
Wood pellets 1.13 0.69 0.33 13.37 13.57 13.78 0.23 0.23 0.21 12.47 13.11 13.66 Granulés de bois

List of Tables and Notes Table 1 - Sawn Softwood Table 2 - Sawn Hardwood (total) Table 2a - Sawn Hardwood (temperate) Table 2b - Sawn Hardwood (tropical) Table 3 - Veneer Sheets Table 4 - Plywood Table 5 - Particle Board (excluding OSB) Table 5a - Oriented Strand Board Table 6 - Fibreboard Table 6a - Hardboard Table 6b - MDF/HDF Table 6c - Other Fibreboard Table 7 - Wood Pulp Table 8 - Paper and Paperboard Table 9 - Removals of wood in the rough Table 9a - Removals of wood in the rough (softwood) Table 9b - Removals of wood in the rough (hardwood) Table 10 - Softwood sawlogs Table 11 - Hardwood sawlogs Table 11a - Hardwood logs (temperate) Table 11b - Hardwood logs (tropical) Table 12 - Pulpwood Table 12a - Pulpwood (softwood) Table 12b - Pulpwood (hardwood) Table 12c - Wood Residues, Chips and Particles Table 13 - Wood Pellets Table 14 - Europe: Summary table of market forecasts for 2023 and 2024 Table 15 - North America: Summary table of market forecasts for 2023 and 2024

Source: UNECE Committee on Forests and the Forest Industry , November 2023, http://www.unece.org/forests/fpm/timbercommittee.html

Notes: Data in italics are estimated by the secretariat. EECCA is Eastern Europe, Caucasus and Central Asia. Data for the two latest years are forecasts. In contrast to previous years, data are shown only for countries providing forecasts. Sub-regional totals are only for reporting countries.

For tables 1-13, data in italics are secretariat estimates or repeated data. All other data are from national sources and are of course estimates for the current and future year.

Softwood = coniferous, hardwood = non-coniferous For tables 1-13, data in italics are secretariat estimates or repeated data. All other data are from national sources and are of course estimates for the current and future year. Countries with nil, missing or confidential data for all years on a table are not shown.

Uzbekistan – data extrapolated by the Secretariat based on national data for the first eight months 2023. Poland - The trade turnover is based on data that includes the estimated value of trade turnover by entities exempt from the reporting obligation. These trade turnover figures are estimated at 3%. Roundwood: sawlogs and veneer logs and pulpwood and wood fuel - with removals from trees and shrubs outside the forest, including forest chips, with stump. Residues - production excluding recovered wood.

In contrast to years prior to 2020, data are shown only for countries providing forecasts. Sub-regional totals thus reflect only the reporting countries of the subreg Confidential data have not been included. Please inform secretariat in case you notice any confidential data which might have been included inadvertently.

Wherever the forecast data is incomplete, then data is repeated to avoid skewing.

Countries with nil, missing or confidential data for all years on a table are not shown. Consumption figures are the sum of production and national imports minus national exports. Softwood = coniferous, hardwood = non-coniferous. United Kingdom production figures for OSB is secretariat estimate.

Imports Exports

2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024 Austria 6,141 4,978 4,978 10,104 8,588 8,588 1,784 1,270 1,270 5,747 4,880 4,880 Autriche Cyprus 33 34 34 1 1 1 32 33 33 0 0 0 Chypre Czech Republic 2,965 2,343 2,470 4,720 3,776 4,040 583 414 350 2,338 1,847 1,920 République tchèque Estonia 2,068 1,550 1,550 1,725 1,500 1,500 1,209 700 700 866 650 650 Estonie Finland 2,938 2,420 2,420 11,200 10,300 10,400 305 20 20 8,567 7,900 8,000 Finlande France 8,633 8,750 8,800 7,168 7,200 7,300 2,350 2,450 2,400 885 900 900 France Germany 17,294 14,900 13,300 24,309 21,400 19,800 4,146 2,700 3,000 11,162 9,200 9,500 Allemagne Hungary 788 902 918 85 96 86 717 821 842 14 15 11 Hongrie Italy 4,790 4,302 4,302 400 400 400 4,608 4,157 4,157 217 255 255 Italie Latvia 1,025 950 950 3,102 3,000 3,000 829 750 750 2,906 2,800 2,800 Lettonie Luxembourg 71 122 122 39 39 39 43 91 91 11 8 8 Luxembourg Malta 7 9 9 0 0 0 7 9 9 0 0 0 Malte Montenegro 30 30 29 118 115 112 10 9 7 98 94 90 Monténégro Netherlands 2,259 2,088 2,029 115 115 115 2,659 2,473 2,399 515 500 485 Pays-Bas Poland 4,631 4,630 4,800 4,144 4,100 4,200 1,219 1,240 1,300 732 710 700 Pologne Portugal 696 686 685 807 815 820 130 130 125 242 259 260 Portugal Serbia 367 361 383 91 95 98 281 270 290 5 4 5 Serbie Slovakia 847 810 860 1,430 1,360 1,400 480 450 460 1,063 1,000 1,000 Slovaquie Slovenia 665 670 660 983 990 980 530 530 530 848 850 850 Slovénie Spain 4,029 4,001 4,001 3,006 3,189 3,189 1,166 956 956 143 144 144 Espagne Sweden 5,709 5,050 5,650 18,870 18,400 18,300 587 500 450 13,748 13,850 13,100 Suède Switzerland 1,271 1,300 1,325 1,186 1,200 1,210 300 310 320 215 210 205 Suisse United Kingdom 8,663 8,125 8,214 3,108 2,860 2,860 5,719 5,385 5,474 165 120 120 Royaume-Uni Total Europe 75,919 69,011 68,490 96,712 89,540 88,439 29,694 25,668 25,934 50,487 46,197 45,883 Total Europe Uzbekistan 2,256 1,498 1,498 0 0 0 2,256 1,498 1,498 0 0 0 Ouzbékistan Total EECCA #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A Total EOCAC Canada a 3,707 2,691 2,242 36,398 33,228 31,331 891 988 948 33,581 31,525 30,037 Canada a

United States a 87,925 87,155 88,151 64,039 64,178 64,399 26,202 25,492 26,149 2,316 2,515 2,397 Etats-Unis a

Total North America 91,632 89,846 90,393 100,437 97,406 95,730 27,093 26,480 27,097 35,898 34,040 32,434 Total Amérique du Nord a converted from nominal to actual size using factor of 0.72 a convertis du dimension nominale au véritable avec une facteur du 0.72

Country Consommation Apparente Production Imports - Importations Exports - Exportations Pays

TABLE 1 SAWN SOFTWOOD SCIAGES CONIFERES

Data only for those countries providing forecasts - Données uniquement pour les pays fournissant des prévisions 1000 m3

Apparent Consumption

Imports Exports

2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024 Austria 310 222 222 238 202 202 217 140 140 145 120 120 Autriche Cyprus 11 7 7 0 0 0 11 7 7 0 0 0 Chypre Czech Republic 324 245 240 222 167 175 136 103 105 34 24 40 République tchèque Estonia 232 125 125 175 125 125 147 60 60 90 60 60 Estonie Finland 84 44 44 73 40 40 34 24 24 23 20 20 Finlande France 1,124 1,140 1,150 1,446 1,300 1,400 264 420 350 586 580 600 France Germany 693 650 650 997 800 800 395 300 300 699 450 450 Allemagne Hungary 258 150 131 414 343 342 45 38 30 200 231 241 Hongrie Italy 798 776 776 500 500 500 637 578 578 339 302 302 Italie Latvia 5 105 105 720 800 800 54 55 55 769 750 750 Lettonie Luxembourg 96 98 98 39 39 39 64 65 65 7 6 6 Luxembourg Malta 7 8 9 0 0 0 7 8 9 0 0 0 Malte Montenegro 11 8 10 39 35 34 2 1 1 30 28 25 Monténégro Netherlands 238 213 203 34 34 34 314 289 279 110 110 110 Pays-Bas Poland 495 470 500 487 450 460 267 270 300 259 250 260 Pologne Portugal 369 295 290 182 185 190 287 200 190 100 90 90 Portugal Serbia 172 215 225 343 370 385 64 60 70 235 215 230 Serbie Slovakia 235 240 275 385 400 420 55 50 55 205 210 200 Slovaquie Slovenia 106 145 145 143 145 145 83 80 80 121 80 80 Slovénie Spain 425 467 467 302 321 321 175 193 193 53 47 47 Espagne Sweden 142 140 140 100 100 100 83 80 80 41 40 40 Suède Switzerland 78 79 81 52 53 54 50 51 52 24 25 25 Suisse United Kingdom 807 810 810 37 40 40 787 790 790 17 20 20 Royaume-Uni Total Europe 7,019 6,652 6,703 6,928 6,449 6,606 4,177 3,862 3,813 4,086 3,658 3,716 Total Europe Uzbekistan 228 208 208 195 195 195 33 16 16 0 3 3 Ouzbékistan Total EECCA #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A Total EOCAC Canada 1,208 1,324 1,242 859 893 815 793 826 738 444 395 311 Canada United States 14,647 14,835 15,217 17,637 17,827 18,214 798 805 820 3,788 3,797 3,817 Etats-Unis Total North America 15,855 16,159 16,459 18,496 18,720 19,029 1,591 1,631 1,558 4,231 4,192 4,128 Total Amérique du Nord

Country Consommation Apparente Production Imports - Importations Exports - Exportations Pays

TABLE 2 SAWN HARDWOOD (total) SCIAGES NON-CONIFERES (total)

Data only for those countries providing forecasts - Données uniquement pour les pays fournissant des prévisions 1000 m3

Apparent Consumption

Imports Exports

2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024 Austria 306 219 219 238 202 202 213 136 136 144 119 119 Autriche Cyprus 9 5 5 0 0 0 8 5 5 0 0 0 Chypre Czech Republic 307 229 223 222 167 175 119 86 88 34 24 40 République tchèque Estonia 230 122 122 175 125 125 142 56 56 87 59 59 Estonie Finland 80 40 40 73 40 40 26 16 16 19 16 16 Finlande France 960 988 988 1,420 1,285 1,375 123 280 210 583 577 597 France Germany 664 630 630 997 800 800 315 240 240 649 410 410 Allemagne Hungary 257 147 127 414 343 342 43 35 26 200 230 241 Hongrie Italy 819 791 791 495 495 495 476 423 423 152 127 127 Italie Latvia 5 105 105 720 800 800 54 55 55 769 750 750 Lettonie Luxembourg 92 96 96 39 39 39 60 63 63 7 6 6 Luxembourg Malta 6 7 8 0 0 0 6 7 8 0 0 0 Malte Montenegro 11 8 10 39 35 34 2 1 1 30 28 25 Monténégro Netherlands 89 80 77 27 27 27 117 108 105 55 55 55 Pays-Bas Poland 484 459 488 487 450 460 254 257 286 257 248 258 Pologne Portugal 319 272 268 170 172 178 180 150 140 31 50 50 Portugal Serbia 167 211 220 342 369 384 59 57 66 234 215 230 Serbie Slovakia 235 240 275 385 400 420 55 50 55 205 210 200 Slovaquie Slovenia 104 143 143 143 145 145 81 78 78 120 80 80 Slovénie Spain 383 417 417 300 318 318 128 142 142 45 43 43 Espagne Sweden 142 139 139 100 100 100 83 79 79 41 40 40 Suède Switzerland 69 70 72 49 50 51 44 45 46 24 25 25 Suisse United Kingdom 716 720 720 37 40 40 693 700 700 14 20 20 Royaume-Uni Total Europe 6,453 6,138 6,183 6,872 6,402 6,550 3,281 3,069 3,025 3,700 3,334 3,392 Total Europe Uzbekistan 227 207 207 195 195 195 33 15 15 0 3 3 Ouzbékistan Total EECCA #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A Total EOCAC Canada 1,191 1,316 1,236 859 893 815 762 805 715 430 382 294 Canada United States 14,379 14,578 14,957 17,637 17,827 18,214 523 529 544 3,782 3,778 3,801 Etats-Unis Total North America 15,569 15,893 16,193 18,496 18,720 19,029 1,285 1,334 1,259 4,212 4,160 4,095 Total Amérique du Nord

Country Consommation Apparente Production Imports - Importations Exports - Exportations Pays

TABLE 2a SAWN HARDWOOD (temperate) SCIAGES NON-CONIFERES (zone tempérée)

Data only for those countries providing forecasts - Données uniquement pour les pays fournissant des prévisions 1000 m3

Apparent Consumption

Imports Exports

2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024 Austria 3 3 3 0 0 0 4 4 4 1 1 1 Autriche Bulgaria 0 0 0 0 0 0 0 0 0 0 0 0 Bulgarie Cyprus 3 2 2 0 0 0 3 2 2 0 0 0 Chypre Czech Republic 17 17 17 0 0 0 17 17 17 0 0 0 République tchèque Estonia 2 3 3 0 0 0 5 4 4 3 1 1 Estonie Finland 4 4 4 0 0 0 8 8 8 4 4 4 Finlande France 164 152 162 26 15 25 141 140 140 3 3 3 France Germany 29 20 20 0 0 0 79 60 60 50 40 40 Allemagne Hungary 2 3 4 0 0 0 2 4 4 0 0 0 Hongrie Italy -21 -15 -15 5 5 5 161 154 154 187 175 175 Italie Luxembourg 4 2 2 0 0 0 4 2 2 0 0 0 Luxembourg Malta 1 1 1 0 0 0 1 1 1 0 0 0 Malte Netherlands 149 133 126 7 7 7 197 181 174 55 55 55 Pays-Bas Poland 10 11 12 0 0 0 12 13 14 2 2 2 Pologne Portugal 50 23 22 12 13 12 107 50 50 69 40 40 Portugal Serbia 5 4 5 1 1 1 5 3 4 1 0 0 Serbie Slovenia 2 2 2 0 0 0 2 2 2 0 0 0 Slovénie Spain 42 49 49 2 2 2 47 50 50 7 4 4 Espagne Sweden 1 1 1 0 0 0 1 1 1 0 0 0 Suède Switzerland 9 9 9 3 3 3 6 6 6 0 0 0 Suisse United Kingdom 91 90 90 0 0 0 94 90 90 3 0 0 Royaume-Uni Total Europe 566 515 519 56 46 55 896 793 788 386 324 324 Total Europe Canada 17 8 7 0 0 0 31 21 23 14 13 16 Canada United States 269 257 260 0 0 0 275 276 276 6 19 16 Etats-Unis Total North America 286 266 266 0 0 0 305 297 299 20 31 32 Total Amérique du Nord

1000 m3

Apparent Consumption Country Consommation Apparente Production Imports - Importations

TABLE 2b SAWN HARDWOOD (tropical) SCIAGES NON-CONIFERES (tropicale)

Data only for those countries providing forecasts - Données uniquement pour les pays fournissant des prévisions

Exports - Exportations Pays

Imports Exports

2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024 Austria 74 39 39 8 8 8 83 45 45 17 14 14 Autriche Cyprus 1 1 1 0 0 0 1 1 1 0 0 0 Chypre Czech Republic 28 28 27 28 16 17 58 53 50 58 41 40 République tchèque Estonia 111 125 125 105 110 110 87 95 95 82 80 80 Estonie Finland 27 21 21 190 160 160 12 10 10 175 149 149 Finlande France 366 366 366 157 157 157 273 273 273 64 64 64 France Germany 157 143 125 110 105 105 99 78 70 52 40 50 Allemagne Hungary 23 25 20 13 18 13 39 39 39 28 31 32 Hongrie Italy 344 308 308 107 107 107 274 234 234 37 33 33 Italie Latvia 105 105 105 40 50 50 140 140 140 75 85 85 Lettonie Luxembourg 1 0 0 0 0 0 1 0 0 0 0 0 Luxembourg Malta 1 2 3 0 0 0 1 2 3 0 0 0 Malte Netherlands 15 13 13 0 0 0 17 15 15 3 3 3 Pays-Bas Poland 121 121 129 45 42 45 92 94 98 16 15 14 Pologne Portugal 12 20 35 20 30 25 38 40 50 46 50 40 Portugal Serbia 4 4 5 30 28 30 8 6 8 34 30 33 Serbie Slovakia 17 25 25 21 25 25 27 30 30 31 30 30 Slovaquie Slovenia 9 8 9 28 27 25 13 14 14 32 33 30 Slovénie Spain 122 92 92 40 36 36 127 90 90 45 34 34 Espagne Sweden 32 31 31 60 50 50 19 10 10 47 29 29 Suède Switzerland 3 3 3 0 0 0 4 4 4 1 1 1 Suisse United Kingdom 6 10 10 0 0 0 7 10 10 1 0 0 Royaume-Uni Total Europe 1,577 1,490 1,491 1,002 969 962 1,419 1,283 1,288 843 762 760 Total Europe Uzbekistan 4 4 4 3 3 3 2 1 1 0 0 0 Ouzbékistan Total EECCA #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A 0 Total EOCAC Canada 204 262 267 581 581 581 212 218 230 590 537 544 Canada United States 2,643 2,670 2,699 2,284 2,306 2,329 652 658 664 293 294 294 Etats-Unis Total North America 2,847 2,932 2,966 2,866 2,887 2,910 864 876 894 883 831 838 Total Amérique du Nord Note: Definition of veneers excludes domestic use for plywood. La définition des placages exclus la conversion directe en contreplaqué.

Country Consommation Apparente Production Imports - Importations Exports - Exportations Pays

TABLE 3 VENEER SHEETS FEUILLES DE PLACAGE

Data only for those countries providing forecasts - Données uniquement pour les pays fournissant des prévisions 1000 m3

Apparent Consumption

Imports Exports

2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024 Austria 19 15 15 131 155 155 183 150 150 296 290 290 Autriche Cyprus 14 15 15 0 0 0 14 15 15 0 0 0 Chypre Czech Republic 193 116 123 240 236 238 230 115 115 277 235 230 République tchèque Estonia 145 50 50 200 210 210 151 50 50 205 210 210 Estonie Finland 297 240 240 1,110 940 940 87 60 60 900 760 760 Finlande France 589 583 583 253 270 270 476 452 452 140 139 139 France Germany 1,073 1,154 840 85 80 80 1,319 1,281 1,000 330 207 240 Allemagne Hungary 136 110 107 60 61 63 138 138 138 62 90 94 Hongrie Italy 602 537 537 288 290 290 525 442 442 211 195 195 Italie Latvia 92 55 55 331 300 300 94 95 95 333 340 340 Lettonie Luxembourg 33 29 29 0 0 0 33 29 29 0 0 0 Luxembourg Malta 10 11 12 0 0 0 10 11 12 0 0 0 Malte Montenegro 2 2 2 1 1 1 2 2 2 1 1 1 Monténégro Netherlands 488 457 441 0 0 0 586 551 529 98 94 88 Pays-Bas Poland 650 640 670 539 515 530 468 475 480 357 350 340 Pologne Portugal 154 180 166 103 100 110 95 110 100 44 30 44 Portugal Serbia 40 36 38 19 18 19 34 30 33 13 12 14 Serbie Slovakia 67 63 63 153 150 150 59 59 59 146 146 146 Slovaquie Slovenia 49 50 58 94 90 98 26 30 30 71 70 70 Slovénie Spain 231 326 326 462 416 416 132 117 117 363 207 207 Espagne Sweden 278 160 160 90 90 90 236 120 120 48 50 50 Suède Switzerland 206 206 206 7 7 7 203 203 203 4 4 4 Suisse United Kingdom 1,254 1,180 1,180 0 0 0 1,320 1,250 1,250 66 70 70 Royaume-Uni Total Europe 6,623 6,215 5,916 4,166 3,930 3,967 6,422 5,786 5,482 3,965 3,501 3,532 Total Europe Uzbekistan 62 46 46 0 0 0 63 47 47 0 0 0 Ouzbékistan Total EECCA #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A 0 Total EOCAC Canada 2,174 2,028 2,123 1,604 1,557 1,526 1,224 1,058 1,241 654 587 644 Canada United States 14,742 14,890 15,188 9,254 9,345 9,528 6,259 6,317 6,436 771 772 776 Etats-Unis Total North America 16,916 16,918 17,311 10,858 10,902 11,054 7,483 7,375 7,677 1,425 1,359 1,420 Total Amérique du Nord

Country Consommation Apparente Production Imports - Importations Exports - Exportations Pays

TABLE 4 PLYWOOD CONTREPLAQUES

Data only for those countries providing forecasts - Données uniquement pour les pays fournissant des prévisions 1000 m3

Apparent Consumption

Imports Exports

2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024 Austria 951 630 630 2,280 2,170 2,170 313 355 355 1,642 1,895 1,895 Autriche Cyprus 49 46 46 0 0 0 49 46 46 0 0 0 Chypre Czech Republic 793 811 835 962 866 910 530 484 485 699 538 560 République tchèque Estonia 123 67 67 90 0 0 77 68 68 44 2 1 Estonie Finland 113 75 75 54 54 54 85 44 44 26 23 23 Finlande France 2,224 2,148 2,148 3,177 3,094 3,094 299 355 355 1,253 1,301 1,301 France Germany 5,572 5,220 4,970 5,526 5,195 5,020 1,970 1,934 1,900 1,924 1,909 1,950 Allemagne Hungary 408 384 379 447 428 438 264 282 272 303 326 331 Hongrie Italy 3,070 2,813 2,813 2,646 2,500 2,500 956 821 821 532 508 508 Italie Latvia 52 85 85 306 300 300 69 25 25 322 240 240 Lettonie Luxembourg 20 12 12 0 0 0 21 13 13 1 1 1 Luxembourg Malta 10 11 11 0 0 0 10 11 11 0 0 0 Malte Montenegro 32 33 34 0 0 0 32 33 34 0 0 0 Monténégro Netherlands 464 440 432 0 0 0 514 488 479 50 48 47 Pays-Bas Poland 6,501 6,450 6,740 5,227 5,150 5,450 2,173 2,180 2,200 899 880 910 Pologne Portugal 537 473 514 766 750 760 281 300 290 510 577 536 Portugal Serbia 373 351 371 219 210 220 196 184 198 42 43 47 Serbie Slovakia 352 343 340 676 675 675 148 140 137 473 473 472 Slovaquie Slovenia 137 110 110 0 0 0 143 114 114 6 4 4 Slovénie Spain 2,392 2,213 2,213 2,566 2,310 2,310 626 621 621 800 718 718 Espagne Sweden 1,055 868 868 636 600 600 475 335 335 57 67 67 Suède Switzerland 281 286 286 420 425 425 141 141 141 280 280 280 Suisse United Kingdom 2,606 2,542 2,542 2,012 1,982 1,982 648 610 610 55 50 50 Royaume-Uni Total Europe 28,115 26,410 26,521 28,012 26,710 26,908 10,021 9,584 9,555 9,917 9,883 9,942 Total Europe Uzbekistan 880 542 542 252 252 252 654 317 317 26 27 27 Ouzbékistan Total EECCA #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A 27 Total EOCAC Canada 1,466 1,886 1,894 1,625 2,032 2,012 552 504 491 710 650 609 Canada United States 5,196 5,565 5,562 4,488 4,552 4,534 1,193 1,465 1,487 485 452 459 Etats-Unis Total North America 6,663 7,451 7,456 6,113 6,584 6,546 1,745 1,969 1,978 1,195 1,102 1,068 Total Amérique du Nord Data are calculated by subtracting OSB from the particleboard/OSB total - les données sont calculées en soustrayant les OSB du total des panneaux de particules et OSB.

Country Consommation Apparente Production Imports - Importations Exports - Exportations Pays

TABLE 5 PARTICLE BOARD (excluding OSB) PANNEAUX DE PARTICULES (ne comprennent pas l'OSB)

Data only for those countries providing forecasts - Données uniquement pour les pays fournissant des prévisions 1000 m3

Apparent Consumption

Imports Exports

2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024 Austria 205 135 135 0 0 0 212 140 140 7 5 5 Autriche Cyprus 11 14 14 0 0 0 11 14 14 0 0 0 Chypre Czech Republic 380 342 350 689 620 655 126 113 115 435 392 420 République tchèque Estonia 55 32 32 0 0 0 55 32 32 1 0 0 Estonie Finland 56 56 56 0 0 0 56 56 56 0 0 0 Finlande France 427 522 522 302 406 406 222 165 165 96 49 49 France Germany 1,316 1,238 1,130 1,164 1,105 1,080 679 669 600 526 536 550 Allemagne Hungary 133 147 152 379 419 443 56 60 59 302 331 350 Hongrie Italy 346 287 287 100 100 100 346 274 274 100 87 87 Italie Latvia 196 165 165 674 650 650 76 75 75 554 560 560 Lettonie Luxembourg 110 135 135 338 338 338 6 14 14 234 217 217 Luxembourg Montenegro 2 2 2 0 0 0 2 2 2 0 0 0 Monténégro Netherlands 222 222 227 0 0 0 286 286 292 64 64 65 Pays-Bas Poland 655 650 760 647 650 750 302 320 350 294 320 340 Pologne Portugal 46 37 41 0 0 0 50 40 45 4 3 4 Portugal Serbia 40 35 41 0 0 0 41 36 42 1 1 1 Serbie Slovakia 48 58 60 0 0 0 48 60 63 1 3 3 Slovaquie Slovenia 31 24 24 0 0 0 33 26 26 2 2 2 Slovénie Spain 26 15 15 3 3 3 35 33 33 12 20 20 Espagne Sweden 94 92 92 0 0 0 97 95 95 3 3 3 Suède Switzerland 95 95 95 0 0 0 96 96 96 1 1 1 Suisse United Kingdom 773 758 758 598 598 598 365 350 350 190 190 190 Royaume-Uni Total Europe 5,268 5,060 5,092 4,894 4,888 5,023 3,200 2,956 2,938 2,826 2,784 2,868 Total Europe Uzbekistan 7 5 5 0 0 0 7 5 5 0 0 0 Ouzbékistan Total EECCA #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A 0 Total EOCAC Canada 1,546 1,253 1,153 7,270 6,820 6,798 82 65 61 5,806 5,632 5,706 Canada United States 19,658 19,834 20,197 13,592 13,783 14,059 6,198 6,236 6,326 132 185 188 Etats-Unis Total North America 21,204 21,087 21,350 20,862 20,603 20,857 6,280 6,301 6,387 5,938 5,817 5,894 Total Amérique du Nord

Country Consommation Apparente Production Imports - Importations Exports - Exportations Pays

TABLE 5a ORIENTED STRAND BOARD (OSB) PANNEAUX STRUCTURAUX ORIENTES (OSB)

Data only for those countries providing forecasts - Données uniquement pour les pays fournissant des prévisions 1000 m3

Apparent Consumption

Imports Exports

2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024 Austria 421 386 386 470 395 395 331 308 308 381 316 316 Autriche Cyprus 20 15 16 0 0 0 20 15 16 0 0 0 Chypre Czech Republic 328 276 280 41 41 42 438 347 360 151 112 122 République tchèque Estonia 70 46 47 75 40 40 65 46 47 70 40 40 Estonie Finland 139 105 105 44 44 44 141 102 102 46 41 41 Finlande France 828 915 915 1,238 1,035 1,035 721 772 772 1,130 892 892 France Germany 3,791 3,437 3,325 5,194 4,900 4,800 1,590 1,543 1,470 2,993 3,006 2,945 Allemagne Hungary 9 -17 -13 21 0 0 204 235 244 215 253 258 Hongrie Italy 1,862 1,661 1,661 827 818 818 1,281 974 974 245 131 131 Italie Latvia 60 50 40 48 50 50 62 65 65 50 65 75 Lettonie Luxembourg 100 90 90 147 147 147 34 19 19 80 76 76 Luxembourg Malta 6 7 7 0 0 0 6 7 7 0 0 0 Malte Montenegro 32 32 33 0 0 0 32 32 33 0 0 0 Monténégro Netherlands 332 310 296 29 29 29 465 431 412 162 150 145 Pays-Bas Poland 3,808 3,765 4,020 4,960 4,920 5,080 590 585 630 1,743 1,740 1,690 Pologne Portugal 534 485 529 526 520 560 338 315 335 330 350 366 Portugal Serbia 74 74 88 19 20 22 71 73 88 16 19 22 Serbie Slovakia 210 218 223 0 0 0 248 256 262 39 38 39 Slovaquie Slovenia 24 15 15 132 120 125 28 25 30 136 130 140 Slovénie Spain 920 894 894 1,430 1,287 1,287 462 355 355 972 748 748 Espagne Sweden 301 260 260 0 0 0 425 360 360 124 100 100 Suède Switzerland 238 238 238 97 97 97 308 308 308 167 167 167 Suisse United Kingdom 1,692 1,630 1,630 856 850 850 895 840 840 60 60 60 Royaume-Uni Total Europe 15,799 14,892 15,085 16,153 15,313 15,421 8,755 8,013 8,037 9,110 8,434 8,373 Total Europe Uzbekistan 1,092 809 809 47 47 47 1,057 771 771 13 9 9 Ouzbékistan Total EECCA #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A Total EOCAC Canada 1,236 1,183 1,181 1,277 1,288 1,299 818 628 605 859 733 723 Canada United States 8,684 8,749 8,888 6,362 6,420 6,571 3,359 3,289 3,310 1,038 960 993 Etats-Unis Total North America 9,920 9,932 10,069 7,639 7,708 7,870 4,177 3,917 3,915 1,896 1,693 1,716 Total Amérique du Nord

Country Consommation Apparente Production Imports - Importations Exports - Exportations Pays

TABLE 6 FIBREBOARD PANNEAUX DE FIBRES

Data only for those countries providing forecasts - Données uniquement pour les pays fournissant des prévisions 1000 m3

Apparent Consumption

Imports Exports

2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024 Austria 29 28 28 54 43 43 18 16 16 43 32 32 Autriche Cyprus 2 1 2 0 0 0 2 1 2 0 0 0 Chypre Czech Republic 43 45 45 0 0 0 61 59 60 18 14 15 République tchèque Estonia 23 15 19 0 0 0 30 16 20 7 1 1 Estonie Finland 23 21 21 44 44 44 21 15 15 41 38 38 Finlande France 55 55 55 221 221 221 207 207 207 373 373 373 France Germany 176 183 165 0 0 0 200 203 180 23 20 15 Allemagne Hungary 27 41 45 2 0 0 65 81 85 40 40 40 Hongrie Italy 280 280 280 16 16 16 283 283 283 19 19 19 Italie Latvia 1 5 5 15 15 15 18 20 20 32 30 30 Lettonie Luxembourg -31 -12 -12 0 0 0 3 8 8 34 20 20 Luxembourg Montenegro 1 1 1 0 0 0 1 1 1 0 0 0 Monténégro Netherlands 44 41 39 0 0 0 63 58 56 19 17 17 Pays-Bas Poland -179 -120 -50 80 80 80 88 100 120 347 300 250 Pologne Portugal 50 30 39 0 0 0 61 40 50 11 10 11 Portugal Serbia 39 35 38 19 20 22 33 31 34 13 16 18 Serbie Slovakia 21 20 21 0 0 0 21 21 22 1 1 1 Slovaquie Slovenia -1 0 1 0 0 0 4 2 4 4 2 3 Slovénie Spain 17 15 15 32 29 29 46 46 46 61 60 60 Espagne Sweden 47 30 30 0 0 0 116 110 110 70 80 80 Suède Switzerland 19 19 19 0 0 0 24 24 24 5 5 5 Suisse United Kingdom 101 90 90 0 0 0 110 100 100 9 10 10 Royaume-Uni Total Europe 787 822 895 482 468 470 1,474 1,441 1,463 1,169 1,087 1,037 Total Europe Uzbekistan 89 50 50 0 0 0 90 50 50 0 0 0 Ouzbékistan Total EECCA #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A Total EOCAC Canada 33 47 42 90 90 90 52 27 28 109 70 76 Canada United States 481 509 514 437 504 509 259 255 258 215 250 253 Etats-Unis Total North America 514 556 556 527 594 599 311 282 286 324 320 329 Total Amérique du Nord

Country Consommation Apparente Production Imports - Importations Exports - Exportations Pays

TABLE 6a HARDBOARD PANNEAUX DURS

Data only for those countries providing forecasts - Données uniquement pour les pays fournissant des prévisions 1000 m3

Apparent Consumption

Imports Exports

2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024 Austria 260 230 230 416 351 351 177 160 160 333 281 281 Autriche Cyprus 16 12 12 0 0 0 16 12 12 0 0 0 Chypre Czech Republic 199 157 160 41 41 42 180 135 140 22 19 22 République tchèque Estonia 18 21 18 0 0 0 33 28 25 15 7 7 Estonie Finland 82 67 67 0 0 0 86 70 70 4 3 3 Finlande France 708 794 794 954 751 751 337 388 388 583 345 345 France Germany 1,870 1,728 1,720 3,792 3,700 3,650 424 395 370 2,345 2,367 2,300 Allemagne Hungary -39 -65 -62 0 0 0 136 148 156 175 213 218 Hongrie Italy 1,501 1,299 1,299 809 800 800 913 606 606 221 107 107 Italie Latvia 52 40 30 33 35 35 22 25 25 2 20 30 Lettonie Luxembourg 128 98 98 147 147 147 27 7 7 46 56 56 Luxembourg Malta 5 5 5 0 0 0 5 5 5 0 0 0 Malte Montenegro 31 31 32 0 0 0 31 31 32 0 0 0 Monténégro Netherlands 220 205 196 0 0 0 361 336 322 141 131 126 Pays-Bas Poland 3,066 3,020 3,130 3,052 3,030 3,100 470 450 470 456 460 440 Pologne Portugal 447 440 465 494 500 530 257 260 265 305 320 330 Portugal Serbia 31 35 46 0 0 0 34 38 50 3 3 4 Serbie Slovakia 135 135 135 0 0 0 170 170 170 35 35 35 Slovaquie Slovenia 24 15 14 132 120 125 24 23 26 131 128 137 Slovénie Spain 835 821 821 1,334 1,201 1,201 397 302 302 897 682 682 Espagne Sweden 254 225 225 0 0 0 284 230 230 30 5 5 Suède Switzerland 24 24 24 97 97 97 88 88 88 161 161 161 Suisse United Kingdom 1,553 1,510 1,510 856 850 850 739 700 700 42 40 40 Royaume-Uni Total Europe 11,419 10,847 10,969 12,157 11,623 11,679 5,210 4,606 4,618 5,948 5,382 5,328 Total Europe Uzbekistan 671 513 513 46 46 46 629 469 469 3 2 2 Ouzbékistan Total EECCA #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A Total EOCAC Canada 1,053 999 1,005 1,087 1,098 1,109 608 472 449 641 570 553 Canada United States 5,156 5,228 5,226 2,746 2,778 2,786 2,939 2,874 2,866 529 424 426 Etats-Unis Total North America 6,209 6,227 6,231 3,833 3,876 3,895 3,547 3,346 3,315 1,170 994 979 Total Amérique du Nord

Country Consommation Apparente Production Imports - Importations Exports - Exportations Pays

TABLE 6b MDF/HDF

Data only for those countries providing forecasts - Données uniquement pour les pays fournissant des prévisions 1000 m3

Apparent Consumption

Imports Exports

2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024 Austria 131 128 128 0 0 0 136 132 132 4 3 3 Autriche Cyprus 2 2 2 0 0 0 3 2 2 0 0 0 Chypre Czech Republic 86 74 75 0 0 0 197 154 160 111 80 85 République tchèque Estonia 29 10 10 75 40 40 3 2 2 49 32 32 Estonie Finland 33 17 17 0 0 0 34 17 17 0 0 0 Finlande France 65 66 66 63 63 63 177 177 177 174 174 174 France Germany 1,745 1,526 1,440 1,402 1,200 1,150 966 945 920 624 619 630 Allemagne Hungary 21 7 4 19 0 0 3 7 4 0 0 0 Hongrie Italy 82 82 82 3 3 3 85 85 85 6 6 6 Italie Latvia 7 5 5 0 0 0 23 20 20 16 15 15 Lettonie Luxembourg 4 4 4 0 0 0 4 4 4 0 0 0 Luxembourg Malta 1 2 2 0 0 0 1 2 2 0 0 0 Malte Netherlands 68 64 61 29 29 29 41 37 34 2 2 2 Pays-Bas Poland 920 865 940 1,828 1,810 1,900 33 35 40 940 980 1,000 Pologne Portugal 37 15 25 32 20 30 20 15 20 15 20 25 Portugal Serbia 4 4 4 0 0 0 4 4 4 0 0 0 Serbie Slovakia 54 63 67 0 0 0 57 65 70 3 2 3 Slovaquie Slovenia 0 0 0 0 0 0 0 0 0 0 0 0 Slovénie Spain 69 59 59 64 58 58 20 7 7 15 6 6 Espagne Sweden 0 5 5 0 0 0 25 20 20 24 15 15 Suède Switzerland 195 195 195 0 0 0 196 196 196 1 1 1 Suisse United Kingdom 38 30 30 0 0 0 47 40 40 9 10 10 Royaume-Uni Total Europe 3,592 3,223 3,221 3,514 3,222 3,272 2,071 1,965 1,956 1,993 1,965 2,007 Total Europe Uzbekistan 331 246 246 2 2 2 339 252 252 10 7 7 Ouzbékistan Total EECCA #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A Total EOCAC Canada 150 137 134 100 100 100 158 129 128 108 92 94 Canada United States 3,047 3,012 3,148 3,179 3,138 3,276 161 160 186 294 286 314 Etats-Unis Total North America 3,196 3,149 3,282 3,279 3,238 3,376 319 289 314 402 378 408 Total Amérique du Nord

Country Consommation Apparente Production Imports - Importations Exports - Exportations Pays

TABLE 6c OTHER FIBREBOARD AUTRES PANNEAUX DE FIBRES

Data only for those countries providing forecasts - Données uniquement pour les pays fournissant des prévisions 1000 m3

Apparent Consumption

Imports Exports

2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024 Austria 2,209 1,950 2,030 1,977 1,700 1,800 630 610 630 399 360 400 Autriche Czech Republic 847 688 700 640 525 540 324 259 260 117 96 100 République tchèque Estonia 70 75 80 227 180 180 42 50 50 199 155 150 Estonie Finland a 5,468 4,483 4,614 9,200 8,690 9,360 355 150 150 4,087 4,357 4,896 Finlande a

France 2,898 2,420 2,500 1,666 1,300 1,350 1,715 1,450 1,500 483 330 350 France Germany 5,092 4,600 5,000 2,172 1,850 2,000 4,173 3,900 4,200 1,253 1,150 1,200 Allemagne Hungary 205 206 214 66 77 87 141 133 131 3 3 4 Hongrie Italy 3,466 3,466 3,466 223 223 223 3,536 3,536 3,536 293 293 293 Italie Latvia 7 7 7 12 13 13 7 7 7 12 13 13 Lettonie Netherlands 443 442 442 37 37 37 1,717 1,717 1,717 1,312 1,312 1,312 Pays-Bas Poland 2,836 2,830 2,930 1,729 1,710 1,750 1,291 1,300 1,320 183 180 140 Pologne Portugal 1,757 1,735 1,760 2,869 2,870 2,870 140 145 150 1,252 1,280 1,260 Portugal Serbia 82 88 92 0 0 0 82 88 92 0 0 0 Serbie Slovakia 700 700 715 692 700 725 173 170 170 166 170 180 Slovaquie Slovenia 322 321 316 73 63 68 249 260 250 1 2 2 Slovénie Spain 1,520 1,328 1,328 1,120 1,120 1,120 1,176 976 976 775 768 768 Espagne Sweden 8,438 7,600 7,950 11,631 10,900 11,400 641 600 600 3,834 3,900 4,050 Suède Switzerland 188 188 188 87 87 87 101 101 101 0 0 0 Suisse United Kingdom 1,057 940 950 220 200 200 838 740 750 1 0 0 Royaume-Uni Total Europe 37,604 34,067 35,282 34,641 32,244 33,809 17,333 16,193 16,590 14,369 14,369 15,118 Total Europe Uzbekistan 38 28 28 1 1 1 37 28 28 0 0 0 Ouzbékistan Total EECCA #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A Total EOCAC Canada 6,007 5,851 5,616 14,200 13,102 12,638 472 582 640 8,665 7,833 7,662 Canada United States 39,787 42,269 42,815 40,822 41,230 41,478 6,948 7,643 8,254 7,983 6,603 6,917 Etats-Unis Total North America 45,794 48,121 48,431 55,022 54,332 54,116 7,420 8,224 8,894 16,648 14,436 14,579 Total Amérique du Nord

a imports exclude dissolving pulp a les importations excluent pâte à dissoudre

Country Consommation Apparente Production Imports - Importations Exports - Exportations Pays

TABLE 7 WOOD PULP PATE DE BOIS

Data only for those countries providing forecasts - Données uniquement pour les pays fournissant des prévisions 1000 mt

Apparent Consumption

Imports Exports

2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024 Austria 2,133 1,750 2,050 4,633 3,500 4,000 1,231 1,050 1,150 3,730 2,800 3,100 Autriche Cyprus 56 48 48 0 0 0 56 48 48 0 0 0 Chypre Czech Republic 1,467 1,234 1,258 938 769 785 1,531 1,286 1,312 1,002 822 838 République tchèque Estonia 120 111 111 57 35 35 123 102 102 59 26 26 Estonie Finland 514 475 460 7,200 5,990 6,150 333 275 280 7,019 5,790 5,970 Finlande France 8,272 7,290 7,400 7,092 6,240 6,600 4,845 4,650 4,600 3,665 3,600 3,800 France Germany 17,836 14,600 17,000 21,612 17,500 21,000 9,302 8,000 9,500 13,078 10,900 13,500 Allemagne Hungary 1,213 1,167 1,212 1,057 1,003 1,034 877 892 898 720 727 721 Hongrie Italy 11,390 11,390 11,390 8,696 8,696 8,696 5,800 5,800 5,800 3,106 3,106 3,106 Italie Latvia 168 175 175 29 30 30 173 180 180 33 35 35 Lettonie Luxembourg 26 14 14 0 0 0 27 15 15 1 1 1 Luxembourg Malta 26 27 28 0 0 0 26 27 28 0 0 0 Malte Netherlands 2,814 2,760 2,760 2,884 2,827 2,827 2,180 2,096 2,096 2,250 2,163 2,163 Pays-Bas Poland 7,532 7,400 7,550 5,237 5,130 5,250 4,869 4,870 4,950 2,574 2,600 2,650 Pologne Portugal 1,090 1,200 1,240 2,123 2,200 2,240 948 940 945 1,981 1,940 1,945 Portugal Serbia 790 762 778 483 481 490 514 490 500 207 209 212 Serbie Slovakia 565 575 600 967 975 1,000 457 450 475 859 850 875 Slovaquie Slovenia 412 390 390 591 500 500 367 390 390 545 500 500 Slovénie Spain 7,060 6,778 6,778 6,355 6,355 6,355 2,997 2,577 2,577 2,291 2,154 2,154 Espagne Sweden 834 700 750 8,531 7,300 8,100 894 700 750 8,591 7,300 8,100 Suède Switzerland 1,020 1,015 1,010 1,160 1,155 1,150 640 635 630 780 775 770 Suisse United Kingdom 7,420 6,280 6,440 3,460 3,190 3,250 5,015 4,150 4,250 1,055 1,060 1,060 Royaume-Uni Total Europe 72,758 66,140 69,442 83,103 73,876 79,492 43,204 39,623 41,476 53,549 47,358 51,526 Total Europe Uzbekistan 335 297 297 142 142 142 214 171 171 21 17 17 Ouzbékistan Total EECCA #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A Total EOCAC Canada 5,505 6,069 6,231 9,094 9,124 9,155 2,516 2,242 2,235 6,105 5,298 5,159 Canada United States 64,243 62,896 63,029 65,959 64,476 64,476 8,202 8,180 8,159 9,917 9,761 9,606 Etats-Unis Total North America 69,748 68,964 69,260 75,053 73,600 73,631 10,718 10,423 10,395 16,023 15,059 14,765 Total Amérique du Nord

Country Consommation Apparente Production Imports - Importations Exports - Exportations Pays

TABLE 8 PAPER AND PAPERBOARD PAPIERS ET CARTONS

Data only for those countries providing forecasts - Données uniquement pour les pays fournissant des prévisions 1000 mt

Apparent Consumption

2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024 Austria 13,935 11,716 12,225 10,711 8,904 9,338 3,223 2,812 2,887 0 0 0 5,424 5,115 5,234 19,359 16,831 17,459 Autriche Cyprus 3 2 2 2 2 2 0 0 0 0 0 0 11 9 8 14 11 10 Chypre Czech Republic 20,708 15,535 14,897 14,635 10,617 10,106 5,965 4,804 4,675 108 113 115 4,405 3,965 3,900 25,113 19,499 18,797 République tchèque Estonia 6,474 6,401 6,401 4,276 4,200 4,200 2,148 2,150 2,150 51 51 51 4,066 3,800 3,800 10,541 10,201 10,201 Estonie Finland 56,246 53,397 55,435 25,699 22,749 23,412 30,547 30,648 32,023 0 0 0 9,340 9,340 9,340 65,586 62,737 64,775 Finlande France 25,648 25,270 25,070 17,198 17,200 17,300 7,891 7,500 7,200 559 570 570 24,173 24,500 25,600 49,821 49,770 50,670 France Germany 56,534 53,930 49,630 44,756 41,200 39,500 11,644 12,600 10,000 135 130 130 22,338 22,700 22,700 78,872 76,630 72,330 Allemagne Hungary 2,901 2,881 2,881 1,410 1,374 1,399 912 995 1,008 579 512 475 3,626 3,284 3,397 6,527 6,165 6,278 Hongrie Italy 2,838 3,540 3,540 1,890 1,890 1,890 316 1,018 1,018 632 632 632 10,839 10,839 10,839 13,677 14,379 14,379 Italie Latvia 12,491 12,150 12,350 7,603 7,250 7,450 3,868 3,800 3,800 1,020 1,100 1,100 2,936 3,000 3,000 15,427 15,150 15,350 Lettonie Luxembourg 231 197 193 147 144 133 56 38 38 27 15 22 40 45 43 271 242 235 Luxembourg Montenegro 751 697 678 515 492 487 201 198 186 35 7 5 194 193 190 945 890 868 Monténégro Netherlands 614 599 589 221 220 215 352 340 335 41 39 39 2,382 2,380 2,385 2,996 2,979 2,974 Pays-Bas Poland 38,735 39,880 40,850 18,533 18,800 19,150 19,350 20,100 20,550 852 980 1,150 6,958 7,420 7,750 45,693 47,300 48,600 Pologne Portugal 12,235 12,330 12,190 2,038 2,040 2,060 9,799 9,850 9,700 399 440 430 2,383 2,380 2,300 14,619 14,710 14,490 Portugal Serbia 1,478 1,520 1,561 1,077 1,104 1,130 265 275 283 136 141 148 6,574 6,646 6,760 8,052 8,166 8,321 Serbie Slovakia 6,827 6,820 6,880 4,130 4,080 4,100 2,672 2,710 2,750 25 30 30 609 610 650 7,435 7,430 7,530 Slovaquie Slovenia 2,928 3,752 3,482 2,184 2,780 2,600 698 920 830 45 52 52 1,149 1,290 1,270 4,076 5,042 4,752 Slovénie Spain 14,366 15,244 15,244 4,150 4,404 4,404 9,813 10,413 10,413 403 427 427 3,555 3,772 3,772 17,921 19,016 19,016 Espagne Sweden 71,165 69,076 69,310 38,280 37,480 37,080 32,585 31,296 31,930 300 300 300 6,000 6,016 6,016 77,165 75,092 75,326 Suède Switzerland 3,011 3,082 3,142 2,555 2,625 2,680 444 445 450 12 12 12 1,938 2,000 2,025 4,949 5,082 5,167 Suisse United Kingdom 7,604 7,193 7,193 5,509 5,236 5,236 1,646 1,529 1,529 448 428 428 2,184 2,184 2,184 9,788 9,377 9,377 Royaume-Uni Total Europe 357,723 345,212 343,742 207,519 194,791 193,872 144,397 144,441 143,754 5,807 5,980 6,116 121,124 121,488 123,163 478,847 466,699 466,905 Total Europe Canada 142,131 140,499 140,499 124,900 123,350 123,350 15,040 14,864 14,864 2,190 2,285 2,285 1,683 1,908 1,908 143,814 142,407 142,407 Canada United States 382,544 384,963 388,611 186,157 188,221 191,211 182,650 182,996 183,637 13,737 13,746 13,763 76,230 76,240 76,278 458,774 461,203 464,889 Etats-Unis Total North America 524,675 525,462 529,110 311,057 311,571 314,561 197,690 197,861 198,501 15,927 16,031 16,048 77,913 78,148 78,186 602,587 603,610 607,296 Total Amérique du Nord

a Pulpwood, round and split, as well as chips and particles produced directly a Bois de trituration, rondins et quartiers, ainse que plaquettes et particules fabriquées therefrom and used as pulpwood directement à partir des rondins et quartiers et utilisées comme bois de trituration

b Pitprops, poles, piling, posts etc. b Bois de mine, poteaux, pilotis, piquets etc. c Including chips and particles produced from wood in the rough and c Y compris plaquettes et particules fabriquées à partir du bois brut et utilisées

used for energy purposes à des fins energétiques

Total Logs Pulpwood a Other b Total Grumes Bois de trituration a Autre bCountry

Industrial wood - Bois industriels

TABLE 9 REMOVALS OF WOOD IN THE ROUGH QUANTITES ENLEVEES DE BOIS BRUT

TOTAL TOTAL 1000 m3 - Data only for those countries providing forecasts - Données uniquement pour les pays fournissant des prévisions

Wood fuel c

Bois de chauffage c Pays

2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024 Austria 12,958 10,873 11,338 10,382 8,638 9,038 2,576 2,235 2,300 0 0 0 3,248 3,069 3,140 16,206 13,942 14,478 Autriche Cyprus 2 2 2 2 2 2 0 0 0 0 0 0 10 8 7 12 10 9 Chypre Czech Republic 19,440 14,455 13,825 14,019 10,094 9,589 5,316 4,253 4,125 105 109 111 3,610 3,249 3,200 23,050 17,704 17,025 République tchèque Estonia 4,023 3,927 3,927 3,118 3,000 3,000 878 900 900 26 27 27 1,486 1,400 1,400 5,509 5,327 5,327 Estonie Finland 47,408 45,464 47,590 24,662 21,700 22,351 22,746 23,764 25,239 0 0 0 4,593 4,593 4,593 52,001 50,057 52,183 Finlande France 17,300 17,070 16,770 12,491 12,500 12,500 4,559 4,300 4,000 250 270 270 2,417 2,500 2,600 19,717 19,570 19,370 France Germany 52,425 50,120 46,120 41,761 38,500 37,000 10,541 11,500 9,000 123 120 120 8,834 9,200 9,200 61,259 59,320 55,320 Allemagne Hungary 688 759 743 175 201 208 411 488 481 102 70 53 383 294 333 1,071 1,053 1,076 Hongrie Italy 1,797 2,502 2,502 1,169 1,169 1,169 148 853 853 480 480 480 1,180 1,180 1,180 2,977 3,682 3,682 Italie Latvia 8,253 7,900 8,100 5,873 5,500 5,700 1,850 1,800 1,800 530 600 600 298 300 300 8,551 8,200 8,400 Lettonie Luxembourg 162 143 145 124 122 115 10 6 8 27 15 22 17 11 12 178 154 158 Luxembourg Montenegro 573 553 537 372 352 349 201 198 186 0 3 2 66 65 63 639 618 600 Monténégro Netherlands 449 440 430 173 170 165 244 240 235 32 30 30 457 450 450 906 890 880 Pays-Bas Poland 31,941 32,800 33,470 15,775 16,000 16,250 15,411 15,950 16,250 754 850 970 3,627 3,820 3,950 35,568 36,620 37,420 Pologne Portugal 3,045 3,210 3,150 1,682 1,710 1,700 1,213 1,350 1,300 150 150 150 996 990 980 4,041 4,200 4,130 Portugal Serbia 279 290 301 178 184 190 66 70 73 35 36 38 141 146 160 420 436 461 Serbie Slovakia 3,325 3,160 3,120 2,559 2,430 2,400 748 710 700 18 20 20 259 260 275 3,584 3,420 3,395 Slovaquie Slovenia 1,966 2,586 2,386 1,687 2,150 2,000 275 430 380 4 6 6 191 240 220 2,157 2,826 2,606 Slovénie Spain 7,435 7,889 7,889 3,420 3,629 3,629 3,754 3,984 3,984 261 277 277 2,243 2,380 2,380 9,678 10,269 10,269 Espagne Sweden 64,603 62,760 62,873 38,100 37,300 36,900 26,353 25,310 25,823 150 150 150 3,000 3,008 3,008 67,603 65,768 65,881 Suède Switzerland 2,578 2,639 2,689 2,290 2,350 2,400 279 280 280 9 9 9 769 770 775 3,347 3,409 3,464 Suisse United Kingdom 7,486 7,076 7,076 5,453 5,180 5,180 1,633 1,516 1,516 400 380 380 1,571 1,571 1,571 9,058 8,647 8,647 Royaume-Uni Total Europe 288,136 276,619 274,984 185,467 172,881 171,836 99,212 100,136 99,433 3,458 3,602 3,715 39,396 39,504 39,798 327,533 316,123 314,781 Total Europe Canada 114,659 112,907 112,907 110,046 108,424 108,424 4,229 4,021 4,021 384 462 462 806 946 946 115,465 113,853 113,853 Canada United States 306,119 309,360 313,639 152,799 154,479 156,695 141,226 142,779 144,827 12,094 12,102 12,117 37,619 37,609 37,606 343,738 346,969 351,245 Etats-Unis Total North America 420,778 422,267 426,546 262,845 262,903 265,119 145,455 146,800 148,848 12,478 12,564 12,579 38,425 38,555 38,552 459,203 460,822 465,098 Total Amérique du Nord

a Pulpwood, round and split, as well as chips and particles produced directly a Bois de trituration, rondins et quartiers, ainse que plaquettes et particules fabriquées therefrom and used as pulpwood directement à partir des rondins et quartiers et utilisées comme bois de trituration

b Pitprops, poles, piling, posts etc. b Bois de mine, poteaux, pilotis, piquets etc. c Including chips and particles produced from wood in the rough and c Y compris plaquettes et particules fabriquées à partir du bois brut et utilisées

used for energy purposes à des fins energétiques

Total Logs Pulpwood a Other b Total Grumes Bois de trituration a Autre bCountry

Industrial wood - Bois industriels

TABLE 9a REMOVALS OF WOOD IN THE ROUGH QUANTITES ENLEVEES DE BOIS BRUT

SOFTWOOD CONIFERES 1000 m3 - Data only for those countries providing forecasts - Données uniquement pour les pays fournissant des prévisions

Wood fuel c

Bois de chauffage c Pays

2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024 Austria 977 843 887 329 266 300 647 577 587 0 0 0 2,176 2,046 2,094 3,153 2,889 2,981 Autriche Cyprus 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 Chypre Czech Republic 1,268 1,079 1,071 616 524 517 649 552 550 3 4 4 795 716 700 2,063 1,795 1,771 République tchèque Estonia 2,452 2,474 2,474 1,158 1,200 1,200 1,270 1,250 1,250 24 24 24 2,580 2,400 2,400 5,032 4,874 4,874 Estonie Finland 8,838 7,933 7,845 1,037 1,049 1,061 7,801 6,884 6,784 0 0 0 4,747 4,747 4,747 13,585 12,680 12,592 Finlande France 8,348 8,200 8,300 4,707 4,700 4,800 3,332 3,200 3,200 309 300 300 21,756 22,000 23,000 30,104 30,200 31,300 France Germany 4,110 3,810 3,510 2,995 2,700 2,500 1,103 1,100 1,000 12 10 10 13,504 13,500 13,500 17,613 17,310 17,010 Allemagne Hungary 2,213 2,122 2,138 1,234 1,173 1,191 502 507 526 477 442 421 3,244 2,990 3,064 5,456 5,112 5,202 Hongrie Italy 1,041 1,038 1,038 721 721 721 168 166 166 152 152 152 9,659 9,659 9,659 10,700 10,697 10,697 Italie Latvia 4,238 4,250 4,250 1,730 1,750 1,750 2,018 2,000 2,000 490 500 500 2,638 2,700 2,700 6,876 6,950 6,950 Lettonie Luxembourg 69 54 47 23 22 18 46 32 30 0 0 0 23 34 30 92 89 78 Luxembourg Montenegro 178 144 141 143 140 138 0 0 0 35 4 3 128 128 127 306 272 268 Monténégro Netherlands 165 159 159 48 50 50 108 100 100 9 9 9 1,925 1,930 1,935 2,090 2,089 2,094 Pays-Bas Poland 6,794 7,080 7,380 2,757 2,800 2,900 3,939 4,150 4,300 98 130 180 3,331 3,600 3,800 10,125 10,680 11,180 Pologne Portugal 9,190 9,120 9,040 356 330 360 8,586 8,500 8,400 249 290 280 1,387 1,390 1,320 10,578 10,510 10,360 Portugal Serbia 1,199 1,230 1,260 899 920 940 199 205 210 101 105 110 6,433 6,500 6,600 7,632 7,730 7,860 Serbie Slovakia 3,502 3,660 3,760 1,570 1,650 1,700 1,924 2,000 2,050 8 10 10 350 350 375 3,851 4,010 4,135 Slovaquie Slovenia 962 1,166 1,096 497 630 600 424 490 450 41 46 46 957 1,050 1,050 1,919 2,216 2,146 Slovénie Spain 6,931 7,354 7,354 730 775 775 6,059 6,429 6,429 142 151 151 1,312 1,392 1,392 8,243 8,746 8,746 Espagne Sweden 6,562 6,316 6,437 180 180 180 6,232 5,986 6,107 150 150 150 3,000 3,008 3,008 9,562 9,324 9,445 Suède Switzerland 433 443 453 265 275 280 165 165 170 3 3 3 1,169 1,230 1,250 1,602 1,673 1,703 Suisse United Kingdom 118 117 117 56 56 56 13 13 13 48 48 48 613 613 613 730 730 730 Royaume-Uni Total Europe 69,587 68,593 68,759 22,052 21,910 22,036 45,185 44,305 44,322 2,350 2,377 2,401 81,728 81,984 83,365 151,314 150,576 152,124 Total Europe Canada 27,472 27,592 27,592 14,854 14,926 14,926 10,812 10,843 10,843 1,806 1,823 1,823 877 961 961 28,349 28,554 28,554 Canada United States 76,425 75,603 74,972 33,358 33,742 34,516 41,424 40,217 38,810 1,643 1,644 1,646 38,611 38,631 38,672 115,036 114,234 113,644 Etats-Unis Total North America 103,897 103,196 102,564 48,212 48,668 49,442 52,236 51,060 49,653 3,449 3,467 3,469 39,488 39,592 39,633 143,385 142,788 142,197 Total Amérique du Nord

a Pulpwood, round and split, as well as chips and particles produced directly a Bois de trituration, rondins et quartiers, ainse que plaquettes et particules fabriquées therefrom and used as pulpwood directement à partir des rondins et quartiers et utilisées comme bois de trituration

b Pitprops, poles, piling, posts etc. b Bois de mine, poteaux, pilotis, piquets etc. c Including chips and particles produced from wood in the rough and c Y compris plaquettes et particules fabriquées à partir du bois brut et utilisées

used for energy purposes à des fins energétiques

Total Logs Pulpwood a Other b Total Grumes Bois de trituration a Autre bCountry

Industrial wood - Bois industriels

TABLE 9b REMOVALS OF WOOD IN THE ROUGH QUANTITES ENLEVEES DE BOIS BRUT

HARDWOOD NON-CONIFERES 1000 m3 - Data only for those countries providing forecasts - Données uniquement pour les pays fournissant des prévisions

Wood fuel c

Bois de chauffage c Pays

Imports Exports

2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024 Austria 16,101 13,943 13,638 10,382 8,638 9,038 6,664 5,710 5,000 945 405 400 Autriche Cyprus 2 2 2 2 2 2 0 0 0 0 0 0 Chypre Czech Republic 8,002 6,511 6,962 14,019 10,094 9,589 411 596 715 6,428 4,178 3,343 République tchèque Estonia 3,533 3,270 3,270 3,118 3,000 3,000 522 450 450 107 180 180 Estonie Finland 24,310 21,336 21,991 24,662 21,700 22,351 127 79 83 479 443 443 Finlande France 12,053 12,120 12,120 12,491 12,500 12,500 335 360 360 773 740 740 France Germany 39,391 35,800 34,900 41,761 38,500 37,000 3,300 3,000 3,100 5,670 5,700 5,200 Allemagne Hungary 175 201 208 175 201 208 0 0 0 0 0 0 Hongrie Italy 1,645 1,396 1,396 1,169 1,169 1,169 580 457 457 104 230 230 Italie Latvia 6,471 5,830 6,200 5,873 5,500 5,700 1,147 900 900 549 570 400 Lettonie Luxembourg 465 403 396 124 122 115 693 424 424 352 143 143 Luxembourg Montenegro 382 361 357 372 352 349 10 9 8 0 0 0 Monténégro Netherlands 133 145 145 173 170 165 77 80 80 117 105 100 Pays-Bas Poland 14,243 14,500 14,800 15,775 16,000 16,250 1,245 1,400 1,550 2,777 2,900 3,000 Pologne Portugal 1,880 1,905 1,900 1,682 1,710 1,700 241 230 240 43 35 40 Portugal Serbia 188 187 194 178 184 190 12 9 12 2 6 8 Serbie Slovakia 3,059 3,030 3,100 2,559 2,430 2,400 900 950 1,000 400 350 300 Slovaquie Slovenia 1,643 1,650 1,630 1,687 2,150 2,000 239 150 180 283 650 550 Slovénie Spain 3,223 3,307 3,307 3,420 3,629 3,629 240 185 185 437 507 507 Espagne Sweden 38,103 37,725 37,325 38,100 37,300 36,900 964 1,128 1,128 961 703 703 Suède Switzerland 2,035 2,100 2,155 2,290 2,350 2,400 55 60 65 310 310 310 Suisse United Kingdom 5,810 5,538 5,538 5,453 5,180 5,180 457 457 457 99 99 99 Royaume-Uni Total Europe 182,849 171,260 171,534 185,467 172,881 171,836 18,218 16,634 16,394 20,836 18,255 16,696 Total Europe Canada 105,870 103,492 103,916 110,046 108,424 108,424 1,346 1,402 1,309 5,522 6,333 5,816 Canada United States 148,043 150,509 153,391 152,799 154,479 156,695 586 570 555 5,342 4,540 3,859 Etats-Unis Total North America 253,913 254,001 257,307 262,845 262,903 265,119 1,931 1,972 1,864 10,863 10,873 9,675 Total Amérique du Nord

a Countries which did not provide trade data are included in consumption data a La consommation comprend les pays qui n'ont pas fournies des données sur la commerce

Country Consommation Apparente a Production Imports - Importations Exports - Exportations Pays

TABLE 10 SOFTWOOD SAWLOGS GRUMES DE SCIAGES DES CONIFERES

Data only for those countries providing forecasts - Données uniquement pour les pays fournissant des prévisions 1000 m3

Apparent Consumption a

Imports Exports

2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024 Austria 406 311 300 329 266 300 134 90 50 57 45 50 Autriche Czech Republic 544 457 447 616 524 517 144 120 125 216 186 195 République tchèque Estonia 1,187 1,244 1,244 1,158 1,200 1,200 46 60 60 16 16 16 Estonie Finland 1,068 1,041 1,061 1,037 1,049 1,061 32 1 9 1 9 9 Finlande France 3,453 4,020 4,120 4,707 4,700 4,800 116 120 120 1,370 800 800 France Germany 2,532 2,290 2,130 2,995 2,700 2,500 111 110 110 574 520 480 Allemagne Hungary 1,234 1,173 1,191 1,234 1,173 1,191 0 0 0 0 0 0 Hongrie Italy 2,088 1,718 1,718 721 721 721 1,413 1,055 1,055 47 59 59 Italie Latvia 1,221 1,190 1,410 1,730 1,750 1,750 87 40 60 596 600 400 Lettonie Luxembourg 226 148 144 23 22 18 221 160 160 18 34 34 Luxembourg Montenegro 143 140 138 143 140 138 0 0 0 0 0 0 Monténégro Netherlands 54 60 60 48 50 50 54 60 60 48 50 50 Pays-Bas Poland 2,687 2,730 2,830 2,757 2,800 2,900 80 80 80 150 150 150 Pologne Portugal 997 885 925 356 330 360 663 580 590 22 25 25 Portugal Serbia 894 922 946 899 920 940 15 20 28 20 18 22 Serbie Slovakia 1,670 1,700 1,750 1,570 1,650 1,700 500 450 450 400 400 400 Slovaquie Slovenia 281 290 280 497 630 600 31 30 30 247 370 350 Slovénie Spain 833 854 854 730 775 775 164 174 174 61 94 94 Espagne Sweden 217 217 217 180 180 180 37 37 37 0 0 0 Suède Switzerland 145 155 160 265 275 280 35 40 40 155 160 160 Suisse United Kingdom 78 77 77 56 56 56 26 26 26 5 5 5 Royaume-Uni Total Europe 21,959 21,622 22,002 22,052 21,910 22,036 3,910 3,253 3,265 4,003 3,541 3,299 Total Europe Canada 15,890 15,923 15,895 14,854 14,926 14,926 1,106 1,060 1,027 70 64 59 Canada United States 31,550 32,311 33,431 33,358 33,742 34,516 221 156 156 2,028 1,587 1,241 Etats-Unis Total North America 47,441 48,234 49,326 48,212 48,668 49,442 1,327 1,216 1,183 2,098 1,650 1,300 Total Amérique du Nord

a Countries which did not provide trade data are included in consumption data a La consommation comprend les pays qui n'ont pas fournies des données sur la commerce

Country Consommation Apparente a Production Imports - Importations Exports - Exportations Pays

TABLE 11 HARDWOOD SAWLOGS (total) GRUMES DE SCIAGES DES NON-CONIFERES

Data only for those countries providing forecasts - Données uniquement pour les pays fournissant des prévisions 1000 m3

Apparent Consumption a

Imports Exports

2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024 Austria 406 311 300 329 266 300 134 90 50 57 45 50 Autriche Czech Republic 544 457 447 616 524 517 144 120 125 216 186 195 République tchèque Estonia 1,187 1,244 1,244 1,158 1,200 1,200 46 60 60 16 16 16 Estonie Finland 1,068 1,041 1,061 1,037 1,049 1,061 32 1 9 1 9 9 Finlande France 3,412 3,978 4,078 4,707 4,700 4,800 72 75 75 1,367 797 797 France Germany 2,527 2,285 2,125 2,995 2,700 2,500 101 100 100 569 515 475 Allemagne Hungary 1,234 1,173 1,191 1,234 1,173 1,191 0 0 0 0 0 0 Hongrie Italy 2,068 1,729 1,729 721 721 721 1,389 1,047 1,047 42 39 39 Italie Latvia 1,221 1,190 1,410 1,730 1,750 1,750 87 40 60 596 600 400 Lettonie Luxembourg 226 148 144 23 22 18 221 160 160 18 34 34 Luxembourg Montenegro 143 140 138 143 140 138 0 0 0 0 0 0 Monténégro Netherlands 46 55 55 48 50 50 42 50 50 44 45 45 Pays-Bas Poland 2,685 2,727 2,827 2,757 2,800 2,900 78 77 77 150 150 150 Pologne Portugal 981 870 912 356 330 360 642 560 571 17 20 19 Portugal Serbia 893 921 945 899 920 940 14 19 27 20 18 22 Serbie Slovakia 1,670 1,700 1,750 1,570 1,650 1,700 500 450 450 400 400 400 Slovaquie Slovenia 280 290 280 497 630 600 30 30 30 247 370 350 Slovénie Spain 827 847 847 730 775 775 158 167 167 61 94 94 Espagne Sweden 217 217 217 180 180 180 37 37 37 0 0 0 Suède Switzerland 145 155 160 265 275 280 35 40 40 155 160 160 Suisse United Kingdom 76 75 75 56 56 56 24 24 24 5 5 5 Royaume-Uni Total Europe 21,857 21,553 21,935 22,052 21,910 22,036 3,786 3,146 3,158 3,980 3,503 3,260 Total Europe Canada 15,890 15,923 15,895 14,854 14,926 14,926 1,106 1,060 1,027 70 64 59 Canada United States 31,549 32,308 33,429 33,358 33,742 34,516 219 152 154 2,027 1,586 1,240 Etats-Unis Total North America 47,440 48,231 49,324 48,212 48,668 49,442 1,325 1,212 1,181 2,097 1,649 1,299 Total Amérique du Nord

a Countries which did not provide trade data are included in consumption data a La consommation comprend les pays qui n'ont pas fournies des données sur la commerce

Country Consommation Apparente a Production Imports - Importations Exports - Exportations Pays

TABLE 11a HARDWOOD LOGS (temperate) GRUMES DE NON-CONIFERES (zone tempérée)

Data only for those countries providing forecasts - Données uniquement pour les pays fournissant des prévisions 1000 m3

Apparent Consumption a

Imports Exports

2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024 France -41 -42 -42 44 45 45 3 3 3 France Germany -5 -5 -5 10 10 10 5 5 5 Allemagne Italy -20 11 11 25 9 9 4 20 20 Italie Netherlands -8 -5 -5 12 10 10 4 5 5 Pays-Bas Poland -2 -3 -3 2 3 3 0 0 0 Pologne Portugal -16 -15 -13 21 20 19 5 5 6 Portugal Serbia -1 -1 -1 1 1 1 0 0 0 Serbie Slovenia -1 0 0 1 0 1 0 0 0 Slovénie Spain -6 -7 -7 6 7 7 0 0 0 Espagne United Kingdom -2 -2 -2 2 2 2 0 0 0 Royaume-Uni Total Europe -102 -69 -67 124 107 106 22 38 39 Total Europe United States -1 -3 -1 2 4 2 1 1 1 Etats-Unis Total North America -1 -3 -1 2 4 2 1 1 1 Total Amérique du Nord

Country Commerce Net Production Imports - Importations Exports - Exportations Pays

TABLE 11b HARDWOOD LOGS (tropical) GRUMES DE NON-CONIFERES (tropicale)

Data only for those countries providing forecasts - Données uniquement pour les pays fournissant des prévisions 1000 m3

Net Trade

Imports Exports

2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024 Austria 13,844 12,627 12,592 11,047 9,212 9,287 3,676 4,070 4,020 879 655 715 Autriche Cyprus 8 9 10 7 8 9 1 1 1 0 0 0 Chypre Czech Republic 5,559 5,135 5,154 7,664 6,164 6,130 1,270 1,146 1,162 3,375 2,175 2,138 République tchèque Estonia 3,117 2,380 2,435 6,548 6,550 6,550 256 330 285 3,687 4,500 4,400 Estonie Finland 48,404 47,241 49,358 44,923 44,026 45,568 5,037 4,969 5,545 1,556 1,755 1,755 Finlande France 24,495 24,350 24,050 24,257 24,000 23,700 2,527 2,600 2,600 2,289 2,250 2,250 France Germany 26,555 26,580 23,090 27,936 27,100 23,500 4,474 3,870 3,770 5,855 4,390 4,180 Allemagne Hungary 2,122 2,017 2,065 2,049 1,984 2,023 112 73 82 39 39 39 Hongrie Italy 4,508 5,210 5,210 3,916 4,618 4,618 1,288 1,288 1,288 696 696 696 Italie Latvia 5,540 5,150 5,150 9,484 8,800 8,800 1,084 950 950 5,028 4,600 4,600 Lettonie Luxembourg 583 589 589 577 559 559 182 130 130 176 100 100 Luxembourg Malta 2 3 3 0 0 0 2 3 3 0 0 0 Malte Montenegro 245 241 227 245 241 227 0 0 0 0 0 0 Monténégro Netherlands 604 1,100 1,095 1,267 1,240 1,230 289 100 105 952 240 240 Pays-Bas Poland 35,250 36,265 37,135 33,531 34,600 35,450 3,652 3,660 3,710 1,933 1,995 2,025 Pologne Portugal 15,954 15,330 15,365 11,664 11,720 11,590 4,657 4,000 4,140 368 390 365 Portugal Serbia 981 1,007 1,045 967 1,000 1,033 15 8 13 1 1 1 Serbie Slovakia 3,634 3,650 3,760 3,821 3,860 3,950 1,023 1,030 1,050 1,210 1,240 1,240 Slovaquie Slovenia 926 770 790 2,058 2,280 2,230 625 490 530 1,757 2,000 1,970 Slovénie Spain 13,959 14,358 14,358 14,383 15,261 15,261 1,435 1,564 1,564 1,859 2,467 2,467 Espagne Sweden 55,632 54,193 54,727 50,015 48,196 48,730 7,036 7,750 7,750 1,419 1,753 1,753 Suède Switzerland 1,823 1,824 1,829 1,216 1,217 1,222 795 795 795 188 188 188 Suisse United Kingdom 4,590 4,471 4,471 4,293 4,175 4,175 406 405 405 109 109 109 Royaume-Uni Total Europe 268,336 264,500 264,508 261,870 256,811 255,841 39,843 39,232 39,898 33,377 31,543 31,231 Total Europe Canada 37,044 35,822 35,734 35,326 32,985 32,975 2,578 3,462 3,467 860 625 708 Canada United States 238,450 239,587 240,850 244,912 246,110 247,536 348 324 308 6,809 6,848 6,994 Etats-Unis Total North America 275,495 275,409 276,585 280,238 279,096 280,511 2,926 3,786 3,776 7,670 7,473 7,702 Total Amérique du Nord

Includes wood residues, chips and particles for all purposes Comprend les dechets de bois, plaquettes et particules pour toute utilisation a Countries which did not provide trade data are included in consumption data a La consommation comprend les pays qui n'ont pas fournies des données sur la commerce

Country Consommation Apparente a Production Imports - Importations Exports - Exportations Pays

TABLE 12 PULPWOOD (total) BOIS DE TRITURATION (total)

Data only for those countries providing forecasts - Données uniquement pour les pays fournissant des prévisions 1000 m3

Apparent Consumption a

Imports Exports

2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024 Austria 3,681 3,895 3,850 2,576 2,235 2,300 1,312 1,750 1,700 206 90 150 Autriche Czech Republic 3,927 3,744 3,675 5,316 4,253 4,125 811 811 830 2,200 1,320 1,280 République tchèque Estonia 476 245 245 878 900 900 56 45 45 458 700 700 Estonie Finland 22,913 24,189 25,835 22,746 23,764 25,239 1,163 1,410 1,581 996 985 985 Finlande France 4,689 4,400 4,100 4,559 4,300 4,000 608 550 550 478 450 450 France Germany 10,311 11,900 9,500 10,541 11,500 9,000 2,200 2,100 2,000 2,430 1,700 1,500 Allemagne Hungary 411 488 481 411 488 481 0 0 0 0 0 0 Hongrie Italy 148 853 853 148 853 853 0 0 0 0 0 0 Italie Latvia 1,775 1,700 1,700 1,850 1,800 1,800 374 400 400 449 500 500 Lettonie Luxembourg -16 -18 -16 10 6 8 9 3 3 35 27 27 Luxembourg Montenegro 201 198 186 201 198 186 0 0 0 0 0 0 Monténégro Netherlands 146 150 145 244 240 235 70 80 85 168 170 175 Pays-Bas Poland 15,378 15,900 16,300 15,411 15,950 16,250 1,428 1,500 1,650 1,462 1,550 1,600 Pologne Portugal 1,323 1,430 1,375 1,213 1,350 1,300 122 100 90 12 20 15 Portugal Serbia 66 70 74 66 70 73 0 0 1 0 0 0 Serbie Slovakia 598 600 610 748 710 700 600 630 650 750 740 740 Slovaquie Slovenia 264 200 220 275 430 380 268 170 200 278 400 360 Slovénie Spain 3,369 3,467 3,467 3,754 3,984 3,984 179 138 138 564 655 655 Espagne Sweden 28,513 27,431 27,944 26,353 25,310 25,823 3,114 3,269 3,269 954 1,148 1,148 Suède Switzerland 209 210 210 279 280 280 20 20 20 90 90 90 Suisse United Kingdom 1,894 1,776 1,776 1,633 1,516 1,516 291 291 291 31 31 31 Royaume-Uni Total Europe 100,275 102,827 102,530 99,212 100,136 99,433 12,625 13,267 13,503 11,562 10,576 10,406 Total Europe Canada 4,531 4,347 4,410 4,229 4,021 4,021 324 336 401 22 10 12 Canada United States 141,231 142,785 144,831 141,226 142,779 144,827 5 6 4 0 0 0 Etats-Unis Total North America 145,762 147,132 149,241 145,455 146,800 148,848 329 341 405 22 10 12 Total Amérique du Nord

a Countries which did not provide trade data are included in consumption data a La consommation comprend les pays qui n'ont pas fournies des données sur la commerce

Pays Apparent Consumption a

Country Consommation Apparente a Production Imports - Importations Exports - Exportations

TABLE 12a PULPWOOD LOGS (ROUND AND SPLIT) BOIS DE TRITURATION (RONDINS ET QUARTIERS)

Softwood Conifères 1000 m3 - Data only for those countries providing forecasts - Données uniquement pour les pays fournissant des prévisions

Imports Exports

2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024 Austria 1,217 997 1,007 647 577 587 668 500 500 98 80 80 Autriche Czech Republic 450 380 384 649 552 550 3 2 2 202 174 168 République tchèque Estonia 363 200 250 1,270 1,250 1,250 154 250 200 1,060 1,300 1,200 Estonie Finland 8,997 7,940 8,052 7,801 6,884 6,784 1,550 1,633 1,845 354 577 577 Finlande France 2,386 2,250 2,250 3,332 3,200 3,200 43 50 50 989 1,000 1,000 France Germany 1,116 1,180 1,090 1,103 1,100 1,000 259 270 270 246 190 180 Allemagne Hungary 502 507 526 502 507 526 0 0 0 0 0 0 Hongrie Italy 168 166 166 168 166 166 0 0 0 0 0 0 Italie Latvia 172 200 200 2,018 2,000 2,000 244 100 100 2,090 1,900 1,900 Lettonie Luxembourg 77 71 69 46 32 30 36 48 48 5 9 9 Luxembourg Netherlands 62 50 55 108 100 100 21 20 20 67 70 65 Pays-Bas Poland 4,424 4,635 4,785 3,939 4,150 4,300 560 560 560 75 75 75 Pologne Portugal 10,495 10,300 10,260 8,586 8,500 8,400 2,100 2,000 2,050 191 200 190 Portugal Serbia 199 205 210 199 205 210 0 0 0 0 0 0 Serbie Slovakia 1,874 1,950 2,000 1,924 2,000 2,050 100 100 100 150 150 150 Slovaquie Slovenia 137 120 130 424 490 450 84 80 90 371 450 410 Slovénie Spain 5,422 5,288 5,288 6,059 6,429 6,429 269 291 291 906 1,432 1,432 Espagne Sweden 8,517 8,412 8,533 6,232 5,986 6,107 2,313 2,481 2,481 28 55 55 Suède Switzerland 128 128 133 165 165 170 3 3 3 40 40 40 Suisse United Kingdom 23 22 22 13 13 13 18 18 18 9 9 9 Royaume-Uni Total Europe 46,729 45,001 45,410 45,185 44,305 44,322 8,426 8,406 8,628 6,881 7,711 7,540 Total Europe Canada 10,554 10,654 10,644 10,812 10,843 10,843 38 36 30 296 225 228 Canada United States 41,407 40,200 38,795 41,424 40,217 38,810 58 32 18 75 50 33 Etats-Unis Total North America 51,961 50,854 49,439 52,236 51,060 49,653 96 68 48 371 275 261 Total Amérique du Nord

a Countries which did not provide trade data are included in consumption data a La consommation comprend les pays qui n'ont pas fournies des données sur la commerce

Pays Apparent Consumption a

Country Consommation Apparente a Production Imports - Importations Exports - Exportations

TABLE 12b PULPWOOD LOGS (ROUND AND SPLIT) BOIS DE TRITURATION (RONDINS ET QUARTIERS)

Hardwood Non-conifères 1000 m3 - Data only for those countries providing forecasts - Données uniquement pour les pays fournissant des prévisions

Imports Exports

2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024 Austria 8,945 7,735 7,735 7,824 6,400 6,400 1,696 1,820 1,820 575 485 485 Autriche Cyprus 8 9 10 7 8 9 1 1 1 0 0 0 Chypre Czech Republic 1,182 1,011 1,094 1,699 1,359 1,454 456 333 330 973 681 690 République tchèque Estonia 2,278 1,935 1,940 4,400 4,400 4,400 47 35 40 2,169 2,500 2,500 Estonie Finland 16,494 15,112 15,471 14,376 13,378 13,545 2,324 1,926 2,119 206 193 193 Finlande France 17,420 17,700 17,700 16,366 16,500 16,500 1,876 2,000 2,000 822 800 800 France Germany 15,128 13,500 12,500 16,292 14,500 13,500 2,015 1,500 1,500 3,179 2,500 2,500 Allemagne Hungary 1,209 1,022 1,057 1,137 989 1,015 112 73 82 39 39 39 Hongrie Italy 4,192 4,192 4,192 3,600 3,600 3,600 1,288 1,288 1,288 696 696 696 Italie Latvia 3,593 3,250 3,250 5,616 5,000 5,000 466 450 450 2,489 2,200 2,200 Lettonie Luxembourg 522 536 536 521 521 521 137 79 79 136 64 64 Luxembourg Malta 2 3 3 0 0 0 2 3 3 0 0 0 Malte Montenegro 44 43 41 44 43 41 0 0 0 0 0 0 Monténégro Netherlands 396 900 895 915 900 895 198 0 0 717 0 0 Pays-Bas Poland 15,448 15,730 16,050 14,181 14,500 14,900 1,664 1,600 1,500 396 370 350 Pologne Portugal 4,136 3,600 3,730 1,865 1,870 1,890 2,435 1,900 2,000 165 170 160 Portugal Serbia 716 732 761 702 725 750 15 8 12 1 1 1 Serbie Slovakia 1,162 1,100 1,150 1,149 1,150 1,200 323 300 300 310 350 350 Slovaquie Slovenia 525 450 440 1,360 1,360 1,400 273 240 240 1,107 1,150 1,200 Slovénie Spain 5,169 5,603 5,603 4,570 4,849 4,849 987 1,135 1,135 388 380 380 Espagne Sweden 18,602 18,350 18,250 17,430 16,900 16,800 1,609 2,000 2,000 437 550 550 Suède Switzerland 1,486 1,486 1,486 772 772 772 772 772 772 58 58 58 Suisse United Kingdom 2,673 2,673 2,673 2,646 2,646 2,646 96 96 96 69 69 69 Royaume-Uni Total Europe 121,332 116,673 116,568 117,472 112,370 112,087 18,793 17,559 17,767 14,933 13,256 13,285 Total Europe Canada 21,959 20,821 20,680 20,285 18,121 18,111 2,216 3,090 3,037 542 390 467 Canada United States 55,812 56,602 57,224 62,262 63,114 63,899 285 286 286 6,734 6,798 6,961 Etats-Unis Total North America 77,771 77,423 77,904 82,547 81,235 82,010 2,500 3,376 3,323 7,277 7,188 7,428 Total Amérique du Nord

Country Consommation Apparente Production Imports - Importations Exports - Exportations Pays

TABLE 12c WOOD RESIDUES, CHIPS AND PARTICLES DECHETS DE BOIS, PLAQUETTES ET PARTICULES Data only for those countries providing forecasts - Données uniquement pour les pays fournissant des prévisions

1000 m3

Apparent Consumption

Imports Exports

2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024 Austria 1,290 1,497 1,450 1,691 1,938 2,050 344 309 300 745 750 900 Autriche Cyprus 8 5 5 0 0 0 8 5 5 0 0 0 Chypre Czech Republic 234 215 225 540 459 482 38 38 40 344 282 296 République tchèque Estonia 284 300 230 1,650 1,350 1,300 12 50 30 1,378 1,100 1,100 Estonie Finland 530 541 562 360 380 405 188 163 160 18 2 3 Finlande France 2,735 3,260 3,660 2,050 2,250 2,450 775 1,100 1,300 90 90 90 France Germany 3,328 3,540 3,720 3,569 3,700 3,900 443 480 420 684 640 600 Allemagne Hungary 63 44 50 62 43 49 11 13 12 11 12 12 Hongrie Italy 2,359 2,359 2,359 450 450 450 1,916 1,916 1,916 7 7 7 Italie Latvia 621 750 750 1,980 2,000 2,000 326 350 350 1,685 1,600 1,600 Lettonie Luxembourg 61 72 72 63 63 63 17 11 11 19 2 2 Luxembourg Malta 1 1 1 0 0 0 1 1 1 0 0 0 Malte Montenegro 18 25 26 83 84 84 0 0 0 65 59 58 Monténégro Netherlands 5,354 5,354 5,354 268 268 268 5,551 5,551 5,551 465 465 465 Pays-Bas Poland 842 920 1,100 1,152 1,200 1,350 366 370 380 677 650 630 Pologne Portugal 228 225 220 747 740 735 4 5 5 523 520 520 Portugal Serbia 478 460 485 418 450 480 83 70 80 23 60 75 Serbie Slovakia 22 175 175 390 450 450 47 75 75 415 350 350 Slovaquie Slovenia 125 155 150 164 175 180 126 120 130 165 140 160 Slovénie Spain 867 907 907 1,007 1,007 1,007 65 46 46 206 146 146 Espagne Sweden 1,776 1,800 1,850 1,809 1,750 1,800 199 210 210 232 160 160 Suède Switzerland 410 415 420 330 335 340 80 80 80 0 0 0 Suisse United Kingdom 7,819 7,830 7,830 327 330 330 7,516 7,520 7,520 23 20 20 Royaume-Uni Total Europe 29,451 30,850 31,601 19,110 19,422 20,173 18,114 18,482 18,621 7,774 7,055 7,194 Total Europe Canada 368 420 179 3,830 3,830 3,830 31 52 56 3,493 3,462 3,707 Canada United States 761 273 152 9,544 9,744 9,948 194 174 155 8,977 9,644 9,951 Etats-Unis Total North America 1,129 694 331 13,374 13,574 13,778 225 226 211 12,470 13,106 13,659 Total Amérique du Nord

Country Consommation Apparente Production Imports - Importations Exports - Exportations Pays

TABLE 13 WOOD PELLETS GRANULES DE BOIS

Data only for those countries providing forecasts - Données uniquement pour les pays fournissant des prévisions 1000 mt

Apparent Consumption

2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024 actual actual actual actual réels réels réels réels

Sawn softwood 75.92 69.01 68.49 96.71 89.54 88.44 29.69 25.67 25.93 50.49 46.20 45.88 Sciages conifères

Softwood logs a 182.85 171.26 171.53 185.47 172.88 171.84 18.22 16.63 16.39 20.84 18.25 16.70 Grumes de conifères a

Sawn hardwood 7.02 6.65 6.70 6.93 6.45 6.61 4.18 3.86 3.81 4.09 3.66 3.72 Sciages non-conifères

– temperate zone b 6.45 6.14 6.18 6.87 6.40 6.55 3.28 3.07 3.02 3.70 3.33 3.39 – zone tempérée b

– tropical zone b 0.57 0.51 0.52 0.06 0.05 0.06 0.90 0.79 0.79 0.39 0.32 0.32 – zone tropicale b

Hardwood logs a 21.96 21.62 22.00 22.05 21.91 22.04 3.91 3.25 3.26 4.00 3.54 3.30 Grumes de non-conifères a

– temperate zone b 21.86 21.55 21.93 22.05 21.91 22.04 3.79 3.15 3.16 3.98 3.50 3.26 – zone tempérée b

– tropical zone b 0.10 0.07 0.07 0.12 0.11 0.11 0.02 0.04 0.04 – zone tropicale b

Veneer sheets 1.58 1.49 1.49 1.00 0.97 0.96 1.42 1.28 1.29 0.84 0.76 0.76 Feuilles de placage

Plywood 6.62 6.21 5.92 4.17 3.93 3.97 6.42 5.79 5.48 3.96 3.50 3.53 Contreplaqués

Particle board (excluding OSB) 28.12 26.41 26.52 28.01 26.71 26.91 10.02 9.58 9.55 9.92 9.88 9.94 Pann. de particules (sauf OSB)

OSB 5.27 5.06 5.09 4.89 4.89 5.02 3.20 2.96 2.94 2.83 2.78 2.87 OSB

Fibreboard 15.80 14.89 15.09 16.15 15.31 15.42 8.76 8.01 8.04 9.11 8.43 8.37 Panneaux de fibres

– Hardboard 0.79 0.82 0.90 0.48 0.47 0.47 1.47 1.44 1.46 1.17 1.09 1.04 – Durs

– MDF 11.42 10.85 10.97 12.16 11.62 11.68 5.21 4.61 4.62 5.95 5.38 5.33 – MDF

– Other board 3.59 3.22 3.22 3.51 3.22 3.27 2.07 1.97 1.96 1.99 1.96 2.01 – Autres panneaux Pulpwood a 268.34 264.50 264.51 261.87 256.81 255.84 39.84 39.23 39.90 33.38 31.54 31.23 Bois de trituration a

– Pulp logs 147.00 147.83 147.94 144.40 144.44 143.75 21.05 21.67 22.13 18.44 18.29 17.95 – Bois ronds de trituration

– softwood 100.28 102.83 102.53 99.21 100.14 99.43 12.63 13.27 13.50 11.56 10.58 10.41 – conifères

– hardwood 46.73 45.00 45.41 45.18 44.31 44.32 8.43 8.41 8.63 6.88 7.71 7.54 – non-conifères

– Residues, chips and particles 121.33 116.67 116.57 117.47 112.37 112.09 18.79 17.56 17.77 14.93 13.26 13.29 – Déchets, plaquettes et part. Wood pulp 37.60 34.07 35.28 34.64 32.24 33.81 17.33 16.19 16.59 14.37 14.37 15.12 Pâte de bois

Paper and paperboard 72.76 66.14 69.44 83.10 73.88 79.49 43.20 39.62 41.48 53.55 47.36 51.53 Papiers et cartons

Wood Pellets 29.45 30.85 31.60 19.11 19.42 20.17 18.11 18.48 18.62 7.77 7.05 7.19 Granulés de bois a Countries which did not provide trade data are included in consumption data a La consommation comprend les pays qui n'ont pas fourni des données sur le commerce b Trade figures by zone do not equal the total as some countries cannot provide data for both zones b Les chiffres du commerce par zone ne correspondent pas aux totaux

en raison du fait que certains pays ne peuvent les différencier.

TABLE 14

Europe: Summary table of market forecasts for 2023 and 2024

Europe: Tableau récapitulatif des prévisions du marché pour 2023 et 2024 Data only for those countries providing forecasts - Données uniquement pour les pays fournissant des prévisions

million m3 (pulp, paper and pellets million m.t. - pâte de bois, papiers et cartons, et granulés en millions de tonnes métriques) Apparent Consumption

Consommation Apparente Production Imports - Importations Exports - Exportations

forecasts forecasts forecasts forecasts prévisions prévisions prévisions prévisions

2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024 actual actual actual actual réels réels réels réels

Sawn softwood 91.63 89.85 90.39 100.44 97.41 95.73 27.09 26.48 27.10 35.90 34.04 32.43 Sciages conifères

Softwood logs 253.91 254.00 257.31 262.84 262.90 265.12 1.93 1.97 1.86 10.86 10.87 9.68 Grumes de conifères

Sawn hardwood 15.85 16.16 16.46 18.50 18.72 19.03 1.59 1.63 1.56 4.23 4.19 4.13 Sciages non-conifères

– temperate zone 15.57 15.89 16.19 18.50 18.72 19.03 1.29 1.33 1.26 4.21 4.16 4.10 – zone tempérée

– tropical zone 0.29 0.27 0.27 0.00 0.00 0.00 0.31 0.30 0.30 0.02 0.03 0.03 – zone tropicale

Hardwood logs 47.44 48.23 49.33 48.21 48.67 49.44 1.33 1.22 1.18 2.10 1.65 1.30 Grumes de non-conifères

– temperate zone 47.44 48.23 49.32 48.21 48.67 49.44 1.32 1.21 1.18 2.10 1.65 1.30 – zone tempérée

– tropical zone 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 – zone tropicale Veneer sheets 2.85 2.93 2.97 2.87 2.89 2.91 0.86 0.88 0.89 0.88 0.83 0.84 Feuilles de placage

Plywood 16.92 16.92 17.31 10.86 10.90 11.05 7.48 7.37 7.68 1.43 1.36 1.42 Contreplaqués

Particle board (excluding OSB) 6.66 7.45 7.46 6.11 6.58 6.55 1.75 1.97 1.98 1.19 1.10 1.07 Pann. de particules (sauf OSB)

OSB 21.20 21.09 21.35 20.86 20.60 20.86 6.28 6.30 6.39 5.94 5.82 5.89 OSB

Fibreboard 9.92 9.93 10.07 7.64 7.71 7.87 4.18 3.92 3.92 1.90 1.69 1.72 Panneaux de fibres

– Hardboard 0.51 0.56 0.56 0.53 0.59 0.60 0.31 0.28 0.29 0.32 0.32 0.33 – Durs

– MDF 6.21 6.23 6.23 3.83 3.88 3.89 3.55 3.35 3.32 1.17 0.99 0.98 – MDF

– Other board 3.20 3.15 3.28 3.28 3.24 3.38 0.32 0.29 0.31 0.40 0.38 0.41 – Autres panneaux Pulpwood 275.49 275.41 276.58 280.24 279.10 280.51 2.93 3.79 3.78 7.67 7.47 7.70 Bois de trituration

– Pulp logs 197.72 197.99 198.68 197.69 197.86 198.50 0.43 0.41 0.45 0.39 0.28 0.27 – Bois ronds de trituration

– softwood 145.76 147.13 149.24 145.45 146.80 148.85 0.33 0.34 0.41 0.02 0.01 0.01 – conifères

– hardwood 51.96 50.85 49.44 52.24 51.06 49.65 0.10 0.07 0.05 0.37 0.27 0.26 – non-conifères

– Residues, chips and particles 77.77 77.42 77.90 82.55 81.23 82.01 2.50 3.38 3.32 7.28 7.19 7.43 – Déchets, plaquettes et part. Wood pulp 45.79 48.12 48.43 55.02 54.33 54.12 7.42 8.22 8.89 16.65 14.44 14.58 Pâte de bois

Paper and paperboard 69.75 68.96 69.26 75.05 73.60 73.63 10.72 10.42 10.39 16.02 15.06 14.77 Papiers et cartons

Wood pellets 1.13 0.69 0.33 13.37 13.57 13.78 0.23 0.23 0.21 12.47 13.11 13.66 Granulés de bois

TABLE 15

North America: Summary table of market forecasts for 2023 and 2024

Amérique du Nord: Tableau récapitulatif des prévisions du marché pour 2023 et 2024 Data only for those countries providing forecasts - Données uniquement pour les pays fournissant des prévisions

million m3 (pulp, paper and pellets million m.t. - pâte de bois, papiers et cartons, et granulés en millions de tonnes métriques) Apparent Consumption

Consommation Apparente Production Imports - Importations Exports - Exportations

forecasts forecasts forecasts forecasts prévisions prévisions prévisions prévisions

  • List of tables
  • Table1
  • Table2
  • Table 2a
  • Table 2b
  • Table 3
  • Table 4
  • Table 5
  • Table 5a
  • Table 6
  • Table 6a
  • Table 6b
  • Table 6c
  • Table 7
  • Table 8
  • Table 9
  • Table 9a
  • Table 9b
  • Table 10
  • Table 11
  • Table 11a
  • Table 11b
  • Table12
  • Table 12a
  • Table 12b
  • Table 12c
  • Table 13
  • Table 14
  • Table 15

Presentation, Nadja Lamei

Discussant's reflections

Languages and translations
English

www.statistik.at

Unabhängige Statistiken für faktenbasierte Entscheidungen

A. Social policies, social transfers, and

data - Discussion

Nadja Lamei, Statistics Austria

UNITED NATIONS ECONOMIC COMMISSION FOR EUROPE

CONFERENCE OF EUROPEAN STATISTICIANS Group of Experts

on Measuring Poverty and Inequality

28-29 November 2023

www.statistik.at Folie 2

Social policies, social transfers, and data Three presentations - Much in common, some specifics

Alessandro Albano Jörg Neugschwender Óscar Ramírez

Data used EU-SILC 2018-2022 LIS 1960ies/2000/2014-2020 INEGI (ENIGH) 2022 and 2016- 2022

Perspective Comparative for EU+ Comparative global perspective Mexico

How to achieve comparability?

Countries have different social systems – this is accounted for by output harmonization.

-

Key message 1 Social transfers affect the distribution of income (but differently for countries/years), they need to

be considered!

What is considered as social transfers?

Monetary transfers Monetary transfers + STIKs Monetary transfers + STIKs

Key message 2 It needs more than one indicator to tell the story!

Indicators, analysis

AROP before/after social transfers AROP anchored 2019 Median equiv. hh income in PPS + share of social transfers AROPE

AROP before family transfers/ before all social transfers/ after social transfers different thresholds (40, 50, 60% of median equiv. hh inc.) and absolute threshold (less than $ 6.85 per day) single parent households

Income sources Gini coefficient before/ after social transfers Expenditure groups

www.statistik.at Folie 3

Further discussions

• Social policies in the national perspective

− Evaluation of specific social transfers

− Effect on poverty reduction (in total/ for target groups)

Which data and methods to use?

• Social policies in a multi-national perspecive

− How to compare social systems

− Social transfers: advantages of combining / keeping separate

monetary and in-kind transfers

pensions and social transfers other than pensions

− Analysing social transfers by function

  • Slide 1
  • Slide 2: Social policies, social transfers, and data
  • Slide 3: Further discussions

JQ2022AUT

JFSQ2022 Country Replies Austria

Languages and translations
English

Guidelines

Dear Correspondent, Thank you for contributing to the Joint Forest Sector Questionnaire (JFSQ). Before filling in the worksheets, please read these guidelines. Please use only this questionnaire to report your data. Use this questionnaire also to revise any historical data - fill in the correct year and your name on the cover page. The total number of sheets to be filled in is seven core sheets (green tabs - to be validated by Eurostat) plus three for ITTO (brown tabs - not validated by Eurostat). Four sheets containing cross-references are included at the end. The flat file is for Eurostat for validation purposes, please do not change any cells here. Also, please do not add / delete rows in any of the sheets, because this will affect the functioning of the flatfile. Put all your data into one Excel file. If you send some data in later, give your file a new version number and date (see A.1. below) and notify us of the changes with respect to the previous version. Only send us completely filled-in sheets, highlighting the changes in yellow. Do not delete worksheets. Each sheet has a working area for your input. Most sheets have checking cells and tables. Each working area has white cells and shaded green cells. Eurostat has highlighted the variables it considers most important for its publications - please fill those in as a priority. When you submit a revision, please highlight changes in yellow and explain them in the appropriate 'Note' column, but please fill in all the cells that were filled in previously. Please use flags and notes (see A.6 below). This information is important for Eurostat. A. General recommendations A.1 Please use eDAMIS to send your questionnaire to Eurostat. Choose the correct domain ("FOREST_A_A") and the correct reference year (for this data collection: 2022). A.2 Fill in the JFSQ quality report each year. A.3 The cover page is for your contact details, which are automatically copied to the other worksheets • Check your country code • If necessary change the reference year as appropriate - the previous year will appear automatically If you distribute worksheets to various experts, they can each put their contact details into the sheets. It will then be your job to put all the information together again and to verify the checking tables, since some of them will not work as designed in isolation. A.4 Look at the unit of measurement to be used for each item and report in this unit if possible, using the conversion factors on the last page of the JFSQ definitions. Please report the monetary values in the same unit for both reporting years. Only report data or modify cells in the working areas. Please do not delete checking areas or checking sheets. • Look at the checking areas and make the necessary corrections to your data to remove all warnings (see the specific recommendations) before sending in your data. Fill in real zeros '0' in the worksheets if there is no production or trade. Empty cells will be interpreted as 'Data not available'. • There are counters at the bottom of the tables to indicate the number of cells left to be filled in. Report all data with at least three decimals. Do not use a separator for thousands; for the decimal point, please use the one set up by default. A.5 Report numbers only. If data are confidential, please provide them if possible, appropriately flagged (see A.6). • Eurostat has a right to all confidential data necessary for its work. It has an obligation to use such data only in aggregates and to respect all the legal obligations. • If you cannot provide confidential data, a good option is to send in your own estimate flagged as a national estimate '9'. • As a last resort, leave the cell empty, flag it and write a note indicating data sources and links. Checking tables contain formulae to sum up the totals for sub-items. A.6 Flag cells and write notes as appropriate. Flags should be entered in the 'Flag' columns and notes in the 'Note' columns for the appropriate year and item. The flags to use are: • 3 for break in time series, see metadata (please explain in the notes and in the quality report the reasons) • 4 for definition differs, see metadata (please explain in the notes and in the quality report the reasons) • 5 for repeating the data of a previous year • 6 for confidential data • 7 for provisional data • 9 for national estimate B Specific recommendations B.1 Sheet 'Removals over bark' is for volumes of wood products measured over bark. General over bark/under bark conversion factors are calculated automatically. • Should you use different conversion factor(s) please delete the ones provided and insert your own • If you only have under bark data, please leave this worksheet empty, but revise the table with the conversion factors. • Unchanged conversion factors will be considered revised. A checking table verifies that sums of sub-items agree with the totals. B.2 Checking tables on worksheets improve data quality, verifying that: • The sum of the sub-items equals the total. • The sum of 'of which' items is not larger than the total. All cells in a checking table should be zero or empty. If this is not the case, please check your numbers for the sub-items and totals. The checking table indicates the difference, so if you see a negative value, you will have to decide which number should be increased by that amount. The only exception is when no data are entered due to confidentiality. B.3 Worksheets 'JQ2' contains a checking table for apparent consumption. Apparent consumption = Production + Imports – Exports. It should be positive or nil. If this is not the case, the cell will change colour and indicate the difference. • Please correct the data in the sheets until checking results are positive or nil. One solution is to increase production. • If the data are correct but apparent consumption is still negative, please explain why in the 'Note' column provided in the apparent consumption checking table. B.4 Sheets 'JQ2', 'ECE-EU Species' and 'EU1' on trade have checking tables to verify data consistency. Both quantity and value must be present. When something is missing, messages or coloured cells appear in the checking tables. Please correct your data until all warnings disappear. The meaning of the messages is: • 0: both value and quantity are zero – all is well, there is no trade • ZERO Q: value is reported, quantity is zero - please correct • ZERO V: quantity is reported, value is zero - please correct • REPORT: both quantity and value are blank - please fill in • NO Q: blank cell for quantity – please fill in • NO V: blank cell for value – please fill in Please enter even very small numbers to resolve problems, using as many decimal places as necessary. If there is no way to correct the problem, please write an explanation in the 'Note' column. If there is no trade for a product, please enter 0 for both quantity and value. Thank you for collecting data for the JFSQ, Eurostat's Forestry Team

JFSQ quality report

Joint Forest Sector Questionnaire Quality Report
Quality information Country reply
1 Contact
Country name Country name Austria
Contact organisation Contact organisation Federal Ministry of Agriculture, Forestry, Regions and Water Management
Contact name Contact name
Contact email address Contact email address
2 Changes to previous year
Necessity of update Are there any changes to the quality report of the last data collection? YES
If yes, please provide details below. Changed cells are highlighted in yellow.
3 Statistical processing
Overview of the source data Please provide an overview of the sources used to produce JFSQ data.
Do you use a dedicated survey (of the industry, of households, of forest owners, etc.)? Please select YES or NO
If yes, please provide details (e.g., who are the respondents, what is its frequency?).
Do you use forestry statistics? YES
If yes, please provide details. Removals statistics: Holzeinschlagsmeldung 2022, BML 2023, https://info.bml.gv.at/themen/wald/wald-in-oesterreich/wald-und-zahlen/holzeinschlagsmeldung-2022.html
Do you use national forest inventory? Please select YES or NO
If yes, please provide details.
Do you use national PRODCOM data compiled according to the CPA classification? YES
If yes, please provide details (which products, units, etc.). For CLT, X-lam and plywood production (JQ1).
Do you use any other national production statistics? Please select YES or NO
If yes, please provide details.
Do you use data collected by associations of industry? Please select YES or NO
If yes, please provide details.
Do you collect data from direct contacts with manufacturing companies? Please select YES or NO
If yes, please provide details.
Do you use estimates of roundwood use (in manufacturing)? Please select YES or NO
If yes, please provide details.
Do you use national trade data? YES
If yes, please provide details. Austrian foreign trade (final data for 2021, provisional data for 2022), Statistics Austria 2023, 8-digit CN, https://www.statistik.at/statistiken/internationaler-handel/internationaler-warenhandel/importe-und-exporte-von-guetern
Do you use felling reports? YES
If yes, please provide details. Removals statstistics: Holzeinschlagsmeldung 2022, BML 2023 https://info.bml.gv.at/themen/wald/wald-in-oesterreich/wald-und-zahlen/holzeinschlagsmeldung-2022.html
Do you use forestry companies' accounting network? Please select YES or NO
If yes, please provide details.
Do you use administrative data (e.g. tax records, business registers)? Please select YES or NO
If yes, please provide details.
Do you use data from national accounts? Please select YES or NO
If yes, please provide details (e.g. for which data, from which account tables?).
Do you use SBS (Structural business statistics)? Please select YES or NO
If yes, please provide details (e.g. for which data?).
Do you use other environmental accounts? Please select YES or NO
If yes, please provide details.
Do you use other statistics (e.g. agriculture statistics)? Please select YES or NO
If yes, please specify them.
Do you use any other sources? Please select YES or NO
If yes, please specify them.
Methodological issues Are there any pending classification or measurement issues? Please select YES or NO
If yes, please specify them.
Data validation Do you check the quality of the data collected to compile JFSQ? Please select YES or NO
If yes, please explain the quality assurance procedure.
Do you compare JFSQ data with different data sources or do you perform other cross-checks? Please select YES or NO
If yes, please explain your approach.
Do you have validation rules and other plausibility checks for the outputs of your JFSQ data compilation process? Please select YES or NO
If yes, please briefly describe them.
4 Relevance
User needs Please provide references to the relevance of JFSQ at national level e.g. main users, national indicator sets, quantitative policy targets etc.
5 Coherence and comparability
Coherence - cross domain Do you compare the JFSQ results with business, energy and agricultural and foreign trade statistics? Please select YES or NO
It not, please explain.
Do you cross-check the JFSQ data with the results of European Forest Accounts? Please select YES or NO
If yes, please indicate for which reporting items, and comments on the discrepancies observed, if any. It not, please explain.
Coherence - internal Are there any other consistency issues related to your JFSQ data? Please select YES or NO
If yes, please explain them.
6 Accessibility and clarity
Publications Do you disseminate JFSQ data nationally (e.g. in news releases or other documents)? Please select YES or NO
If yes, please provide URLs and/or the reference to the relevant publications.
Online database Do you publish your JFSQ accounts in an online data base? Please select YES or NO
If yes, please provide URLs.
Documentation on methodology Did you prepare a description of your national JFSQ methodology or metadata? Please select YES or NO
If yes, please provide URLs.
Quality documentation Do you have national quality documentation? Please select YES or NO
If yes, please provide URLs.
7 Other comments
Other comments Please provide any further feedback you might have on the quality of the reported data, sources and methods used and/or Eurostat's validation and quality report templates.
https://www.statistik.at/statistiken/internationaler-handel/internationaler-warenhandel/importe-und-exporte-von-guetern

Cover

Joint Forest Sector Questionnaire
2022
DATA INPUT FILE
Correspondent country: AT
Reference year: 2022 Fill in the year
Name of person responsible for reply:
Official address (in full): BML, 1030 Vienna, Marxerg. 2
Telephone:
Fax:
E-mail:

Removals over bark

Country: AT Date: 14.06.2023
Name of Official responsible for reply: 0
Check Table
Official Address (in full):
BML, 1030 Vienna, Marxerg. 2
FOREST SECTOR QUESTIONNAIRE
EU JQ1 OB Telephone: 0 0 Discrepancies
Removals E-mail: 0 Please verify, if there's an error!
Year 1 Year 2 Flag Flag Note Note
Product Product Unit 2021 2022 2021 2022 2021 2022 Product Product Unit 2021 2022
Code Quantity Quantity Code Quantity Quantity
ROUNDWOOD REMOVALS OVERBARK ROUNDWOOD REMOVALS OVERBARK
1 ROUNDWOOD (WOOD IN THE ROUGH) 1000 m3ob 20630.697 21680.887 4 4 includes only removals from FOWL includes only removals from FOWL 1 ROUNDWOOD (WOOD IN THE ROUGH) 1000 m3ob OK OK
1.1 WOOD FUEL (INCLUDING WOOD FOR CHARCOAL) 1000 m3ob 5487.449 6074.551 4 4 includes only removals from FOWL includes only removals from FOWL 1.1 WOOD FUEL (INCLUDING WOOD FOR CHARCOAL) 1000 m3ob OK OK
1.1.C Coniferous 1000 m3ob 3352.042 3637.462 4 4 includes only removals from FOWL includes only removals from FOWL 1.1.C Coniferous 1000 m3ob
1.1.NC Non-Coniferous 1000 m3ob 2135.407 2437.089 4 4 includes only removals from FOWL includes only removals from FOWL 1.1.NC Non-Coniferous 1000 m3ob
1.2 INDUSTRIAL ROUNDWOOD 1000 m3ob 15143.248 15606.336 4 4 includes only removals from FOWL includes only removals from FOWL 1.2 INDUSTRIAL ROUNDWOOD 1000 m3ob OK OK
1.2.C Coniferous 1000 m3ob 14190.984 14512.298 4 4 includes only removals from FOWL includes only removals from FOWL 1.2.C Coniferous 1000 m3ob OK OK
1.2.NC Non-Coniferous 1000 m3ob 952.264 1094.038 4 4 includes only removals from FOWL includes only removals from FOWL 1.2.NC Non-Coniferous 1000 m3ob OK OK
1.2.NC.T of which: Tropical 1000 m3ob 0.000 0.000 4 4 includes only removals from FOWL includes only removals from FOWL 1.2.NC.T of which: Tropical 1000 m3ob OK OK
1.2.1 SAWLOGS AND VENEER LOGS 1000 m3ob 11669.877 11996.321 4 4 includes only removals from FOWL includes only removals from FOWL 1.2.1 SAWLOGS AND VENEER LOGS 1000 m3ob OK OK
1.2.1.C Coniferous 1000 m3ob 11355.835 11627.376 4 4 includes only removals from FOWL includes only removals from FOWL 1.2.1.C Coniferous 1000 m3ob
1.2.1.NC Non-Coniferous 1000 m3ob 314.042 368.945 4 4 includes only removals from FOWL includes only removals from FOWL 1.2.1.NC Non-Coniferous 1000 m3ob
1.2.2 PULPWOOD, ROUND AND SPLIT 1000 m3ob 3473.371 3610.015 4 4 includes only removals from FOWL includes only removals from FOWL 1.2.2 PULPWOOD, ROUND AND SPLIT 1000 m3ob OK OK
1.2.2.C Coniferous 1000 m3ob 2835.149 2884.922 4 4 includes only removals from FOWL includes only removals from FOWL 1.2.2.C Coniferous 1000 m3ob
1.2.2.NC Non-Coniferous 1000 m3ob 638.222 725.094 4 4 includes only removals from FOWL includes only removals from FOWL 1.2.2.NC Non-Coniferous 1000 m3ob
1.2.3 OTHER INDUSTRIAL ROUNDWOOD 1000 m3ob 0.000 0.000 4 4 includes only removals from FOWL includes only removals from FOWL 1.2.3 OTHER INDUSTRIAL ROUNDWOOD 1000 m3ob OK OK
1.2.3.C Coniferous 1000 m3ob 0.000 0.000 4 4 includes only removals from FOWL includes only removals from FOWL 1.2.3.C Coniferous 1000 m3ob
1.2.3.NC Non-Coniferous 1000 m3ob 0.000 0.000 4 4 includes only removals from FOWL includes only removals from FOWL 1.2.3.NC Non-Coniferous 1000 m3ob
To fill: 0 0
Product Product Unit 2021 2022
Code CF CF
OVERBARK/UNDERBARK CONVERSION FACTORS
1 ROUNDWOOD (WOOD IN THE ROUGH) m3/m3 1.120 1.120
1.1 WOOD FUEL (INCLUDING WOOD FOR CHARCOAL) m3/m3 1.120 1.120
1.1.C Coniferous m3/m3 1.120 1.120
1.1.NC Non-Coniferous m3/m3 1.120 1.120
1.2 INDUSTRIAL ROUNDWOOD m3/m3 1.120 1.120
1.2.C Coniferous m3/m3 1.120 1.120
1.2.NC Non-Coniferous m3/m3 1.120 1.120
1.2.NC.T of which: Tropical m3/m3 ERROR:#DIV/0! ERROR:#DIV/0!
1.2.1 SAWLOGS AND VENEER LOGS m3/m3 1.120 1.120
1.2.1.C Coniferous m3/m3 1.120 1.120
1.2.1.NC Non-Coniferous m3/m3 1.120 1.120
1.2.2 PULPWOOD, ROUND AND SPLIT m3/m3 1.120 1.120
1.2.2.C Coniferous m3/m3 1.120 1.120
1.2.2.NC Non-Coniferous m3/m3 1.120 1.120
1.2.3 OTHER INDUSTRIAL ROUNDWOOD m3/m3 ERROR:#DIV/0! ERROR:#DIV/0!
1.2.3.C Coniferous m3/m3 ERROR:#DIV/0! ERROR:#DIV/0!
1.2.3.NC Non-Coniferous m3/m3 ERROR:#DIV/0! ERROR:#DIV/0!

JQ1 Production

Country: AT 7/4/23
Name of Official responsible for reply: 0
Official Address (in full):
FOREST SECTOR QUESTIONNAIRE JQ1 BML, 1030 Vienna, Marxerg. 2
Industrial Roundwood Balance
PRIMARY PRODUCTS Telephone: 0 0 This table highlights discrepancies between items and sub-items. Please verify your data if there's an error! Discrepancies
Removals and Production E-mail: 0 test for good numbers, missing number, bad number, negative number
Year 1 Year 2 Flag Flag Note Note
Product Product Unit 2021 2022 2021 2022 2021 2022 Product Product Unit 2021 2022 2021 2022 % change Conversion factors
Code Quantity Quantity Code Quantity Quantity Roundwood Industrial roundwood availability 23,331 729,982 3029% m3 of wood in m3 or t of product
ALL REMOVALS OF ROUNDWOOD (WOOD IN THE ROUGH) ALL REMOVALS OF ROUNDWOOD (WOOD IN THE ROUGH) Recovered wood used in particle board 893 798 -11% Solid wood equivalent
1 ROUNDWOOD (WOOD IN THE ROUGH) 1000 m3ub 18420.265 19357.935 4 4 includes only removals from FOWL includes only removals from FOWL 1 ROUNDWOOD (WOOD IN THE ROUGH) 1000 m3ub OK OK Solid Wood Demand agglomerate production 1,675 1,743 4% 2.4
1.1 WOOD FUEL (INCLUDING WOOD FOR CHARCOAL) 1000 m3ub 4899.508 5423.706 4 4 includes only removals from FOWL includes only removals from FOWL 1.1 WOOD FUEL (INCLUDING WOOD FOR CHARCOAL) 1000 m3ub OK OK Sawnwood production 10,764 10,342 -4% 1
1.1.C Coniferous 1000 m3ub 2992.895 3247.734 4 4 includes only removals from FOWL includes only removals from FOWL 1.1.C Coniferous 1000 m3ub veneer production 8 8 0% 1
1.1.NC Non-Coniferous 1000 m3ub 1906.613 2175.972 4 4 includes only removals from FOWL includes only removals from FOWL 1.1.NC Non-Coniferous 1000 m3ub plywood production 184 131 -29% 1
1.2 INDUSTRIAL ROUNDWOOD 1000 m3ub 13520.757 13934.229 4 4 includes only removals from FOWL includes only removals from FOWL 1.2 INDUSTRIAL ROUNDWOOD 1000 m3ub OK OK particle board production (incl OSB) 2,550 2,280 -11% 1.58
1.2.C Coniferous 1000 m3ub 12670.521 12957.409 4 4 includes only removals from FOWL includes only removals from FOWL 1.2.C Coniferous 1000 m3ub OK OK fibreboard production 690 470 -32% 1.8
1.2.NC Non-Coniferous 1000 m3ub 850.236 976.820 4 4 includes only removals from FOWL includes only removals from FOWL 1.2.NC Non-Coniferous 1000 m3ub OK OK mechanical/semi-chemical pulp production 1,306 1,304 -0% 2.5
1.2.NC.T of which: Tropical 1000 m3ub 0 0.000 4 4 includes only removals from FOWL includes only removals from FOWL 1.2.NC.T of which: Tropical 1000 m3ub OK OK chemical pulp production missing data missing data missing data 4.9
1.2.1 SAWLOGS AND VENEER LOGS 1000 m3ub 10419.533 10711.001 4 4 includes only removals from FOWL includes only removals from FOWL 1.2.1 SAWLOGS AND VENEER LOGS 1000 m3ub OK OK dissolving pulp production 385 419 9% 5.7
1.2.1.C Coniferous 1000 m3ub 10139.138 10381.586 4 4 includes only removals from FOWL includes only removals from FOWL 1.2.1.C Coniferous 1000 m3ub Availability Solid Wood Demand missing data missing data missing data
1.2.1.NC Non-Coniferous 1000 m3ub 280.395 329.415 4 4 includes only removals from FOWL includes only removals from FOWL 1.2.1.NC Non-Coniferous 1000 m3ub Difference (roundwood-demand) missing data missing data missing data positive = surplus
1.2.2 PULPWOOD, ROUND AND SPLIT (INCLUDING WOOD FOR PARTICLE BOARD, OSB AND FIBREBOARD) 1000 m3ub 3101.224 3223.228 4 4 includes only removals from FOWL includes only removals from FOWL 1.2.2 PULPWOOD, ROUND AND SPLIT (INCLUDING WOOD FOR PARTICLE BOARD, OSB AND FIBREBOARD) 1000 m3ub OK OK gap (demand/availability) missing data missing data Negative number means not enough roundwood available
1.2.2.C Coniferous 1000 m3ub 2531.383 2575.823 4 4 includes only removals from FOWL includes only removals from FOWL 1.2.2.C Coniferous 1000 m3ub Positive number means more roundwood available than demanded
1.2.2.NC Non-Coniferous 1000 m3ub 569.841 647.405 4 4 includes only removals from FOWL includes only removals from FOWL 1.2.2.NC Non-Coniferous 1000 m3ub
1.2.3 OTHER INDUSTRIAL ROUNDWOOD 1000 m3ub 0 0.000 4 4 includes only removals from FOWL includes only removals from FOWL 1.2.3 OTHER INDUSTRIAL ROUNDWOOD 1000 m3ub OK OK
1.2.3.C Coniferous 1000 m3ub 0 0.000 4 4 includes only removals from FOWL includes only removals from FOWL 1.2.3.C Coniferous 1000 m3ub % of particle board that is from recovered wood 35%
1.2.3.NC Non-Coniferous 1000 m3ub 0 0.000 4 4 includes only removals from FOWL includes only removals from FOWL 1.2.3.NC Non-Coniferous 1000 m3ub share of agglomerates produced from industrial roundwood residues 100%
PRODUCTION PRODUCTION usable industrial roundwood - amount of roundwood that is used, remainder leaves industry 98.5%
2 WOOD CHARCOAL 1000 t 1.463 1.096 2 WOOD CHARCOAL 1000 t
3 WOOD CHIPS, PARTICLES AND RESIDUES 1000 m3 7,466.500 7,823.600 3 WOOD CHIPS, PARTICLES AND RESIDUES 1000 m3 OK OK
3.1 WOOD CHIPS AND PARTICLES 1000 m3 3,903.900 3,994.200 3.1 WOOD CHIPS AND PARTICLES 1000 m3
3.2 WOOD RESIDUES (INCLUDING WOOD FOR AGGLOMERATES) 1000 m3 3,562.600 3,829.400 3.2 WOOD RESIDUES (INCLUDING WOOD FOR AGGLOMERATES) 1000 m3
3.2.1 of which: Sawdust 1000 m3 3,120.600 3,308.400 3.2.1 of which: Sawdust 1000 m3 OK OK
4 RECOVERED POST-CONSUMER WOOD 1000 t 1,131.220 2022 numbers not available yet 4 RECOVERED POST-CONSUMER WOOD 1000 t
5 WOOD PELLETS AND OTHER AGGLOMERATES 1000 t 1,675.300 1,743.000 5 WOOD PELLETS AND OTHER AGGLOMERATES 1000 t OK OK
5.1 WOOD PELLETS 1000 t 1,607.000 1,691.000 5.1 WOOD PELLETS 1000 t
5.2 OTHER AGGLOMERATES 1000 t 68.300 52.000 5.2 OTHER AGGLOMERATES 1000 t
6 SAWNWOOD (INCLUDING SLEEPERS) 1000 m3 10,764.000 10,342.000 6 SAWNWOOD (INCLUDING SLEEPERS) 1000 m3 OK OK
6.C Coniferous 1000 m3 10,582.000 10,104.000 6.C Coniferous 1000 m3
6.NC Non-Coniferous 1000 m3 182.000 238.000 6.NC Non-Coniferous 1000 m3
6.NC.T of which: Tropical 1000 m3 0 0 9 9 estimate by NC estimate by NC 6.NC.T of which: Tropical 1000 m3 OK OK
7 VENEER SHEETS 1000 m3 7.500 7.500 5 5 7 VENEER SHEETS 1000 m3 OK OK
7.C Coniferous 1000 m3 7.C Coniferous 1000 m3
7.NC Non-Coniferous 1000 m3 7.NC Non-Coniferous 1000 m3
7.NC.T of which: Tropical 1000 m3 0 0 9 9 estimate by NC estimate by NC 7.NC.T of which: Tropical 1000 m3 OK OK
8 WOOD-BASED PANELS 1000 m3 3,423.800 2,886.388 8 WOOD-BASED PANELS 1000 m3 OK OK
8.1 PLYWOOD 1000 m3 183.800 131.388 8.1 PLYWOOD 1000 m3 OK OK
8.1.C Coniferous 1000 m3 179.500 127.582 8.1.C Coniferous 1000 m3
8.1.NC Non-Coniferous 1000 m3 4.300 3.806 8.1.NC Non-Coniferous 1000 m3
8.1.NC.T of which: Tropical 1000 m3 0 0 9 9 estimate by NC estimate by NC 8.1.NC.T of which: Tropical 1000 m3 OK OK
8.1.1 of which: Laminated Veneer Lumber (LVL) 1000 m3 8.1.1 of which: Laminated Veneer Lumber (LVL) 1000 m3 OK OK
8.1.1.C Coniferous 1000 m3 8.1.1.C Coniferous 1000 m3
8.1.1.NC Non-Coniferous 1000 m3 8.1.1.NC Non-Coniferous 1000 m3
8.1.1.NC.T of which: Tropical 1000 m3 8.1.1.NC.T of which: Tropical 1000 m3 OK OK
8.2 PARTICLE BOARD, ORIENTED STRAND BOARD (OSB) AND SIMILAR BOARD 1000 m3 2,550.000 2,280.000 8.2 PARTICLE BOARD, ORIENTED STRAND BOARD (OSB) AND SIMILAR BOARD 1000 m3
8.2.1 of which: ORIENTED STRAND BOARD (OSB) 1000 m3 0 0 8.2.1 of which: ORIENTED STRAND BOARD (OSB) 1000 m3 OK OK
8.3 FIBREBOARD 1000 m3 690.000 470.000 8.3 FIBREBOARD 1000 m3 OK OK
8.3.1 HARDBOARD 1000 m3 75.000 54.000 8.3.1 HARDBOARD 1000 m3
8.3.2 MEDIUM/HIGH DENSITY FIBREBOARD (MDF/HDF) 1000 m3 615.000 416.000 8.3.2 MEDIUM/HIGH DENSITY FIBREBOARD (MDF/HDF) 1000 m3
8.3.3 OTHER FIBREBOARD 1000 m3 0 0 8.3.3 OTHER FIBREBOARD 1000 m3
9 WOOD PULP 1000 t 2,004.481 1,977.160 9 WOOD PULP 1000 t OK OK
9.1 MECHANICAL AND SEMI-CHEMICAL WOOD PULP 1000 t 314.049 254.362 9.1 MECHANICAL AND SEMI-CHEMICAL WOOD PULP 1000 t
9.2 CHEMICAL WOOD PULP 1000 t 1,305.542 1,303.670 9.2 CHEMICAL WOOD PULP 1000 t OK OK
9.2.1 SULPHATE PULP 1000 t 9.2.1 SULPHATE PULP 1000 t
9.2.1.1 of which: BLEACHED 1000 t 9.2.1.1 of which: BLEACHED 1000 t OK OK
9.2.2 SULPHITE PULP 1000 t 9.2.2 SULPHITE PULP 1000 t
9.3 DISSOLVING GRADES 1000 t 384.890 419.128 9.3 DISSOLVING GRADES 1000 t
10 OTHER PULP 1000 t 2,197.166 2,007.557 10 OTHER PULP 1000 t OK OK
10.1 PULP FROM FIBRES OTHER THAN WOOD 1000 t - 0 - 0 10.1 PULP FROM FIBRES OTHER THAN WOOD 1000 t
10.2 RECOVERED FIBRE PULP 1000 t 2,197.166 2,007.557 10.2 RECOVERED FIBRE PULP 1000 t
11 RECOVERED PAPER 1000 t 1,694.000 3 AustroPapier changed their reporting on Recover Paper from 2021 onwards, from calculated to reported (source: Umweltbundesamt). 2022 figures are not yet available. 11 RECOVERED PAPER 1000 t
12 PAPER AND PAPERBOARD 1000 t 5,065.256 4,633.352 12 PAPER AND PAPERBOARD 1000 t OK OK
12.1 GRAPHIC PAPERS 1000 t 2,247.582 1,869.263 12.1 GRAPHIC PAPERS 1000 t OK OK
12.1.1 NEWSPRINT 1000 t 12.1.1 NEWSPRINT 1000 t
12.1.2 UNCOATED MECHANICAL 1000 t 12.1.2 UNCOATED MECHANICAL 1000 t
12.1.3 UNCOATED WOODFREE 1000 t 12.1.3 UNCOATED WOODFREE 1000 t
12.1.4 COATED PAPERS 1000 t 1,270.000 1,100.000 12.1.4 COATED PAPERS 1000 t
12.2 HOUSEHOLD AND SANITARY PAPERS 1000 t 125.000 125.000 12.2 HOUSEHOLD AND SANITARY PAPERS 1000 t
12.3 PACKAGING MATERIALS 1000 t 2,492.708 2,474.466 12.3 PACKAGING MATERIALS 1000 t OK OK
12.3.1 CASE MATERIALS 1000 t 1,700.000 1,600.000 revised 12.3.1 CASE MATERIALS 1000 t
12.3.2 CARTONBOARD 1000 t 12.3.2 CARTONBOARD 1000 t
12.3.3 WRAPPING PAPERS 1000 t 12.3.3 WRAPPING PAPERS 1000 t
12.3.4 OTHER PAPERS MAINLY FOR PACKAGING 1000 t 12.3.4 OTHER PAPERS MAINLY FOR PACKAGING 1000 t
12.4 OTHER PAPER AND PAPERBOARD N.E.S. (NOT ELSEWHERE SPECIFIED) 1000 t 199.966 164.623 12.4 OTHER PAPER AND PAPERBOARD N.E.S. (NOT ELSEWHERE SPECIFIED) 1000 t
15 GLULAM AND CROSS-LAMINATED TIMBER (CLT or X-LAM)1 1000 m3 2,578.036 2,457.228 15 GLULAM AND CROSS-LAMINATED TIMBER (CLT or X-LAM)1 1000 m3 OK OK
15.1 GLULAM 1000 m3 2,063.135 1,991.451 0,45 t/m³ 0,45 t/m³ 15.1 GLULAM 1000 m3
15.2 CROSS-LAMINATED TIMBER (CLT or X-LAM) 1000 m3 514.901 465.777 0,48 t/m³ 0,48 t/m³ 15.2 CROSS-LAMINATED TIMBER (CLT or X-LAM) 1000 m3
16 I BEAMS (I-JOISTS)1 1000 t
VEREBELYINE DOSA Melinda (ESTAT): VEREBELYINE DOSA Melinda (ESTAT): zero deleted based on email exchange between UNECE and AT 02082023
estimate by NC estimate by NC 16 I BEAMS (I-JOISTS)1 1000 t
1 Glulam, CLT and I Beams are classified as secondary wood products but for ease of reporting are included here
To fill: 16 18
m3ub = cubic metres solid volume underbark (i.e. excluding bark)
m3 = cubic metres solid volume
t = metric tonnes
https://www.fao.org/3/cb8216en/cb8216en.pdf

JQ2 Trade

61 62 61 62 91 92 91 92
FOREST SECTOR QUESTIONNAIRE JQ2 Country: AT Date: 6-Jul 0 both VALUE and quantity reported ZERO
Name of Official responsible for reply: 0 ZERO Q quantity ZERO when VALUE is reported INTRA-EU The difference might be caused by Intra-EU trade
PRIMARY PRODUCTS Official Address (in full): BML, 1030 Vienna, Marxerg. 2 This table highlights discrepancies between production and trade. For any negative number, indicating greater net exports than production, please verify your data! ZERO V Value ZERO when quantity is reported CHECK
Trade Telephone: 0 Fax: 0 This table highlights discrepancies between items and sub-items. Please verify your data if there's an error! ZERO CHECK 1 - if no value please CHECK NO Q no quantity reported ZERO CHECK 2 - if no value in Zero Check 1
E-mail: 0 Country: AT NO V no value reported Treshold: 2 verifies whether the JQ2 figures refers only to intra-EU trade
Value must always be in 1000 NAC (national currency) 1000 EUR Flag Flag Flag Flag Flag Flag Flag Flag Note Note Note Note Note Note Note Note Trade Discrepancies REPORT no figures reported
Product Unit of I M P O R T E X P O R T Import Export Import Export Product I M P O R T E X P O R T Product Apparent Consumption Related Notes Product Value per I M P O R T E X P O R T Column1 Column2 Product Value per I M P O R T E X P O R T
code Product quantity 2021 2022 2021 2022 2021 2022 2021 2022 2021 2022 2021 2022 code 2021 2022 2021 2022 code 2021 2022 2021 2022 code Product unit 2021 2022 2021 2022 IMPORT EXPORT code Product unit 2021 2022 2021 2022
Quantity Value Quantity Value Quantity
VEREBELYINE DOSA Melinda (ESTAT): VEREBELYINE DOSA Melinda (ESTAT): whole column updated based on email 01082023
Value Quantity Value Quantity Value Quantity Value Quantity Value Quantity Value Quantity Value Quantity Value Quantity Value Quantity Value Quantity Value Quantity Value Quantity Value Quantity Value
1 ROUNDWOOD (WOOD IN THE ROUGH) 1000 m3ub 11,072.732 829,053 8,700.760 842,359 1,105.553 98,279 1,318.690 145,004 7 7 7 7 1 ROUNDWOOD (WOOD IN THE ROUGH) 1000 m3ub OK OK OK OK OK OK OK OK 1 ROUNDWOOD (WOOD IN THE ROUGH) 1000 m3ub 28,387 26,740 1 ROUNDWOOD (WOOD IN THE ROUGH) NAC/m3 75 97 89 110 ACCEPT ACCEPT 1 ROUNDWOOD (WOOD IN THE ROUGH) NAC/m3
1.1 WOOD FUEL (INCLUDING WOOD FOR CHARCOAL) 1000 m3ub 169.696 15,776 181.851 26,310 12.724 1,050 11.984 1,564 7 7 7 7 1.1 WOOD FUEL (INCLUDING WOOD FOR CHARCOAL) 1000 m3ub OK OK OK OK OK OK OK OK 1.1 WOOD FUEL (INCLUDING WOOD FOR CHARCOAL) 1000 m3ub 5,056 5,594 1.1 WOOD FUEL (INCLUDING WOOD FOR CHARCOAL) NAC/m3 93 145 83 130 ACCEPT ACCEPT 1.1 WOOD FUEL (INCLUDING WOOD FOR CHARCOAL) NAC/m3
1.1.C Coniferous 1000 m3ub 90.769 6,760 95.641 9,947 1.821 122 4.558 404 7 7 7 7 The conversion factor used (1m³ = 900 kg) seems too high. A revision is considered. The conversion factor used (1m³ = 900 kg) seems too high. A revision is considered. The conversion factor used (1m³ = 900 kg) seems too high. A revision is considered. The conversion factor used (1m³ = 900 kg) seems too high. A revision is considered. 1.1.C Coniferous 1000 m3ub 1.1.C Coniferous 1000 m3ub 3,082 3,339 1.1.C Coniferous NAC/m3 74 104 67 89 ACCEPT ACCEPT 1.1.C Coniferous NAC/m3
1.1.NC Non-Coniferous 1000 m3ub 78.927 9,016 86.208 16,363 10.903 928 7.426 1,160 7 7 7 7 The conversion factor used (1m³ = 900 kg) seems too high. A revision is considered. The conversion factor used (1m³ = 900 kg) seems too high. A revision is considered. The conversion factor used (1m³ = 900 kg) seems too high. A revision is considered. The conversion factor used (1m³ = 900 kg) seems too high. A revision is considered. 1.1.NC Non-Coniferous 1000 m3ub 1.1.NC Non-Coniferous 1000 m3ub 1,975 2,255 1.1.NC Non-Coniferous NAC/m3 114 190 85 156 ACCEPT ACCEPT 1.1.NC Non-Coniferous NAC/m3
1.2 INDUSTRIAL ROUNDWOOD 1000 m3ub 10,903.036 813,277 8,518.909 816,049 1,092.829 97,229 1,306.706 143,440 7 7 7 7 1.2 INDUSTRIAL ROUNDWOOD 1000 m3ub OK OK OK OK OK OK OK OK 1.2 INDUSTRIAL ROUNDWOOD 1000 m3ub 23,331 21,146 1.2 INDUSTRIAL ROUNDWOOD NAC/m3 75 96 89 110 ACCEPT ACCEPT 1.2 INDUSTRIAL ROUNDWOOD NAC/m3
1.2.C Coniferous 1000 m3ub 10,017.644 736,655 7,975.906 743,290 954.007 77,677 1,151.168 114,972 7 7 7 7 1.2.C Coniferous 1000 m3ub 1.2.C Coniferous 1000 m3ub 21,734 19,782 1.2.C Coniferous NAC/m3 74 93 81 100 ACCEPT ACCEPT 1.2.C Coniferous NAC/m3
1.2.NC Non-Coniferous 1000 m3ub 885.392 76,622 543.003 72,759 138.822 19,552 155.538 28,468 7 7 7 7 1.2.NC Non-Coniferous 1000 m3ub 1.2.NC Non-Coniferous 1000 m3ub 1,597 1,364 1.2.NC Non-Coniferous NAC/m3 87 134 141 183 ACCEPT ACCEPT 1.2.NC Non-Coniferous NAC/mt
1.2.NC.T of which: Tropical1 1000 m3ub 0.054 99 0.081 84 0.000 0 0.032 17 7 7 7 7 1.2.NC.T of which: Tropical1 1000 m3ub OK OK OK OK OK OK OK OK 1.2.NC.T of which: Tropical1 1000 m3ub 0 0 1.2.NC.T of which: Tropical NAC/m3 1831 1036 0 544 ACCEPT CHECK 1.2.NC.T of which: Tropical 1000 m3
2 WOOD CHARCOAL 1000 t 15.872 10,139 13.446 9,358 1.464 1,295 1.315 1,057 7 7 7 7 2 WOOD CHARCOAL 1000 t 2 WOOD CHARCOAL 1000 t 16 13 2 WOOD CHARCOAL NAC / t 639 696 884 804 ACCEPT ACCEPT 2 WOOD CHARCOAL 1000 m3
3 WOOD CHIPS, PARTICLES AND RESIDUES 1000 m3 1,907.067 75,723 2,271.895 152,462 768.628 36,172 650.261 47,880 7 7 7 7 revised revised provisional, includes 4 provisional, includes 4 revised revised provisional, includes 4 provisional, includes 4 3 WOOD CHIPS, PARTICLES AND RESIDUES 1000 m3 OK OK OK OK OK OK OK OK 3 WOOD CHIPS, PARTICLES AND RESIDUES 1000 m3 8,605 9,445 3 WOOD CHIPS, PARTICLES AND RESIDUES NAC/m3 40 67 47 74 ACCEPT ACCEPT 3 WOOD CHIPS, PARTICLES AND RESIDUES 1000 m3
3.1 WOOD CHIPS AND PARTICLES 1000 m3 818.429 40,625 907.115 74,020 313.995 15,693 240.650 19,642 7 7 7 7 Conversion factor used: 1 t = 1,16667 m³ Conversion factor used: 1 t = 1,16667 m³ Conversion factor used: 1 t = 1,16667 m³ Conversion factor used: 1 t = 1,16667 m³ 3.1 WOOD CHIPS AND PARTICLES 1000 m3 3.1 WOOD CHIPS AND PARTICLES 1000 m3 4,408 4,661 3.1 WOOD CHIPS AND PARTICLES NAC/m3 50 82 50 82 ACCEPT ACCEPT 3.1 WOOD CHIPS AND PARTICLES 1000 mt
3.2 WOOD RESIDUES (INCLUDING WOOD FOR AGGLOMERATES) 1000 m3 1,088.638 35,098 1,364.780 78,442 454.633 20,479 409.611 28,238 7 7 7 7 revised, conversion factor used: 1 m³ = 0,866666 t revised provisional, includes 4; conversion factor used: 1 m³ = 0,866666 t provisional, includes 4 revised, conversion factor used: 1 m³ = 0,866666 t revised provisional, includes 4; conversion factor used: 1 m³ = 0,866666 t provisional, includes 4 3.2 WOOD RESIDUES (INCLUDING WOOD FOR AGGLOMERATES) 1000 m3 3.2 WOOD RESIDUES (INCLUDING WOOD FOR AGGLOMERATES) 1000 m3 4,197 4,785 3.2 WOOD RESIDUES (INCLUDING WOOD FOR AGGLOMERATES) NAC/m3 32 57 45 69 ACCEPT ACCEPT 3.2 WOOD RESIDUES (INCLUDING WOOD FOR AGGLOMERATES) 1000 mt
3.2.1 of which: Sawdust 1000 m3 192.410 18,215 256.116 23,143 7 7 7 7 3.2.1 of which: Sawdust 1000 m3 OK OK OK OK OK OK OK OK 3.2.1 of which: Sawdust 1000 m3 3,121 3,245 3.2.1 of which: Sawdust NAC/m3 REPORT 95 REPORT 90 CHECK CHECK
4 RECOVERED POST-CONSUMER WOOD 1000 t 333.201 10,250 included in 3.2 included in 3.2 141.021 5,291 included in 3.2 included in 3.2 revised revised not yet available revised revised not yet available 4 RECOVERED POST-CONSUMER WOOD 1000 t 4 RECOVERED POST-CONSUMER WOOD 1000 t 1,323 ERROR:#VALUE! 4 RECOVERED POST-CONSUMER WOOD NAC / t 31 REPORT 38 REPORT CHECK CHECK 4 RECOVERED POST-CONSUMER WOOD 1000 mt CHECK CHECK
5 WOOD PELLETS AND OTHER AGGLOMERATES 1000 t 509.159 80,414 432.930 137,115 901.202 178,316 759.737 278,476 7 7 7 7 5 WOOD PELLETS AND OTHER AGGLOMERATES 1000 t OK OK OK OK OK OK OK OK 5 WOOD PELLETS AND OTHER AGGLOMERATES 1000 t 1,283 1,416 5 WOOD PELLETS AND OTHER AGGLOMERATES NAC / t 158 317 198 367 CHECK ACCEPT 5 WOOD PELLETS AND OTHER AGGLOMERATES NAC/m3
5.1 WOOD PELLETS 1000 t 412.744 61,104 345.648 106,356 875.445 173,381 748.723 275,257 7 7 7 7 5.1 WOOD PELLETS 1000 t 5.1 WOOD PELLETS 1000 t 1,144 1,288 5.1 WOOD PELLETS NAC / t 148 308 198 368 CHECK ACCEPT 5.1 WOOD PELLETS NAC/m3
5.2 OTHER AGGLOMERATES 1000 t 96.415 19,310 87.282 30,760 25.757 4,934 11.014 3,218 7 7 7 7 5.2 OTHER AGGLOMERATES 1000 t 5.2 OTHER AGGLOMERATES 1000 t 139 128 5.2 OTHER AGGLOMERATES NAC / t 200 352 192 292 ACCEPT ACCEPT 5.2 OTHER AGGLOMERATES NAC/m3
6 SAWNWOOD (INCLUDING SLEEPERS) 1000 m3 2,088.125 697,948 2,552.218 748,526 6,119.574 1,985,783 6,099.443 2,026,472 7 7 7 7 6 SAWNWOOD (INCLUDING SLEEPERS) 1000 m3 OK OK OK OK OK OK OK OK 6 SAWNWOOD (INCLUDING SLEEPERS) 1000 m3 6,733 6,795 6 SAWNWOOD (INCLUDING SLEEPERS) NAC/m3 334 293 324 332 ACCEPT ACCEPT 6 SAWNWOOD (INCLUDING SLEEPERS) NAC/m3
6.C Coniferous 1000 m3 1,911.235 567,134 1,785.572 552,086 5,946.608 1,870,911 5,730.805 1,895,011 7 7 7 7 6.C Coniferous 1000 m3 6.C Coniferous 1000 m3 6,547 6,159 6.C Coniferous NAC/m3 297 309 315 331 ACCEPT ACCEPT 6.C Coniferous NAC/m3
6.NC Non-Coniferous 1000 m3 176.890 130,814 214.696 196,440 172.966 114,872 145.138 131,461 7 7 7 7 6.NC Non-Coniferous 1000 m3 6.NC Non-Coniferous 1000 m3 186 308 6.NC Non-Coniferous NAC/m3 740 915 664 906 ACCEPT ACCEPT 6.NC Non-Coniferous NAC/m3
6.NC.T of which: Tropical1 1000 m3 5.209 5,516 3.948 5,622 1.117 1,697 0.927 1,687 7 7 7 7 6.NC.T of which: Tropical1 1000 m3 OK OK OK OK OK OK OK OK 6.NC.T of which: Tropical1 1000 m3 4 3 6.NC.T of which: Tropical NAC/m3 1059 1424 1519 1820 ACCEPT ACCEPT 6.NC.T of which: Tropical NAC/m3
7 VENEER SHEETS 1000 m3 69.640 143,254 75.673 187,928 17.744 56,390 16.952 65,332 7 7 7 7 7 VENEER SHEETS 1000 m3 OK OK OK OK OK OK OK OK 7 VENEER SHEETS 1000 m3 59 66 7 VENEER SHEETS NAC/m3 2057 2483 3178 3854 ACCEPT ACCEPT 7 VENEER SHEETS NAC/m3
7.C Coniferous 1000 m3 20.887 13,263 23.349 16,243 3.014 8,419 2.653 8,543 7 7 7 7 7.C Coniferous 1000 m3 7.C Coniferous 1000 m3 18 21 7.C Coniferous NAC/m3 635 696 2793 3220 ACCEPT ACCEPT 7.C Coniferous NAC/m3
7.NC Non-Coniferous 1000 m3 48.753 129,991 52.324 171,685 14.730 47,971 14.299 56,790 7 7 7 7 7.NC Non-Coniferous 1000 m3 7.NC Non-Coniferous 1000 m3 34 38 7.NC Non-Coniferous NAC/m3 2666 3281 3257 3972 ACCEPT ACCEPT 7.NC Non-Coniferous NAC/m3
7.NC.T of which: Tropical 1000 m3 1.130 2,121 1.260 4,979 0.307 1,200 0.596 1,054 7 7 7 7 7.NC.T of which: Tropical 1000 m3 OK OK OK OK OK OK OK OK 7.NC.T of which: Tropical 1000 m3 1 1 7.NC.T of which: Tropical NAC/m3 1877 3952 3908 1768 CHECK CHECK 7.NC.T of which: Tropical NAC/m3
8 WOOD-BASED PANELS 1000 m3 1,190.778 509,733 1,028.253
VEREBELYINE DOSA Melinda (ESTAT): VEREBELYINE DOSA Melinda (ESTAT): corrected to the right sum
519,037
VEREBELYINE DOSA Melinda (ESTAT): VEREBELYINE DOSA Melinda (ESTAT): corrected to the right sum
2,962.339 1,446,999 2,356.429
VEREBELYINE DOSA Melinda (ESTAT): VEREBELYINE DOSA Melinda (ESTAT): corrected to the right sum
1,472,778 7 7 7 7 8 WOOD-BASED PANELS 1000 m3 OK OK OK OK OK OK OK OK 8 WOOD-BASED PANELS 1000 m3 1,652 1,558 8 WOOD-BASED PANELS NAC/m3 428 505 488 625 ACCEPT ACCEPT 8 WOOD-BASED PANELS NAC/m3
8.1 PLYWOOD 1000 m3 267.176 202,042 190.121
VEREBELYINE DOSA Melinda (ESTAT): VEREBELYINE DOSA Melinda (ESTAT): of which category added. Based on email 02082023
190,555
VEREBELYINE DOSA Melinda (ESTAT): VEREBELYINE DOSA Melinda (ESTAT): corrected based on email between UNECE and AT 02082023

VEREBELYINE DOSA Melinda (ESTAT): VEREBELYINE DOSA Melinda (ESTAT): corrected to the right sum
356.923 320,512 295.904
VEREBELYINE DOSA Melinda (ESTAT): VEREBELYINE DOSA Melinda (ESTAT): corrected based on email 02082023
309,247 7 7 7 7 8.1 PLYWOOD 1000 m3 OK OK OK OK OK OK OK OK 8.1 PLYWOOD 1000 m3 94 26 8.1 PLYWOOD NAC/m3 756 1002 898 1045 ACCEPT ACCEPT 8.1 PLYWOOD NAC/m3
8.1.C Coniferous 1000 m3 75.374 59,133 263.965 252,322 7 7 7 7 8.1.C Coniferous 1000 m3 8.1.C Coniferous 1000 m3 180 -61 8.1.C Coniferous NAC/m3 REPORT 785 REPORT 956 CHECK CHECK 8.1.C Coniferous NAC/m3 CHECK CHECK
8.1.NC Non-Coniferous 1000 m3 110.082 127,044 31.434 56,925 7 7 7 7 8.1.NC Non-Coniferous 1000 m3 8.1.NC Non-Coniferous 1000 m3 4 82 8.1.NC Non-Coniferous NAC/m3 REPORT 1154 REPORT 1811 CHECK CHECK 8.1.NC Non-Coniferous NAC/m3 CHECK CHECK
8.1.NC.T of which: Tropical 1000 m3 15.611 15,345 25.575 23,939 0.292 852 1.378 2,583 7 7 7 7 8.1.NC.T of which: Tropical 1000 m3 Error Error OK OK Error Error OK OK 8.1.NC.T of which: Tropical 1000 m3 15 24 8.1.NC.T of which: Tropical NAC/m3 983 936 2919 1875 ACCEPT ACCEPT 8.1.NC.T of which: Tropical NAC/m3
8.1.1 of which: Laminated Veneer Lumber (LVL) 1000 m3 4.665 4,378 0.505 2,318 7 7 7 7 8.1.1 of which: Laminated Veneer Lumber (LVL) 1000 m3 OK OK OK OK OK OK OK OK 8.1.1 of which: Laminated Veneer Lumber (LVL) 1000 m3 0 4 8.1.1 of which: Laminated Veneer Lumber (LVL) NAC/m3 REPORT 939 REPORT 4591 CHECK CHECK
8.1.1.C Coniferous 1000 m3 1.150 1,091 0.199 1,035 7 7 7 7 8.1.1.C Coniferous 1000 m3 8.1.1.C Coniferous 1000 m3 0 1 8.1.1.C Coniferous NAC/m3 REPORT 949 REPORT 5199 CHECK CHECK
8.1.1.NC Non-Coniferous 1000 m3 3.515 3,287 0.306 1,284 7 7 7 7 8.1.1.NC Non-Coniferous 1000 m3 8.1.1.NC Non-Coniferous 1000 m3 0 3 8.1.1.NC Non-Coniferous NAC/m3 REPORT 935 REPORT 4196 CHECK CHECK
8.1.1.NC.T of which: Tropical 1000 m3 2.436 2,080 0.164 225 7 7 7 7 8.1.1.NC.T of which: Tropical 1000 m3 OK OK OK OK OK OK OK OK 8.1.1.NC.T of which: Tropical 1000 m3 0 2 8.1.1.NC.T of which: Tropical NAC/m3 REPORT 854 REPORT 1370 CHECK CHECK
8.2 PARTICLE BOARD, ORIENTED STRAND BOARD (OSB) AND SIMILAR BOARD 1000 m3 553.182 182,262 526.783 182,187 2,049.439 744,738 1,680.026 831,654 7 7 7 7 8.2 PARTICLE BOARD, ORIENTED STRAND BOARD (OSB) AND SIMILAR BOARD 1000 m3 8.2 PARTICLE BOARD, ORIENTED STRAND BOARD (OSB) AND SIMILAR BOARD 1000 m3 1,054 1,127 8.2 PARTICLE BOARD, ORIENTED STRANDBOARD (OSB) AND SIMILAR BOARD NAC/m3 329 346 363 495 ACCEPT ACCEPT 8.2 PARTICLE BOARD, ORIENTED STRANDBOARD (OSB) AND SIMILAR BOARD NAC/m3
8.2.1 of which: ORIENTED STRAND BOARD (OSB) 1000 m3 192.199 74,866 211.923 62,204 5.960 2,850 6.824 3,261 7 7 7 7 8.2.1 of which: ORIENTED STRAND BOARD (OSB) 1000 m3 OK OK OK OK OK OK OK OK 8.2.1 of which: ORIENTED STRAND BOARD (OSB) 1000 m3 186 205 8.2.1 of which: ORIENTED STRANDBOARD (OSB) NAC/m3 390 294 478 478 ACCEPT ACCEPT 8.2.1 of which: ORIENTED STRANDBOARD (OSB) NAC/m3
8.3 FIBREBOARD 1000 m3 370.420 125,429 311.349 146,295 555.977 381,749 380.499 331,876 7 7 7 7 8.3 FIBREBOARD 1000 m3 OK OK OK OK OK OK OK OK 8.3 FIBREBOARD 1000 m3 504 401 8.3 FIBREBOARD NAC/m3 339 470 687 872 ACCEPT ACCEPT 8.3 FIBREBOARD NAC/m3
8.3.1 HARDBOARD 1000 m3 17.049 14,047 18.568 21,840 60.206 36,242 43.023 32,599 7 7 7 7 8.3.1 HARDBOARD 1000 m3 8.3.1 HARDBOARD 1000 m3 32 30 8.3.1 HARDBOARD NAC/m3 824 1176 602 758 ACCEPT ACCEPT 8.3.1 HARDBOARD NAC/mt
8.3.2 MEDIUM/HIGH DENSITY FIBREBOARD (MDF/HDF) 1000 m3 191.844 85,511 159.373 97,168 490.961 343,777 333.141 297,034 7 7 7 7 8.3.2 MEDIUM/HIGH DENSITY FIBREBOARD (MDF/HDF) 1000 m3 8.3.2 MEDIUM/HIGH DENSITY FIBREBOARD (MDF/HDF) 1000 m3 316 242 8.3.2 MEDIUM/HIGH DENSITY FIBREBOARD (MDF/HDF) NAC/m3 446 610 700 892 ACCEPT ACCEPT 8.3.2 MEDIUM/HIGH DENSITY FIBREBOARD (MDF/HDF) NAC/mt
8.3.3 OTHER FIBREBOARD 1000 m3 161.527 25,870 133.408 27,286 4.810 1,729 4.335 2,243 7 7 7 7 8.3.3 OTHER FIBREBOARD 1000 m3 8.3.3 OTHER FIBREBOARD 1000 m3 157 129 8.3.3 OTHER FIBREBOARD NAC/m3 160 205 360 517 ACCEPT ACCEPT 8.3.3 OTHER FIBREBOARD NAC/mt
9 WOOD PULP 1000 t 578.391 388,955 559.363 498,789 321.447 210,214 385.924 300,796 7 7 7 7 9 WOOD PULP 1000 t OK OK OK OK OK OK OK OK 9 WOOD PULP 1000 t 2,261 2,151 9 WOOD PULP NAC/t 672 892 654 779 ACCEPT ACCEPT 9 WOOD PULP NAC/mt
9.1 MECHANICAL AND SEMI-CHEMICAL WOOD PULP 1000 t 10.176 4,644 7.288 4,497 0.074 46 0.045 19 7 7 7 7 9.1 MECHANICAL AND SEMI-CHEMICAL WOOD PULP 1000 t 9.1 MECHANICAL AND SEMI-CHEMICAL WOOD PULP 1000 t 1,316 1,311 9.1 MECHANICAL AND SEMI-CHEMICAL WOOD PULP NAC/t 456 617 621 422 ACCEPT ACCEPT 9.1 MECHANICAL AND SEMI-CHEMICAL WOOD PULP NAC/mt
9.2 CHEMICAL WOOD PULP 1000 t 487.516 322,117 465.158 404,064 254.452 168,695 271.278 222,375 7 7 7 7 9.2 CHEMICAL WOOD PULP 1000 t OK OK OK OK OK OK OK OK 9.2 CHEMICAL WOOD PULP 1000 t ERROR:#REF! ERROR:#REF! 9.2 CHEMICAL WOOD PULP NAC/t 661 869 663 820 ACCEPT ACCEPT 9.2 CHEMICAL WOOD PULP NAC/mt
9.2.1 SULPHATE PULP 1000 t 463.300 303,272 444.085 382,924 246.206 163,108 258.028 210,667 7 7 7 7 9.2.1 SULPHATE PULP 1000 t 9.2.1 SULPHATE PULP 1000 t 217 186 9.2.1 SULPHATE PULP NAC/t 655 862 662 816 ACCEPT ACCEPT 9.2.1 SULPHATE PULP NAC/mt
9.2.1.1 of which: BLEACHED 1000 t 461.880 302,186 443.731 382,601 223.609 151,140 223.036 187,211 7 7 7 7 9.2.1.1 of which: BLEACHED 1000 t OK OK OK OK OK OK OK OK 9.2.1.1 of which: BLEACHED 1000 t 238 221 9.2.1.1 of which: BLEACHED NAC/t 654 862 676 839 ACCEPT ACCEPT 9.2.1.1 of which: BLEACHED NAC/mt
9.2.2 SULPHITE PULP 1000 t 24.216 18,846 21.073 21,140 8.246 5,587 13.250 11,708 7 7 7 7 9.2.2 SULPHITE PULP 1000 t 9.2.2 SULPHITE PULP 1000 t 16 8 9.2.2 SULPHITE PULP NAC/t 778 1003 678 884 ACCEPT ACCEPT 9.2.2 SULPHITE PULP NAC/mt
9.3 DISSOLVING GRADES 1000 t 80.699 62,194 86.917 90,229 66.922 41,473 114.601 78,402 7 7 7 7 9.3 DISSOLVING GRADES 1000 t 9.3 DISSOLVING GRADES 1000 t 399 391 9.3 DISSOLVING GRADES NAC/t 771 1038 620 684 ACCEPT ACCEPT 9.3 DISSOLVING GRADES NAC/mt
10 OTHER PULP 1000 t 36.112 30,268 32.987 34,337 10.873 9,282 9.828 11,415 7 7 7 7 10 OTHER PULP 1000 t OK OK OK OK OK OK OK OK 10 OTHER PULP 1000 t 2,222 2,031 10 OTHER PULP NAC/t 838 1041 854 1161 ACCEPT ACCEPT 10 OTHER PULP NAC/mt
10.1 PULP FROM FIBRES OTHER THAN WOOD 1000 t 26.396 26,604 23.298 29,736 0.919 2,733 1.288 4,428 7 7 7 7 10.1 PULP FROM FIBRES OTHER THAN WOOD 1000 t 10.1 PULP FROM FIBRES OTHER THAN WOOD 1000 t 25 22 10.1 PULP FROM FIBRES OTHER THAN WOOD NAC/t 1008 1276 2974 3438 ACCEPT ACCEPT 10.1 PULP FROM FIBRES OTHER THAN WOOD NAC/mt
10.2 RECOVERED FIBRE PULP 1000 t 9.715 3,664 9.689 4,601 9.954 6,549 8.540 6,987 7 7 7 7 10.2 RECOVERED FIBRE PULP 1000 t 10.2 RECOVERED FIBRE PULP 1000 t 2,197 2,009 10.2 RECOVERED FIBRE PULP NAC/t 377 475 658 818 ACCEPT ACCEPT 10.2 RECOVERED FIBRE PULP NAC/mt
11 RECOVERED PAPER 1000 t 1,675.573 326,061 1,451.000 342,624 248.774 48,134 260.346 58,553 7 7 7 7 11 RECOVERED PAPER 1000 t 11 RECOVERED PAPER 1000 t 3,121 1,191 11 RECOVERED PAPER NAC/t 195 236 193 225 ACCEPT ACCEPT 11 RECOVERED PAPER NAC/mt
12 PAPER AND PAPERBOARD 1000 t 1,296.015 1,039,401 1,235.669 1,340,355 4,027.585 2,824,375 3,695.052 3,889,356 7 7 7 7 12 PAPER AND PAPERBOARD 1000 t OK OK OK OK OK OK OK OK 12 PAPER AND PAPERBOARD 1000 t 2,334 2,174 12 PAPER AND PAPERBOARD NAC/t 802 1085 701 1053 ACCEPT ACCEPT 12 PAPER AND PAPERBOARD NAC/mt
12.1 GRAPHIC PAPERS 1000 t 415.471 302,425 388.537 421,849 1,911.124 1,355,927 1,661.780 1,975,938 7 7 7 7 12.1 GRAPHIC PAPERS 1000 t OK OK OK OK OK OK OK OK 12.1 GRAPHIC PAPERS 1000 t 752 596 12.1 GRAPHIC PAPERS NAC/t 728 1086 709 1189 ACCEPT ACCEPT 12.1 GRAPHIC PAPERS NAC/mt
12.1.1 NEWSPRINT 1000 t 77.209 33,809 81.789 64,147 305.872 125,405 234.523 190,704 7 7 7 7 12.1.1 NEWSPRINT 1000 t 12.1.1 NEWSPRINT 1000 t -229 -153 12.1.1 NEWSPRINT NAC/t 438 784 410 813 ACCEPT ACCEPT 12.1.1 NEWSPRINT NAC/mt
12.1.2 UNCOATED MECHANICAL 1000 t 55.275 30,205 54.763 46,829 218.351 112,597 216.596 192,892 7 7 7 7 12.1.2 UNCOATED MECHANICAL 1000 t 12.1.2 UNCOATED MECHANICAL 1000 t -163 -162 12.1.2 UNCOATED MECHANICAL NAC/t 546 855 516 891 ACCEPT ACCEPT 12.1.2 UNCOATED MECHANICAL NAC/mt
12.1.3 UNCOATED WOODFREE 1000 t 97.888 96,878 103.186 137,377 335.162 336,354 276.970 440,891 7 7 7 7 12.1.3 UNCOATED WOODFREE 1000 t 12.1.3 UNCOATED WOODFREE 1000 t -237 -174 12.1.3 UNCOATED WOODFREE NAC/t 990 1331 1004 1592 ACCEPT ACCEPT 12.1.3 UNCOATED WOODFREE NAC/mt
12.1.4 COATED PAPERS 1000 t 185.098 141,533 148.798 173,495 1,051.739 781,571 933.691 1,151,450 7 7 7 7 12.1.4 COATED PAPERS 1000 t 12.1.4 COATED PAPERS 1000 t 403 315 12.1.4 COATED PAPERS NAC/t 765 1166 743 1233 ACCEPT ACCEPT 12.1.4 COATED PAPERS NAC/mt
12.2 HOUSEHOLD AND SANITARY PAPERS 1000 t 9.356 13,710 11.321 22,621 5.382 9,738 5.191 10,860 7 7 7 7 12.2 HOUSEHOLD AND SANITARY PAPERS 1000 t 12.2 HOUSEHOLD AND SANITARY PAPERS 1000 t 129 131 12.2 HOUSEHOLD AND SANITARY PAPERS NAC/t 1465 1998 1810 2092 ACCEPT ACCEPT 12.2 HOUSEHOLD AND SANITARY PAPERS NAC/mt
12.3 PACKAGING MATERIALS 1000 t 857.945 695,474 822.419 861,858 2,105.454 1,395,977 2,022.706 1,841,898 7 7 7 7 12.3 PACKAGING MATERIALS 1000 t OK OK OK OK OK OK OK OK 12.3 PACKAGING MATERIALS 1000 t 1,245 1,274 12.3 PACKAGING MATERIALS NAC/t 811 1048 663 911 ACCEPT ACCEPT 12.3 PACKAGING MATERIALS NAC/mt
12.3.1 CASE MATERIALS 1000 t 446.690 254,507 414.619 308,240 1,243.919 670,618 1,196.577 867,198 7 7 7 7 12.3.1 CASE MATERIALS 1000 t 12.3.1 CASE MATERIALS 1000 t 903 818 12.3.1 CASE MATERIALS NAC/t 570 743 539 725 ACCEPT ACCEPT 12.3.1 CASE MATERIALS NAC/mt
12.3.2 CARTONBOARD 1000 t 209.680 251,730 214.936 307,857 353.220 332,238 311.639 409,580 7 7 7 7 12.3.2 CARTONBOARD 1000 t 12.3.2 CARTONBOARD 1000 t -144 -97 12.3.2 CARTONBOARD NAC/t 1201 1432 941 1314 ACCEPT ACCEPT 12.3.2 CARTONBOARD NAC/mt
12.3.3 WRAPPING PAPERS 1000 t 163.040 168,493 160.531 221,705 497.841 385,637 503.301 554,440 7 7 7 7 12.3.3 WRAPPING PAPERS 1000 t 12.3.3 WRAPPING PAPERS 1000 t -335 -343 12.3.3 WRAPPING PAPERS NAC/t 1033 1381 775 1102 ACCEPT ACCEPT 12.3.3 WRAPPING PAPERS NAC/mt
12.3.4 OTHER PAPERS MAINLY FOR PACKAGING 1000 t 38.535 20,744 32.333 24,056 10.473 7,485 11.189 10,680 7 7 7 7 12.3.4 OTHER PAPERS MAINLY FOR PACKAGING 1000 t 12.3.4 OTHER PAPERS MAINLY FOR PACKAGING 1000 t 28 21 12.3.4 OTHER PAPERS MAINLY FOR PACKAGING NAC/t 538 744 715 955 ACCEPT ACCEPT 12.3.4 OTHER PAPERS MAINLY FOR PACKAGING NAC/mt
12.4 OTHER PAPER AND PAPERBOARD N.E.S. (NOT ELSEWHERE SPECIFIED) 1000 t 13.243 27,793 13.392 34,027 5.625 62,732 5.375 60,660 7 7 7 7 12.4 OTHER PAPER AND PAPERBOARD N.E.S. (NOT ELSEWHERE SPECIFIED) 1000 t 12.4 OTHER PAPER AND PAPERBOARD N.E.S. (NOT ELSEWHERE SPECIFIED) 1000 t 208 173 12.4 OTHER PAPER AND PAPERBOARD N.E.S. (NOT ELSEWHERE SPECIFIED) NAC/t 2099 2541 11152 11286 ACCEPT ACCEPT 12.4 OTHER PAPER AND PAPERBOARD N.E.S. (NOT ELSEWHERE SPECIFIED) NAC/mt
15 GLULAM AND CROSS-LAMINATED TIMBER (CLT or X-LAM)2 1000 m3 66.929 48,541 1,728.471 1,127,564 7 7 7 7 15 GLULAM AND CROSS-LAMINATED TIMBER (CLT or X-LAM)1 1000 m3 OK OK OK OK OK OK OK OK 15 GLULAM AND CROSS-LAMINATED TIMBER (CLT or X-LAM)1 1000 m3 2,578 796 15 GLULAM AND CROSS-LAMINATED TIMBER (CLT or X-LAM)1 NAC/m3 REPORT 725 REPORT 652 CHECK CHECK
15.1 GLULAM 1000 m3 41.478 27,991 1,340.822 836,890 7 7 7 7 15.1 GLULAM 1000 m3 15.1 GLULAM 1000 m3 2,063 692 15.1 GLULAM NAC/m3 REPORT 675 REPORT 624 CHECK CHECK
15.2 CROSS-LAMINATED TIMBER (CLT or X-LAM) 1000 m3 25.451 20,550 387.649 290,675 7 7 7 7 15.2 CROSS-LAMINATED TIMBER (CLT or X-LAM) 1000 m3 15.2 CROSS-LAMINATED TIMBER (CLT or X-LAM) 1000 m3 515 104 15.2 CROSS-LAMINATED TIMBER (CLT or X-LAM) NAC/m3 REPORT 807 REPORT 750 CHECK CHECK
16 I BEAMS (I-JOISTS)2 1000 t 0.031 52 0.320 2,150 7 7 7 7 16 I BEAMS (I-JOISTS)1 1000 t 16 I BEAMS (I-JOISTS)1 1000 t 0 -0 16 I BEAMS (I-JOISTS)1 NAC/t REPORT 1678 REPORT 6719 CHECK CHECK
1 Please include the non-coniferous non-tropical species exported by tropical countries or imported from tropical countries.
2 Glulam, CLT and I Beams are classified as secondary wood products but for ease of reporting are included here
To fill: 11 11 0 0 11 11 0 0
m3 = cubic metres solid volume
m3ub = cubic metres solid volume underbark (i.e. excluding bark)
t = metric tonnes
https://www.fao.org/3/cb8216en/cb8216en.pdf

JQ3 Secondary PP Trade

62 91 91
Country: AT Date: 03.07.23
Name of Official responsible for reply: 0
Official Address (in full):
FOREST SECTOR QUESTIONNAIRE JQ3 BML, 1030 Vienna, Marxerg. 2
SECONDARY PROCESSED PRODUCTS Telephone/Fax: 0 0
Trade E-mail: 0
This table highlights discrepancies between items and sub-items. Please verify your data if there's an error!
Value must always be in 1000 NAC (national currency) 1000 EUR Discrepancies
Eurozone countries may use the old national currency, but only in both years Flag Flag Flag Flag Note Note Note Note
Product Product I M P O R T V A L U E E X P O R T V A L U E Import Export Import Export Product Product I M P O R T V A L U E E X P O R T V A L U E
code 2021 2022 2021 2022 2021 2022 2021 2022 2021 2022 2021 2022 Code 2021 2022 2021 2022
13 SECONDARY WOOD PRODUCTS 2,124,454 2,286,128
VEREBELYINE DOSA Melinda (ESTAT): VEREBELYINE DOSA Melinda (ESTAT): corrected to the right sum (rounding problem)
2,666,948 1,801,381 7 7 13 SECONDARY WOOD PRODUCTS OK OK OK OK
13.1 FURTHER PROCESSED SAWNWOOD 114,221 107,868 135,568 147,612 7 7 13.1 FURTHER PROCESSED SAWNWOOD OK OK OK OK
13.1.C Coniferous 85,552 79,440 105,680 116,979 7 7 13.1.C Coniferous
13.1.NC Non-coniferous 28,669 28,428 29,887 30,633 7 7 13.1.NC Non-coniferous
13.1.NC.T of which: Tropical 1,412 2,338 483 765 7 7 13.1.NC.T of which: Tropical OK OK OK OK
13.2 WOODEN WRAPPING AND PACKAGING MATERIAL 187,864 256,196 87,007 124,804 7 7 13.2 WOODEN WRAPPING AND PACKAGING MATERIAL
13.3 WOOD PRODUCTS FOR DOMESTIC/DECORATIVE USE 42,768 44,841 11,818 13,395 7 7 13.3 WOOD PRODUCTS FOR DOMESTIC/DECORATIVE USE
13.4 BUILDER’S JOINERY AND CARPENTRY OF WOOD1 356,147 337,875 1,756,524 745,414 7 7 13.4 BUILDER’S JOINERY AND CARPENTRY OF WOOD1
13.5 WOODEN FURNITURE 1,263,095 1,339,512 572,923 632,017 7 7 13.5 WOODEN FURNITURE
13.6 PREFABRICATED BUILDINGS OF WOOD 31,305 46,447 48,619 69,304 7 7 13.6 PREFABRICATED BUILDINGS OF WOOD
13.7 OTHER MANUFACTURED WOOD PRODUCTS 129,053 153,388 54,490 68,835 7 7 13.7 OTHER MANUFACTURED WOOD PRODUCTS
14 SECONDARY PAPER PRODUCTS 1,059,809 1,242,828 1,207,040 1,396,363 7 7 14 SECONDARY PAPER PRODUCTS OK OK OK OK
14.1 COMPOSITE PAPER AND PAPERBOARD 11,166 13,283 393 343 7 7 14.1 COMPOSITE PAPER AND PAPERBOARD
14.2 SPECIAL COATED PAPER AND PULP PRODUCTS 164,323 188,905 93,835 111,443 7 7 14.2 SPECIAL COATED PAPER AND PULP PRODUCTS
14.3 HOUSEHOLD AND SANITARY PAPER, READY FOR USE 217,798 306,833 146,382 192,916 7 7 14.3 HOUSEHOLD AND SANITARY PAPER, READY FOR USE
14.4 PACKAGING CARTONS, BOXES ETC. 394,385 468,293 781,761 891,718 7 7 14.4 PACKAGING CARTONS, BOXES ETC.
14.5 OTHER ARTICLES OF PAPER AND PAPERBOARD, READY FOR USE 272,137 265,515 184,670 199,942 7 7 14.5 OTHER ARTICLES OF PAPER AND PAPERBOARD, READY FOR USE OK OK OK OK
14.5.1 of which: PRINTING AND WRITING PAPER, READY FOR USE 5,638 7,253 3,356 3,512 7 7 14.5.1 of which: PRINTING AND WRITING PAPER, READY FOR USE
14.5.2 of which: ARTICLES, MOULDED OR PRESSED FROM PULP 16,223 17,410 2,939 6,101 7 7 14.5.2 of which: ARTICLES, MOULDED OR PRESSED FROM PULP
14.5.3 of which: FILTER PAPER AND PAPERBOARD, READY FOR USE 23,528 23,234 5,841 8,538 7 7 14.5.3 of which: FILTER PAPER AND PAPERBOARD, READY FOR USE
1 In February 2023 this definition was updated to exclude Glulam, Cross-Laminated Timber and I-Beams which are now distinct items in the JFSQ (15.1, 15.2 and 16). This change was made to reflect the update of HS2022.
To fill: 0 0 0 0

ECE-EU Species

Country: AT Date: 9/12/23
Name of Official responsible for reply: 0
FOREST SECTOR QUESTIONNAIRE ECE/EU Species Trade Official Address (in full): Check Table
BML, 1030 Vienna, Marxerg. 2 0 both VALUE and quantity reported ZERO
Trade in Roundwood and Sawnwood by species Telephone: 0 Fax: 0 DISCREPANCIES ZERO Q quantity ZERO when VALUE is reported
E-mail: 0 ZERO V Value ZERO when quantity is reported
Checks whether the sum of subitems is bigger than the total Zero check - if no value please CHECK NO Q no quantity reported
Value must always be in 1000 NAC ( national currency) NO V no value reported Treshold: 2
Eurozone countries may use the old national currency, but only in both years 1000 EUR Flag Flag Flag Flag Flag Flag Flag Flag Note Note Note Note Note Note Note Note REPORT no figures reported
I M P O R T E X P O R T Import Export Import Export I M P O R T E X P O R T Value per I M P O R T E X P O R T Unit price check
Product Classification Classification Unit of 2021 2022 2021 2022 2021 2022 2021 2022 2021 2022 2021 2022 2021 2022 2021 2022 Classification Classification unit 2021 2022 2021 2022 IMPORT EXPORT
Code HS2022 CN2022 Product Quantity Quantity Value Quantity Value Quantity Value Quantity Value Quantity Value Quantity Value Quantity Value Quantity Value Quantity Value Quantity Value Quantity Value Quantity Value Quantity Value Quantity Value Quantity Value Quantity Value HS2022 CN2022 Product
1.2.C 4403.11/21/22/23/24/25/26 Industrial Roundwood, Coniferous 1000 m3ub 10017.644 736,655 7975.906 743,290 954.007 77,677 1151.168 114,972 7 7 7 7 OK OK OK OK OK OK OK OK 4403.11/21/22/23/24/25/26 Industrial Roundwood, Coniferous NAC/m3 74 93 81 100 ACCEPT ACCEPT PRODUCTION I M P O R T E X P O R T
4403.21/22 of which: Pine (Pinus spp.) 1000 m3ub 628.423 32,329 625.888 40,806 108.191 8,285 228.780 21,542 7 7 7 7 OK OK OK OK OK OK OK OK 4403.21/22 of which: Pine (Pinus spp.) NAC/m3 51 65 77 94 ACCEPT ACCEPT Product Classification Classification Unit of 2021 2022 2021 2022 2021 2022
4403 21 10 sawlogs and veneer logs 1000 m3ub 298.946 17,843 291.036 20,543 91.183 6,978 194.043 19,980 7 7 7 7 4403 21 10 sawlogs and veneer logs NAC/m3 60 103 77 REPORT ACCEPT CHECK Code HS2022 CN2022 Product Quantity Quantity Quantity Quantity Value Quantity Value Quantity Value Quantity Value
4403 21 90 4403 22 00 pulpwood and other industrial roundwood 1000 m3ub 329.477 14,486 334.852 20,263 17.008 1,307 34.737 1,562 7 7 7 7 4403 21 90 4403 22 00 pulpwood and other industrial roundwood NAC/m3 44 45 77 REPORT ACCEPT CHECK 1 4401.11/12 44.03 Roundwood production 1000 m3 JQ1 18,420 19,358
4403.23/24 of which: Fir/Spruce (Abies spp., Picea spp.) 1000 m3ub 8634.032 641,042 6826.536 644,490 737.844 60,104 818.579 82,680 7 7 7 7 OK OK OK OK OK OK OK OK 4403.23/24 of which: Fir/Spruce (Abies spp., Picea spp.) NAC/m3 74 94 81 101 ACCEPT ACCEPT EU2 18420.265 19357.935
4403 23 10 sawlogs and veneer logs 1000 m3ub 7190.744 577,796 6012.710 594,719 409.278 33,744 660.249 68,723 7 7 7 7 4403 23 10 sawlogs and veneer logs NAC/m3 80 99 82 104 ACCEPT ACCEPT dif 0 0
4403 23 90 4403 24 00 pulpwood and other industrial roundwood 1000 m3ub 1443.288 63,247 813.826 49,771 328.566 26,359 158.330 13,957 7 7 7 7 4403 23 90 4403 24 00 pulpwood and other industrial roundwood NAC/m3 44 61 80 88 ACCEPT ACCEPT 1.2.C 4403.11/21/22/23/24/25/26 Industrial Roundwood (wood in the rough), Coniferous 1000 m3 JQ2 10,018 736,655 7,976 743,290 954 77,677 1,151 114,972
1.2.NC 4403.12/41/42/49/91/93/94 4403.95/96/97/98/99 Industrial Roundwood, Non-Coniferous 1000 m3ub 885.392 76,622 543.003 72,759 138.822 19,552 155.538 28,468 7 7 7 7 OK OK OK OK OK OK OK OK 4403.12/41/42/49/91/93/94 4403.95/96/97/98/99 Industrial Roundwood, Non-Coniferous NAC/m3 87 134 141 183 ACCEPT ACCEPT ECE/EU 10,018 736,655 7,976 743,290 954 77,677 1,151 114,972
ex4403.12 4403.91 of which: Oak (Quercus spp.) 1000 m3ub 57.844 19,581 74.526 33,441 41.310 9,375 37.988 12,939 7 7 7 7 ex4403.12 4403.91 of which: Oak (Quercus spp.) NAC/m3 339 449 227 341 ACCEPT ACCEPT dif 0 0 0 0 0 0 0 0
ex4403.12 4403.93/94 of which: Beech (Fagus spp.) 1000 m3ub 702.534 44,481 386.900 29,627 33.847 2,842 48.665 5,102 7 7 7 7 ex4403.12 4403.93/94 of which: Beech (Fagus spp.) NAC/m3 63 77 84 105 ACCEPT ACCEPT 1.2.NC 4403.12/41/42/49/91/93/94/95/96/97/98/99 Industrial Roundwood (wood in the rough), Non-Coniferous 1000 m3 JQ2 885 76,622 543 72,759 139 19,552 156 28,468
ex4403.12 4403.95/96 of which: Birch (Betula spp.) 1000 m3ub 5.099 414 4.449 301 0.329 153 0.542 35 7 7 7 7 OK OK OK OK OK OK OK OK ex4403.12 4403.95/96 of which: Birch (Betula spp.) NAC/m3 81 68 464 65 ACCEPT CHECK ECE/EU 885 76,622 543 72,759 139 19,552 156 28,468
4403 95 10 sawlogs and veneer logs 1000 m3ub 0.376 126 1.278 102 0.002 0 0.000 0 7 7 7 7 4403 95 10 sawlogs and veneer logs NAC/m3 335 80 235 ZERO Q CHECK CHECK dif 0 0 0 0 0 0 0 0
ex4403 12 00 4403 95 90 4403 96 00 pulpwood and other industrial roundwood 1000 m3ub 4.723 288 3.171 199 0.327 152 0.542 35 7 7 7 7 ex4403 12 00 4403 95 90 4403 96 00 pulpwood and other industrial roundwood NAC/m3 61 63 466 65 ACCEPT CHECK 6.C 4406.11/91 4407.11/12/13/14/19 Sawnwood, Coniferous 1000 m3 JQ2 1,911 567,134 1,786 552,086 5,947 1,870,911 5,731 1,895,011
ex4403.12 4403.97 of which: Poplar/Aspen (Populus spp.) 1000 m3ub 10.291 503 16.869 700 17.072 1,404 31.001 3,195 7 7 7 7 ex4403.12 4403.97 of which: Poplar/Aspen (Populus spp.) NAC/m3 49 41 82 103 ACCEPT ACCEPT ECE/EU 1,911 567,134 1,786 552,086 5,947 1,870,911 5,731 1,895,011
ex4403.12 4403.98 of which: Eucalyptus (Eucalyptus spp.) 1000 m3ub 0.001 4 0.000 0 0.000 0 0.000 0 7 7 7 7 ex4403.12 4403.98 of which: Eucalyptus (Eucalyptus spp.) NAC/m3 7058 0 0 0 CHECK CHECK dif 0 0 0 0 0 0 0 0
6.C 4406.11/91 4407.11/12/13/14/19 Sawnwood, Coniferous 1000 m3 1911.235 567,134 1785.572 552,086 5946.608 1,870,911 5730.805 1,895,011 7 7 7 7 OK OK OK OK OK OK OK OK 4406.11/91 4407.11/12/13/14/19 Sawnwood, Coniferous NAC/m3 297 309 315 331 ACCEPT ACCEPT 6.NC 4406.12/92 4407.21/22/23/25/26/27/28/29/91/92/93/94/95/96/97/99 Sawnwood, Non-coniferous 1000 m3 JQ2 177 130,814 215 196,440 173 114,872 145 131,461
4407.11 ex4407.13 ex4406.11/91 of which: Pine (Pinus spp.) 1000 m3 70.746 20,141 203.339 35,252 154.494 41,115 215.480 66,790 7 7 7 7 4407.11 ex4407.13 ex4406.11/91 of which: Pine (Pinus spp.) NAC/m3 285 173 266 310 ACCEPT ACCEPT ECE/EU 177 130,814 215 196,440 173 114,872 145 131,461
4407.12 ex4407.13/14 ex4406.11/91 of which: Fir/Spruce (Abies spp., Picea spp.) 1000 m3 1634.831 462,206 1442.308 442,689 5458.563 1,689,487 5251.969 1,686,686 7 7 7 7 4407.12 ex4407.13/14 ex4406.11/91 of which: Fir/Spruce (Abies spp., Picea spp.) NAC/m3 283 307 310 321 ACCEPT ACCEPT dif 0 0 0 0 0 0 0 0
6.NC 4406.12/92 4407.21/22/23/25/26/27/28/29/ 91/92/93/94/95/96/97/99 Sawnwood, Non-coniferous 1000 m3 176.890 130,814 214.696 196,440 172.966 114,872 145.138 131,461 7 7 7 7 OK OK OK OK OK OK OK OK 4406.12/92 4407.21/22/23/25/26/27/28/29/ 91/92/93/94/95/96/97/99 Sawnwood, Non-coniferous NAC/m3 740 915 664 906 ACCEPT ACCEPT
ex4406.12/92 4407.91 of which: Oak (Quercus spp.) 1000 m3 105.695 84,118 130.285 128,899 54.081 55,750 50.318 76,610 7 7 7 7 ex4406.12/92 4407.91 of which: Oak (Quercus spp.) NAC/m3 796 989 1031 1523 ACCEPT ACCEPT
ex4406.12/92 4407.92 of which: Beech (Fagus spp.) 1000 m3 15.966 7,249 19.261 8,634 55.373 23,204 49.399 22,592 7 7 7 7 ex4406.12/92 4407.92 of which: Beech (Fagus spp.) NAC/m3 454 448 419 457 ACCEPT ACCEPT
ex4406.12/92 4407.93 of which: Maple (Acer spp.) 1000 m3 1.514 1,288 1.768 2,146 1.662 999 1.337 1,064 7 7 7 7 ex4406.12/92 4407.93 of which: Maple (Acer spp.) NAC/m3 851 1214 601 796 ACCEPT ACCEPT
ex4406.12/92 4407.94 of which: Cherry (Prunus spp.) 1000 m3 0.640 520 1.004 799 0.434 431 0.496 455 7 7 7 7 ex4406.12/92 4407.94 of which: Cherry (Prunus spp.) NAC/m3 812 796 993 918 ACCEPT ACCEPT
ex4406.12/92 4407.95 of which: Ash (Fraxinus spp.) 1000 m3 6.953 4,526 8.861 6,592 14.120 9,206 16.380 11,132 7 7 7 7 ex4406.12/92 4407.95 of which: Ash (Fraxinus spp.) NAC/m3 651 744 652 680 ACCEPT ACCEPT
ex4406.12/92 4407.96 of which: Birch (Betula spp.) 1000 m3 2.578 1,142 3.183 2,015 1.142 307 0.768 529 7 7 7 7 ex4406.12/92 4407.96 of which: Birch (Betula spp.) NAC/m3 443 633 269 689 ACCEPT CHECK
ex4406.12/92 4407.97 of which: Poplar/Aspen (Populus spp.) 1000 m3 0.990 670 1.075 1,355 0.507 633 0.717 340 7 7 7 7 ex4406.12/92 4407.97 of which: Poplar/Aspen (Populus spp.) NAC/m3 677 1260 1249 474 ACCEPT CHECK
Light blue cells are requested only for EU members using the Combined Nomenclature to fill in - other countries are welcome to do so if their trade classification nomenclature permits
Please note that information on tropical species trade is requested in questionnaire ITTO2 for ITTO member countries
"ex" codes indicate that only part of that trade classication code is used To fill: 0 0 0 0 0 0 0 0
m3ub = cubic metres underbark (i.e. excluding bark)
Please complete each cell if possible with
data (numerical value)
or " " for not available
or "0" for zero data

EU1 ExtraEU Trade

FOREST SECTOR QUESTIONNAIRE Country: AT Date: 12.09.23 0 both VALUE and quantity reported ZERO
EU1 Name of Official responsible for reply: 0 ZERO Q quantity ZERO when VALUE is reported
Official Address (in full): BML, 1030 Vienna, Marxerg. 2 ZERO V Value ZERO when quantity is reported
Trade with countries outside EU Telephone: 0 Fax: 0 JQ2/EU1 comparison Zero check - if no value please CHECK NO Q no quantity reported
Value must always be in 1000 NAC (national currency) E-mail: 0 JQ2>=EU1 NO V no value reported Treshold: 2
Eurozone countries may use the old national currency, but only in both years 1000 EUR Flag Flag Flag Flag Flag Flag Flag Flag Note Note Note Note Note Note Note Note Trade Discrepancies REPORT no figures reported
Product Unit of I M P O R T E X P O R T Import Export Import Export I M P O R T E X P O R T Product I M P O R T E X P O R T Product Value per I M P O R T E X P O R T Column1 Column2
code Product quantity 2021 2022 2021 2022 2021 2022 2021 2022 2021 2022 2021 2022 2021 2022 2021 2022 code 2021 2022 2021 2022 code Product unit 2021 2022 2021 2022 IMPORT EXPORT
Quantity Value Quantity Value Quantity Value Quantity Value Quantity Value Quantity Value Quantity Value Quantity Value Quantity Value Quantity Value Quantity Value Quantity Value Quantity Value Quantity Value Quantity Value Quantity Value Quantity Value Quantity Value Quantity Value Quantity Value
1 ROUNDWOOD (WOOD IN THE ROUGH) 1000 m3ub 156.678 15,472 170.340 22,094 9.261 2,185 11.025 3,566 7 7 7 7 OK OK OK OK OK OK OK OK 1 ROUNDWOOD (WOOD IN THE ROUGH) 1000 m3ub OK OK OK OK OK OK OK OK 1 ROUNDWOOD (WOOD IN THE ROUGH) NAC/ m3 99 130 236 323 ACCEPT CHECK
1.1 WOOD FUEL (INCLUDING WOOD FOR CHARCOAL) 1000 m3ub 44.633 5,394 40.706 7,931 0.078 40 0.105 48 7 7 7 7 OK OK OK OK OK OK OK OK 1.1 WOOD FUEL (INCLUDING WOOD FOR CHARCOAL) 1000 m3ub OK OK OK OK OK OK OK OK 1.1 WOOD FUEL (INCLUDING WOOD FOR CHARCOAL) NAC/ m3 121 195 505 457 CHECK CHECK
1.1.C Coniferous 1000 m3ub 1.553 223 0.510 82 0.000 0 7 7 7 7 OK OK OK OK OK OK OK OK 1.1.C Coniferous 1000 m3ub 1.1.C Coniferous NAC/ m3 143 160 0 REPORT CHECK CHECK
1.1.NC Non-Coniferous 1000 m3ub 43.079 5,171 40.196 7,850 0.078 40 0.105 48 7 7 7 7 OK OK OK OK OK OK OK OK 1.1.NC Non-Coniferous 1000 m3ub 1.1.NC Non-Coniferous NAC/ m3 120 195 505 457 CHECK CHECK
1.2 INDUSTRIAL ROUNDWOOD 1000 m3ub 112.045 10,079 129.634 14,163 9.183 2,145 10.919 3,518 7 7 7 7 OK OK OK OK OK OK OK OK 1.2 INDUSTRIAL ROUNDWOOD 1000 m3ub OK OK OK OK OK OK OK OK 1.2 INDUSTRIAL ROUNDWOOD NAC/ m3 90 109 234 322 CHECK CHECK
1.2.C Coniferous 1000 m3ub 90.717 7,314 96.166 9,317 5.680 645 5.809 839 7 7 7 7 OK OK OK OK OK OK OK OK 1.2.C Coniferous 1000 m3ub 1.2.C Coniferous NAC/ m3 81 97 113 144 ACCEPT CHECK
1.2.NC Non-Coniferous 1000 m3ub 21.328 2,765 33.468 4,846 3.503 1,500 5.110 2,679 7 7 7 7 OK OK OK OK OK OK OK OK 1.2.NC Non-Coniferous 1000 m3ub 1.2.NC Non-Coniferous NAC/ m3 130 145 428 524 CHECK CHECK
1.2.NC.T of which: Tropical 1000 m3ub 0.049 88 0.077 72 0.000 0 0.000 0 7 7 7 7 OK OK OK OK OK OK OK OK 1.2.NC.T of which: Tropical 1000 m3ub OK OK OK OK OK OK OK OK 1.2.NC.T of which: Tropical NAC/ m3 1800 940 0 0 CHECK ACCEPT
2 WOOD CHARCOAL 1000 t 10.453 6,198 7.619 5,271 0.275 172 0.943 495 7 7 7 7 OK OK OK OK OK OK OK OK 2 WOOD CHARCOAL 1000 t 2 WOOD CHARCOAL NAC/ t 593 692 627 525 ACCEPT CHECK
3 WOOD CHIPS, PARTICLES AND RESIDUES 1000 m3 64.120 2,601 32.598 1,449 16.286 1,068 17.141 1,429 4 4 4 4 4 4 4 4 includes 4 includes 4 includes 4 includes 4 includes 4 includes 4 includes 3 includes 4 OK OK OK OK OK OK OK OK 3 WOOD CHIPS, PARTICLES AND RESIDUES 1000 m3 OK OK OK OK OK OK OK OK 3 WOOD CHIPS, PARTICLES AND RESIDUES NAC/ m3 41 44 66 83 ACCEPT CHECK
3.1 WOOD CHIPS AND PARTICLES 1000 m3 19.267 1,683 6.908 789 4.180 500 8.197 818 7 7 7 7 OK OK OK OK OK OK OK OK 3.1 WOOD CHIPS AND PARTICLES 1000 m3 3.1 WOOD CHIPS AND PARTICLES NAC/ m3 87 114 120 100 ACCEPT CHECK
3.2 WOOD RESIDUES (INCLUDING WOOD FOR AGGLOMERATES) 1000 m3 44.853 918 25.690 660 12.107 568 8.944 611 4 4 4 4 4 4 4 4 includes 4 includes 4 includes 4 includes 4 includes 4 includes 4 includes 3 includes 4 OK OK OK OK OK OK OK OK 3.2 WOOD RESIDUES (INCLUDING WOOD FOR AGGLOMERATES) 1000 m3 3.2 WOOD RESIDUES (INCLUDING WOOD FOR AGGLOMERATES) NAC/ m3 20 26 47 68 ACCEPT CHECK
3.2.1 of which: Sawdust 1000 m3 0.258 40 6.200 536 7 7 7 7 OK OK OK OK OK OK OK OK 3.2.1 of which: Sawdust 1000 m3 OK OK OK OK OK OK OK OK 3.2.1 of which: Sawdust NAC/ m3 REPORT 157 REPORT 86 CHECK CHECK
4 RECOVERED POST-CONSUMER WOOD 1000 t included in 3.2 included in 3.2 included in 3.2 included in 3.2 included in 3.2 included in 3.2 included in 3.2 included in 3.2 WRONG WRONG OK OK WRONG WRONG OK OK 4 RECOVERED POST-CONSUMER WOOD 1000 t 4 RECOVERED POST-CONSUMER WOOD NAC/ t REPORT REPORT REPORT REPORT CHECK CHECK
5 WOOD PELLETS AND OTHER AGGLOMERATES 1000 t 24.201 3,503 25.690 9,488 27.264 5,008 39.789 15,350 7 7 7 7 OK OK OK OK OK OK OK OK 5 WOOD PELLETS AND OTHER AGGLOMERATES 1000 t OK OK OK OK OK OK OK OK 5 WOOD PELLETS AND OTHER AGGLOMERATES NAC/ t 145 369 184 386 CHECK CHECK
5.1 WOOD PELLETS 1000 t 2.355 402 7.366 3,435 27.106 4,963 39.734 15,320 7 7 7 7 OK OK OK OK OK OK OK OK 5.1 WOOD PELLETS 1000 t 5.1 WOOD PELLETS NAC/ t 171 466 183 386 CHECK CHECK
5.2 OTHER AGGLOMERATES 1000 t 21.846 3,101 18.324 6,053 0.158 45 0.055 30 7 7 7 7 OK OK OK OK OK OK OK OK 5.2 OTHER AGGLOMERATES 1000 t 5.2 OTHER AGGLOMERATES NAC/ t 142 330 283 545 ACCEPT CHECK
6 SAWNWOOD (INCLUDING SLEEPERS) 1000 m3 155.590 66,246 144.273 73,074 1,056.149 421,685 1,050.766 453,823 7 7 7 7 OK OK OK OK OK OK OK OK 6 SAWNWOOD (INCLUDING SLEEPERS) 1000 m3 OK OK OK OK OK OK OK OK 6 SAWNWOOD (INCLUDING SLEEPERS) NAC/ m3 426 506 399 432 ACCEPT CHECK
6.C Coniferous 1000 m3 131.433 46,389 78.815 40,458 1,010.012 393,758 986.551 422,009 7 7 7 7 OK OK OK OK OK OK OK OK 6.C Coniferous 1000 m3 6.C Coniferous NAC/ m3 353 513 390 428 ACCEPT CHECK
6.NC Non-Coniferous 1000 m3 24.157 19,857 25.232 32,617 46.137 27,927 42.774 31,814 7 7 7 7 OK OK OK OK OK OK OK OK 6.NC Non-Coniferous 1000 m3 6.NC Non-Coniferous NAC/ m3 822 1293 605 744 CHECK CHECK
6.NC.T of which: Tropical 1000 m3 4.301 4,505 2.657 3,933 0.224 188 0.084 146 7 7 7 7 OK OK OK OK OK OK OK OK 6.NC.T of which: Tropical 1000 m3 OK OK OK OK OK OK OK OK 6.NC.T of which: Tropical NAC/ m3 1047 1480 838 1734 ACCEPT CHECK
7 VENEER SHEETS 1000 m3 25.562 77,926 27.745 108,061 3.483 14,171 4.653 15,925 7 7 7 7 OK OK OK OK OK OK OK OK 7 VENEER SHEETS 1000 m3 OK OK OK OK OK OK OK OK 7 VENEER SHEETS NAC/ m3 3048 3895 4069 3423 ACCEPT CHECK
7.C Coniferous 1000 m3 0.143 424 0.139 429 0.319 1,460 0.373 1,359 7 7 7 7 OK OK OK OK OK OK OK OK 7.C Coniferous 1000 m3 7.C Coniferous NAC/ m3 2968 3085 4577 3644 ACCEPT CHECK
7.NC Non-Coniferous 1000 m3 25.419 77,501 27.606 107,633 3.164 12,711 4.280 14,566 7 7 7 7 OK OK OK OK OK OK OK OK 7.NC Non-Coniferous 1000 m3 7.NC Non-Coniferous NAC/ m3 3049 3899 4017 3403 ACCEPT CHECK
7.NC.T of which: Tropical 1000 m3 0.256 409 0.439 681 0.092 541 0.470 509 7 7 7 7 OK OK OK OK OK OK OK OK 7.NC.T of which: Tropical 1000 m3 OK OK OK OK OK OK OK OK 7.NC.T of which: Tropical NAC/ m3 1598 1551 5886 1082 CHECK CHECK
8 WOOD-BASED PANELS 1000 m3 52.299 29,153 37.705 35,044 621.119 375,332 509.345 380,580 7 7 7 7 OK OK OK OK OK OK OK OK 8 WOOD-BASED PANELS 1000 m3 OK OK OK OK OK OK OK OK 8 WOOD-BASED PANELS NAC/ m3 557 929 604 747 ACCEPT CHECK
8.1 PLYWOOD 1000 m3 30.817 21,882 19.283 19,249 101.152 91,279 92.401 95,514 7 7 7 7 OK OK OK OK OK OK OK OK 8.1 PLYWOOD 1000 m3 OK OK OK OK OK OK OK OK 8.1 PLYWOOD NAC/ m3 710 998 902 1034 ACCEPT CHECK
8.1.C Coniferous 1000 m3 5.327 4,726 87.088 81,763 7 7 7 7 OK OK OK OK OK OK OK OK 8.1.C Coniferous 1000 m3 8.1.C Coniferous NAC/ m3 REPORT 887 REPORT 939 CHECK CHECK
8.1.NC Non-Coniferous 1000 m3 13.708 14,330 5.165 12,913 7 7 7 7 OK OK OK OK OK OK OK OK 8.1.NC Non-Coniferous 1000 m3 8.1.NC Non-Coniferous NAC/ m3 REPORT 1045 REPORT 2500 CHECK CHECK
8.1.NC.T of which: Tropical 1000 m3 0.531 482 0.142 194 0.113 402 0.148 838 7 7 7 7 OK OK OK OK OK OK OK OK 8.1.NC.T of which: Tropical 1000 m3 Error Error OK OK Error Error OK OK 8.1.NC.T of which: Tropical NAC/ m3 907 1367 3560 5663 CHECK CHECK
8.1.1 of which: Laminated Veneer Lumber (LVL) 1000 m3 0.076 52 0.062 112 7 7 7 7 OK OK OK OK OK OK OK OK 8.1.1 of which: Laminated Veneer Lumber (LVL) 1000 m3 OK OK OK OK OK OK OK OK 8.1.1 of which: Laminated Veneer Lumber (LVL) NAC/ m3 REPORT 682 REPORT 1808 CHECK CHECK
8.1.1.C Coniferous 1000 m3 0.052 23 0.000 0 7 7 7 7 OK OK OK OK OK OK OK OK 8.1.1.C Coniferous 1000 m3 8.1.1.C Coniferous NAC/ m3 REPORT 446 REPORT 0 CHECK ACCEPT
8.1.1.NC Non-Coniferous 1000 m3 0.022 27 0.051 112
VEREBELYINE DOSA Melinda (ESTAT): VEREBELYINE DOSA Melinda (ESTAT): corrected
7 7 7 7 OK OK OK OK OK OK OK OK 8.1.1.NC Non-Coniferous 1000 m3 8.1.1.NC Non-Coniferous NAC/ m3 REPORT 1227 REPORT 2196 CHECK CHECK
8.1.1.NC.T of which: Tropical 1000 m3 0.002 1 0.011 112 7 7 7 7 OK OK OK OK OK OK OK OK 8.1.1.NC.T of which: Tropical 1000 m3 OK OK OK OK OK OK OK OK 8.1.1.NC.T of which: Tropical NAC/ m3 REPORT 463 REPORT 10182 CHECK CHECK
8.2 PARTICLE BOARD, ORIENTED STRANDBOARD (OSB) AND SIMILAR BOARD 1000 m3 15.710 5,781 7.135 3,735 344.047 148,895 302.309 163,899 7 7 7 7 OK OK OK OK OK OK OK OK 8.2 PARTICLE BOARD, ORIENTED STRANDBOARD (OSB) AND SIMILAR BOARD 1000 m3 8.2 PARTICLE BOARD, ORIENTED STRANDBOARD (OSB) AND SIMILAR BOARD NAC/ m3 368 523 433 542 ACCEPT CHECK
8.2.1 of which: ORIENTED STRANDBOARD (OSB) 1000 m3 5.610 3,271 3.806 2,425 1.188 550 1.675 852 7 7 7 7 OK OK OK OK OK OK OK OK 8.2.1 of which: ORIENTED STRANDBOARD (OSB) 1000 m3 OK OK OK OK OK OK OK OK 8.2.1 of which: ORIENTED STRANDBOARD (OSB) NAC/ m3 583 637 463 509 ACCEPT CHECK
8.3 FIBREBOARD 1000 m3 5.772 1,489 11.287 12,060 175.920 135,157 114.635 121,167
VEREBELYINE DOSA Melinda (ESTAT): VEREBELYINE DOSA Melinda (ESTAT): corrected to the right sum
7 7 7 7 OK OK OK OK OK OK OK OK 8.3 FIBREBOARD 1000 m3 OK OK OK OK OK OK OK OK 8.3 FIBREBOARD NAC/ m3 258 1068 768 1057 ACCEPT CHECK
8.3.1 HARDBOARD 1000 m3 0.044 105 5.597 9,590 6.405 3,242 5.543 3,128 7 7 7 7 OK OK OK OK OK OK OK OK 8.3.1 HARDBOARD 1000 m3 8.3.1 HARDBOARD NAC/ m3 2379 1713 506 564 CHECK CHECK
8.3.2 MEDIUM/HIGH DENSITY FIBREBOARD (MDF/HDF) 1000 m3 1.418 737 4.056 2,069 169.396 131,854 108.795 117,897 7 7 7 7 OK OK OK OK OK OK OK OK 8.3.2 MEDIUM/HIGH DENSITY FIBREBOARD (MDF/HDF) 1000 m3 8.3.2 MEDIUM/HIGH DENSITY FIBREBOARD (MDF/HDF) NAC/ m3 519 510 778 1084 ACCEPT CHECK
8.3.3 OTHER FIBREBOARD 1000 m3 4.310 648 1.634 401 0.119 61 0.297 140 7 7 7 7 OK OK OK OK OK OK OK OK 8.3.3 OTHER FIBREBOARD 1000 m3 8.3.3 OTHER FIBREBOARD NAC/ m3 150 245 517 473 CHECK CHECK
9 WOOD PULP 1000 t 219.809 141,718 213.627 186,718 17.931 12,098 28.999 23,428 7 7 7 7 OK OK OK OK OK OK OK OK 9 WOOD PULP 1000 t OK OK OK OK OK OK OK OK 9 WOOD PULP NAC/ t 645 874 675 808 ACCEPT CHECK
9.1 MECHANICAL AND SEMI-CHEMICAL WOOD PULP 1000 t 2.527 1,176 1.758 1,249 0.004 10 0.019 6 7 7 7 7 OK OK OK OK OK OK OK OK 9.1 MECHANICAL AND SEMI-CHEMICAL WOOD PULP 1000 t 9.1 MECHANICAL AND SEMI-CHEMICAL WOOD PULP NAC/ t 466 711 2382 327 CHECK CHECK
9.2 CHEMICAL WOOD PULP 1000 t 193.194 119,943 184.642 155,747 15.185 9,815 25.222 20,018 7 7 7 7 OK OK OK OK OK OK OK OK 9.2 CHEMICAL WOOD PULP 1000 t OK OK OK OK OK OK OK OK 9.2 CHEMICAL WOOD PULP NAC/ t 621 844 646 794 ACCEPT CHECK
9.2.1 SULPHATE PULP 1000 t 193.191 119,934 184.642 155,745 15.163 9,772 24.437 19,250 7 7 7 7 OK OK OK OK OK OK OK OK 9.2.1 SULPHATE PULP 1000 t 9.2.1 SULPHATE PULP NAC/ t 621 844 644 788 ACCEPT CHECK
9.2.1.1 of which: BLEACHED 1000 t 192.155 119,048 184.546 155,648 9.772 6,685 13.372 11,665 7 7 7 7 OK OK OK OK OK OK OK OK 9.2.1.1 of which: BLEACHED 1000 t OK OK OK OK OK OK OK OK 9.2.1.1 of which: BLEACHED NAC/ t 620 843 684 872 ACCEPT CHECK
9.2.2 SULPHITE PULP 1000 t 0.004 9 0.000 1 0.022 43 0.785 767 7 7 7 7 OK OK OK OK OK OK OK OK 9.2.2 SULPHITE PULP 1000 t 9.2.2 SULPHITE PULP NAC/ t 2528 8369 1894 978 CHECK CHECK
9.3 DISSOLVING GRADES 1000 t 24.088 20,598 27.228 29,723 2.742 2,272 3.757 3,404 7 7 7 7 OK OK OK OK OK OK OK OK 9.3 DISSOLVING GRADES 1000 t 9.3 DISSOLVING GRADES NAC/ t 855 1092 829 906 ACCEPT CHECK
10 OTHER PULP 1000 t 2.966 400 4.926 3,147 0.301 288 0.323 419 7 7 7 7 OK OK OK OK OK OK OK OK 10 OTHER PULP 1000 t OK OK OK OK OK OK OK OK 10 OTHER PULP NAC/ t 135 639 957 1298 ACCEPT CHECK
10.1 PULP FROM FIBRES OTHER THAN WOOD 1000 t 0.128 168 1.406 2,407 0.013 83 0.022 155 7 7 7 7 OK OK OK OK OK OK OK OK 10.1 PULP FROM FIBRES OTHER THAN WOOD 1000 t 10.1 PULP FROM FIBRES OTHER THAN WOOD NAC/ t 1309 1712 6229 7001 CHECK CHECK
10.2 RECOVERED FIBRE PULP 1000 t 2.838 232 3.520 740 0.288 205 0.300 263 7 7 7 7 OK OK OK OK OK OK OK OK 10.2 RECOVERED FIBRE PULP 1000 t 10.2 RECOVERED FIBRE PULP NAC/ t 82 210 712 877 CHECK CHECK
11 RECOVERED PAPER 1000 t 40.649 8,666 36.251 9,365 1.336 241 5.037 987 7 7 7 7 OK OK OK OK OK OK OK OK 11 RECOVERED PAPER 1000 t 11 RECOVERED PAPER NAC/ t 213 258 180 196 ACCEPT CHECK
12 PAPER AND PAPERBOARD 1000 t 48.639 50,259 48.867
VEREBELYINE DOSA Melinda (ESTAT): VEREBELYINE DOSA Melinda (ESTAT): corrected to the right sum
67,904
VEREBELYINE DOSA Melinda (ESTAT): VEREBELYINE DOSA Melinda (ESTAT): corrected the decimal

VEREBELYINE DOSA Melinda (ESTAT): VEREBELYINE DOSA Melinda (ESTAT): corrected

VEREBELYINE DOSA Melinda (ESTAT): VEREBELYINE DOSA Melinda (ESTAT): corrected to the right sum
638.858 472,303 512.838 605,176 7 7 7 7 OK OK OK OK OK OK OK OK 12 PAPER AND PAPERBOARD 1000 t OK OK OK OK OK OK OK OK 12 PAPER AND PAPERBOARD NAC/ t 1033 1390 739 1180 ACCEPT CHECK
12.1 GRAPHIC PAPERS 1000 t 20.218 12,882 17.391 17,842 475.773 340,933 378.363 444,185 7 7 7 7 OK OK OK OK OK OK OK OK 12.1 GRAPHIC PAPERS 1000 t OK OK OK OK OK OK OK OK 12.1 GRAPHIC PAPERS NAC/ t 637 1026 717 1174 ACCEPT CHECK
12.1.1 NEWSPRINT 1000 t 13.078 5,798 11.199 9,085 57.154 20,826 52.685 39,589 7 7 7 7 OK OK OK OK OK OK OK OK 12.1.1 NEWSPRINT 1000 t 12.1.1 NEWSPRINT NAC/ t 443 811 364 751 CHECK CHECK
12.1.2 UNCOATED MECHANICAL 1000 t 1.605 1,066 1.897 1,886 21.586 9,688 4.136 3,873 7 7 7 7 OK OK OK OK OK OK OK OK 12.1.2 UNCOATED MECHANICAL 1000 t 12.1.2 UNCOATED MECHANICAL NAC/ t 664 994 449 936 CHECK CHECK
12.1.3 UNCOATED WOODFREE 1000 t 1.522 2,604 2.116 3,825 96.749 106,956 75.249 132,465 7 7 7 7 OK OK OK OK OK OK OK OK 12.1.3 UNCOATED WOODFREE 1000 t 12.1.3 UNCOATED WOODFREE NAC/ t 1711 1808 1105 1760 ACCEPT CHECK
12.1.4 COATED PAPERS 1000 t 4.013 3,415 2.179 3,045 300.284 203,463 246.293 268,258 7 7 7 7 OK OK OK OK OK OK OK OK 12.1.4 COATED PAPERS 1000 t 12.1.4 COATED PAPERS NAC/ t 851 1398 678 1089 CHECK CHECK
12.2 HOUSEHOLD AND SANITARY PAPERS 1000 t 0.459 1,392 0.481 2,098 0.010 49 0.037 149 7 7 7 7 OK OK OK OK OK OK OK OK 12.2 HOUSEHOLD AND SANITARY PAPERS 1000 t 12.2 HOUSEHOLD AND SANITARY PAPERS NAC/ t 3034 4362 4835 4034 ACCEPT CHECK
12.3 PACKAGING MATERIALS 1000 t 27.707 33,595 30.789 44,480 162.907 129,499 134.193 158,554 7 7 7 7 OK OK OK OK OK OK OK OK 12.3 PACKAGING MATERIALS 1000 t OK OK OK OK OK OK OK OK 12.3 PACKAGING MATERIALS NAC/ t 1212 1445 795 1182 ACCEPT CHECK
12.3.1 CASE MATERIALS 1000 t 16.003 11,551 16.507 14,835 78.465 40,999 63.938 47,511 7 7 7 7 OK OK OK OK OK OK OK OK 12.3.1 CASE MATERIALS 1000 t 12.3.1 CASE MATERIALS NAC/ t 722 899 523 743 ACCEPT CHECK
12.3.2 CARTONBOARD 1000 t 8.406 16,379 11.049 23,686 39.472 50,407 25.788 56,009 7 7 7 7 OK OK OK OK OK OK OK OK 12.3.2 CARTONBOARD 1000 t 12.3.2 CARTONBOARD NAC/ t 1948 2144 1277 2172 ACCEPT CHECK
12.3.3 WRAPPING PAPERS 1000 t 3.114 5,186 2.818 5,227 42.913 36,528 42.413 52,865 7 7 7 7 OK OK OK OK OK OK OK OK 12.3.3 WRAPPING PAPERS 1000 t 12.3.3 WRAPPING PAPERS NAC/ t 1665 1855 851 1246 CHECK CHECK
12.3.4 OTHER PAPERS MAINLY FOR PACKAGING 1000 t 0.184 479 0.415 732 2.056 1,565 2.054 2,169 7 7 7 7 OK OK OK OK OK OK OK OK 12.3.4 OTHER PAPERS MAINLY FOR PACKAGING 1000 t 12.3.4 OTHER PAPERS MAINLY FOR PACKAGING NAC/ t 2604 1763 761 1056 CHECK CHECK
12.4 OTHER PAPER AND PAPERBOARD N.E.S. (NOT ELSEWHERE SPECIFIED) 1000 t 0.255 2,390 0.206 3,484 0.168 1,822 0.245 2,287 7 7 7 7 OK OK OK OK OK OK OK OK 12.4 OTHER PAPER AND PAPERBOARD N.E.S. (NOT ELSEWHERE SPECIFIED) 1000 t 12.4 OTHER PAPER AND PAPERBOARD N.E.S. (NOT ELSEWHERE SPECIFIED) NAC/ t 9368 16910 10833 9335 ACCEPT CHECK
15 GLULAM AND CROSS-LAMINATED TIMBER (CLT or X-LAM)1 1000 m3 1.106 906 300.920 227,065 7 7 7 7 OK OK OK OK OK OK OK OK 15 GLULAM AND CROSS-LAMINATED TIMBER (CLT or X-LAM)1 1000 m3 OK OK OK OK OK OK OK OK 15 GLULAM AND CROSS-LAMINATED TIMBER (CLT or X-LAM)1 NAC/ m3 REPORT 819 REPORT 755 CHECK CHECK
15.1 GLULAM 1000 m3 0.493 503 232.580 167,216 7 7 7 7 OK OK OK OK OK OK OK OK 15.1 GLULAM 1000 m3 15.1 GLULAM NAC/ m3 REPORT 1020 REPORT 719 CHECK CHECK
15.2 CROSS-LAMINATED TIMBER (CLT or X-LAM) 1000 m3 0.613 403 68.340 59,849 7 7 7 7 OK OK OK OK OK OK OK OK 15.2 CROSS-LAMINATED TIMBER (CLT or X-LAM) 1000 m3 15.2 CROSS-LAMINATED TIMBER (CLT or X-LAM) NAC/ m3 REPORT 658 REPORT 876 CHECK CHECK
16 I BEAMS (I-JOISTS)1 1000 t 0.001 1 0.000 1 7 7 7 7 OK OK OK OK OK OK OK OK 16 I BEAMS (I-JOISTS)1 1000 t 16 I BEAMS (I-JOISTS)1 NAC/ t REPORT 887 REPORT 8730 CHECK CHECK
To fill: 11 11 0 0 11 11 1 1

EU2 Removals

Country: AT 14-Jun
Name of Official responsible for reply: 0
Official Address (in full):
BML, 1030 Vienna, Marxerg. 2
Phone/Fax: 0 0
E-mail: 0
FOREST SECTOR QUESTIONNAIRE EU2
Removals by type of ownership
Discrepancies
Product code Ownership Flag Flag Note Note Product code Ownership
Unit 2021 2022 2021 2022 2021 2022 Unit 2021 2022
Quantity Quantity Quantity Quantity
ROUNDWOOD REMOVALS (under bark) ROUNDWOOD REMOVALS
1 ROUNDWOOD 1000 m3 18420.265 19357.935 1 ROUNDWOOD 1000 m3 OK OK
1.C Coniferous 1000 m3 15663.416 16205.144 1.C Coniferous 1000 m3 OK OK
1.NC Non-coniferous 1000 m3 2756.849 3152.791 1.NC Non-coniferous 1000 m3 OK OK
State forests 1000 m3 1836.812 1981.003 includes only ÖBf AG includes only ÖBf AG State forests 1000 m3 OK OK
Coniferous 1000 m3 1583.238 1630.582 includes only ÖBf AG includes only ÖBf AG Coniferous 1000 m3
Non-coniferous 1000 m3 253.574 350.421 includes only ÖBf AG includes only ÖBf AG Non-coniferous 1000 m3
Other publicly owned forests 1000 m3
VEREBELYINE DOSA Melinda (ESTAT): VEREBELYINE DOSA Melinda (ESTAT): zeros deleted, data not available
included in private forests included in private forests Other publicly owned forests 1000 m3 OK OK
Coniferous 1000 m3 included in private forests included in private forests Coniferous 1000 m3
Non-coniferous 1000 m3 included in private forests included in private forests Non-coniferous 1000 m3
Private forest 1000 m3 16583.453 17376.932 4 4 including other publicly owned forests including other publicly owned forests Private forest 1000 m3 OK OK
Coniferous 1000 m3 14080.178 14574.562 4 4 including other publicly owned forests including other publicly owned forests Coniferous 1000 m3
Non-coniferous 1000 m3 2503.275 2802.37 4 4 including other publicly owned forests including other publicly owned forests Non-coniferous 1000 m3
To fill: 3 3
Note:
Ownership categories correspond to those of the TBFRA.
State forests: Forests owned by national, state and regional governments, or government-owned corporations; Crown forests.
Other publicly owned forests: Forests belonging to cities, municipalities, villages and communes.
Private forests: Forests owned by individuals, co-operatives, enterprises and industries and other private institutions.
The unit should be solid cubic metres, under bark.

ITTO1-Estimates

Country: AT Date:
Name of Official responsible for reply: 0
Official Address (in full): BML, 1030 Vienna, Marxerg. 2
ITTO1
Telephone: 0 Fax: 0
FOREST SECTOR QUESTIONNAIRE E-mail: 0
Production and Trade Estimates for 2023
Specify Currency and Unit of Value (e.g.:1000 US $): __________
Product Unit of Production Imports Exports
Code Product quantity Quantity Quantity Value Quantity Value
1.2 INDUSTRIAL ROUNDWOOD 1000 m3ub
1.2.C Coniferous 1000 m3ub
1.2.NC Non-Coniferous 1000 m3ub
1.2.NC.T of which: Tropical1 1000 m3ub
6 SAWNWOOD (INCLUDING SLEEPERS) 1000 m3
6.C Coniferous 1000 m3
6.NC Non-Coniferous 1000 m3
6.NC.T of which: Tropical1 1000 m3
7 VENEER SHEETS 1000 m3
7.C Coniferous 1000 m3
7.NC Non-Coniferous 1000 m3
7.NC.T of which: Tropical 1000 m3
8.1 PLYWOOD 1000 m3
8.1.C Coniferous 1000 m3
8.1.NC Non-Coniferous 1000 m3
8.1.NC.T of which: Tropical 1000 m3
1 Please include the non-coniferous non-tropical species exported by tropical countries or imported from tropical countries.
m3 = cubic metres solid volume
m3ub = cubic metres solid volume underbark (i.e. excluding bark)

ITTO3-Miscellaneous

Country: Date:
Name of Official responsible for reply:
Official Address (in full):
FOREST SECTOR QUESTIONNAIRE ITTO3
Miscellaneous Items Telephone: Fax:
(use additional paper if necessary) E-mail:
1 Please enter current import tariff rates applied to tropical and non-tropical timber products. If available, please provide tariffs by the relevant customs classification category. If tariff levels have been reported in previous years, enter changes only. (Logs = JQ code 1.2, Sawn = JQ code 6, Veneer = JQ code 7, and Plywood = JQ code 8.1)
Current import tariff Logs Tropical: Sawn Tropical: Veneer Tropical: Plywood Tropical:
Non-Tropical: Non-Tropical: Non-Tropical: Non-Tropical:
Comments (if any):
2 Please comment on any quotas, incentives, disincentives, tariff/non-tariff barriers or other related factors which now or in future will significantly affect your production and trade of tropical timber products.
3 Please elaborate on any short or medium term plans for expanding capacity for (further) processing of tropical timber products in your country.
4 Please indicate any trends or changes expected in the species composition of your trade. How important are lesser-used tropical timber species and/or minor tropical forest products?
5 Please indicate trends in domestic building activity, housing starts, mortgage/interest rates, substitution of non-tropical wood and/or non-wood products for tropical timbers, and any other domestic factors having a significant impact on tropical timber consumption in your country.
6 Please indicate the extent of foreign involvement in your timber sector (e.g. number and nationalities of concessionaires/mill (joint) owners, area of forest allocated, scale of investment, etc.).
7 Please provide details of any relevant forest law enforcement activities (e.g. legislation, fines, arrests, etc.) in your country in the past year.
8 Please indicate the current extent of forest plantations in your country (ha), annual establishment rate (ha/yr) and proportion of industrial roundwood production from plantations.

ITTO2-Species

Country: AT Date:
ITTO2 Name of Official responsible for reply: 0
Official Address (in full): BML, 1030 Vienna, Marxerg. 2
FOREST SECTOR QUESTIONNAIRE
Trade in Tropical Species Telephone: 0 Fax: 0
E-mail: 0
Specify Currency and Unit of Value (e.g.:1000 US $): ____________
I M P O R T E X P O R T
Product Classifications 2021 2022 2021 2022
HS2022/HS2017/HS2012/HS2007 Scientific Name Local/Trade Name Quantity Value Quantity Value Quantity Value Quantity Value
(1000 m3) (1000 m3) (1000 m3) (1000 m3)
1.2.NC.T HS2022:
Industrial Roundwood, Tropical ex4403.12 4403.41/42/49
HS2017:
ex4403.12 4403.41/49
HS2012/2007:
ex4403.10 4403.41/49 ex4403.99
6.NC.T HS2022:
Sawnwood, Tropical ex4406.12/92 4407.21/22/23/25/26/27/28/29
HS2017:
ex4406.12/92 4407.21/22/25/26/27/28/29
HS2012/2007:
ex4406.10/90 4407.21/22/25/26/27/28/30
7.NC.T HS2022:
Veneer Sheets, Tropical 4408.31/39
HS2017:
4408.31/39
HS2012/2007:
4408.31/39 ex4408.90
8.1.NC.T HS2022:
Plywood, Tropical 4412.31/41/51/91
HS2017:
4412.31 ex4412.94/99
HS2012/2007:
4412.31 ex4412.32/94/99
Note: List the major species traded in each category. Use additional sheet if more species are to be explicitly reported. For tropical plywood, identify by face veneer if composed of more than one species.

Annex1 | JQ1-Corres.

Last updated in 2016
FOREST SECTOR QUESTIONNAIRE JQ1 (Supp. 1)
PRIMARY PRODUCTS
Removals and Production
CORRESPONDENCES to CPC Ver.2.1
Central Product Classification Version 2.1 (CPC Ver. 2.1)
Product Product
Code
REMOVALS OF ROUNDWOOD (WOOD IN THE ROUGH)
1 ROUNDWOOD (WOOD IN THE ROUGH) 031
1.1 WOOD FUEL (INCLUDING WOOD FOR CHARCOAL) 0313
1.1.C Coniferous 03131
1.1.NC Non-Coniferous 03132
1.2 INDUSTRIAL ROUNDWOOD 0311 0312
1.2.C Coniferous 0311
1.2.NC Non-Coniferous 0312
1.2.NC.T of which: Tropical ex0312
1.2.1 SAWLOGS AND VENEER LOGS ex03110 ex03120
1.2.1.C Coniferous ex03110
1.2.1.NC Non-Coniferous ex03120
1.2.2 PULPWOOD, ROUND AND SPLIT (INCLUDING WOOD FOR PARTICLE BOARD, OSB AND FIBREBOARD) ex03110 ex03120
1.2.2.C Coniferous ex03110
1.2.2.NC Non-Coniferous ex03120
1.2.3 OTHER INDUSTRIAL ROUNDWOOD ex03110 ex03120
1.2.3.C Coniferous ex03110
1.2.3.NC Non-Coniferous ex03120
PRODUCTION
2 WOOD CHARCOAL ex34510
3 WOOD CHIPS, PARTICLES AND RESIDUES ex31230 ex39283
3.1 WOOD CHIPS AND PARTICLES ex31230
3.2 WOOD RESIDUES (INCLUDING WOOD FOR AGGLOMERATES) ex39283
4 RECOVERED POST-CONSUMER WOOD ex39283
5 WOOD PELLETS AND OTHER AGGLOMERATES 39281 39282
5.1 WOOD PELLETS 39281
5.2 OTHER AGGLOMERATES 39282
6 SAWNWOOD (INCLUDING SLEEPERS) 311 3132
6.C Coniferous 31101 ex31109 ex3132
6.NC Non-Coniferous 31102 ex31109 ex3132
6.NC.T of which: Tropical ex31102 ex31109 ex3132
7 VENEER SHEETS 3151
7.C Coniferous 31511
7.NC Non-Coniferous 31512
7.NC.T of which: Tropical ex31512
8 WOOD-BASED PANELS 3141 3142 3143 3144
8.1 PLYWOOD 3141 3142
8.1.C Coniferous 31411 31421
8.1.NC Non-Coniferous 31412 31422
8.1.NC.T of which: Tropical ex31412 ex31422
8.2 PARTICLE BOARD, ORIENTED STRAND BOARD (OSB) and SIMILAR BOARD 3143
8.2.1 of which: ORIENTED STRAND BOARD (OSB) 31432
8.3 FIBREBOARD 3144
8.3.1 HARDBOARD 31442
8.3.2 MEDIUM/HIGH DENSITY FIBREBOARD (MDF/HDF) 31441
8.3.3 OTHER FIBREBOARD 31449
9 WOOD PULP 32111 32112 ex32113
9.1 MECHANICAL AND SEMI-CHEMICAL WOOD PULP ex32113
9.2 CHEMICAL WOOD PULP 32112
9.2.1 SULPHATE PULP ex32112
9.2.1.1 of which: BLEACHED ex32112
9.2.2 SULPHITE PULP ex32112
9.3 DISSOLVING GRADES 32111
10 OTHER PULP ex32113
10.1 PULP FROM FIBRES OTHER THAN WOOD ex32113
10.2 RECOVERED FIBRE PULP ex32113
11 RECOVERED PAPER 3924
12 PAPER AND PAPERBOARD 3212 3213 32142 32143 ex32149 32151 32198 ex32199
12.1 GRAPHIC PAPERS 3212 ex32143 ex32149
12.1.1 NEWSPRINT 32121
12.1.2 UNCOATED MECHANICAL ex32122 ex32129
12.1.3 UNCOATED WOODFREE 32122 ex32129
12.1.4 COATED PAPERS ex32143 ex32149
12.2 HOUSEHOLD AND SANITARY PAPERS 32131
12.3 PACKAGING MATERIALS 32132 ex32133 32134 32135 ex32136 ex32137 32142 32151 ex32143 ex32149
12.3.1 CASE MATERIALS 32132 32134 32135 ex32136
12.3.2 CARTONBOARD ex32133 ex32136 ex32143 ex32149
12.3.3 WRAPPING PAPERS ex32133 ex32136 ex32137 32142 32151
12.3.4 OTHER PAPERS MAINLY FOR PACKAGING ex32136
12.4 OTHER PAPER AND PAPERBOARD N.E.S. ex32149 ex32133 ex32136 ex32137 32198 ex32199
Notes:
The term "ex" means that there is not a complete correlation between the two codes and that only a part of the CPC Ver.2.1 code is applicable.
For instance "ex31512" under product 7.NC.T means that only a part of CPC Ver.2.1 code 31512 refers to non-coniferous tropical veneer sheets.
In CPC, if only 3 or 4 digits are shown, then all sub-codes at lower degrees of aggregation are included (for example, 0313 includes 03131 and 03132).

TS-OB

% Min: 80% Max: 120% Notes
JQ1 Country Flow Unit Product 2017 2018 2019 2020 2021 2021 2022 17/18 18/19 19/20 20/21 21/21 21/22 2017 2018 2019 2020
AT P.OB 1000 m3 1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P.OB 1000 m3 1_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P.OB 1000 m3 1_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P.OB 1000 m3 1_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P.OB 1000 m3 1_1_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P.OB 1000 m3 1_1_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P.OB 1000 m3 1_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P.OB 1000 m3 1_2_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P.OB 1000 m3 1_2_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P.OB 1000 m3 1_2_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P.OB 1000 m3 1_2_1_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P.OB 1000 m3 1_2_1_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P.OB 1000 m3 1_2_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P.OB 1000 m3 1_2_2_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P.OB 1000 m3 1_2_2_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P.OB 1000 m3 1_2_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P.OB 1000 m3 1_2_3_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P.OB 1000 m3 1_2_3_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!

TS-JQ1

% Min: 80% Max: 120% Notes
JQ1 Country Flow Unit Product 2017 2018 2019 2020 2021 2021 2022 17/18 18/19 19/20 20/21 21/21 21/22 2017 2018 2019 2020
AT P 1000 m3 1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 m3 1_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 m3 1_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 m3 1_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 m3 1_1_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 m3 1_1_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 m3 1_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 m3 1_2_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 m3 1_2_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 m3 1_2_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 m3 1_2_1_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 m3 1_2_1_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 m3 1_2_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 m3 1_2_2_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 m3 1_2_2_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 m3 1_2_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 m3 1_2_3_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 m3 1_2_3_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 mt 2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 m3 3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 m3 3_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 m3 3_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 mt 4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 mt 4_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 mt 4_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 m3 5 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 m3 5_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 m3 5_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 m3 5_NC_T ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 m3 6 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 m3 6_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 m3 6_1_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 m3 6_1_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 m3 6_1_NC_T ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 m3 6_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 m3 6_2_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 m3 6_2_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 m3 6_2_NC_T ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 m3 6_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 m3 6_3_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 m3 6_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 m3 6_4_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 m3 6_4_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 m3 6_4_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 mt 7 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 mt 7_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 mt 7_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 mt 7_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 mt 7_3_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 mt 7_3_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 mt 7_3_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 mt 7_3_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 mt 7_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 mt 8 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 mt 8_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 mt 8_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 mt 9 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 mt 10 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 mt 10_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 mt 10_1_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 mt 10_1_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 mt 10_1_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 mt 10_1_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 mt 10_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 mt 10_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 mt 10_3_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 mt 10_3_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 mt 10_3_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 mt 10_3_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 mt 10_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!

TS-JQ2

% Min: 80% Max: 120% Notes
JQ2 Country Flow Unit Product 2017 2018 2019 2020 2021 2021 2022 17/18 18/19 19/20 20/21 21/21 21/22 2017 2018 2019 2020
Q AT M 1000 m3 1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 m3 1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 m3 1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 m3 1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 m3 1_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 1_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 m3 1_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 m3 1_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 1_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 m3 1_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 m3 1_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 1_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 m3 1_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 m3 1_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 1_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 m3 1_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 m3 1_2_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 1_2_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 m3 1_2_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 m3 1_2_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 1_2_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 m3 1_2_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 m3 1_2_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 1_2_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 m3 1_2_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 m3 1_2_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 1_2_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 m3 1_2_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 m3 1_2_NC_T ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 1_2_NC_T ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 m3 1_2_NC_T ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 m3 1_2_NC_T ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 1_2_NC_T ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 m3 1_2_NC_T ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 mt 2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 mt 2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 mt 2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 mt 2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 m3 3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 m3 3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 m3 3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 m3 3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 m3 3_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 3_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 m3 3_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 m3 3_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 3_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 m3 3_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 m3 3_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 3_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 m3 3_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 m3 3_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 3_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 m3 3_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 mt 4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 mt 4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 mt 4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 mt 4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 mt 4_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 4_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 mt 4_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 mt 4_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 4_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 mt 4_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 mt 4_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 4_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 mt 4_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 mt 4_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 4_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 mt 4_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 m3 5 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 5 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 m3 5 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 m3 5 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 5 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 m3 5 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 m3 5_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 5_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 m3 5_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 m3 5_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 5_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 m3 5_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 m3 5_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 5_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 m3 5_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 m3 5_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 5_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 m3 5_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 m3 5_NC_T ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 5_NC_T ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 m3 5_NC_T ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 m3 5_NC_T ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 5_NC_T ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 m3 5_NC_T ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 m3 6 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 6 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 m3 6 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 m3 6 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 6 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 m3 6 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 m3 6_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 6_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 m3 6_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 m3 6_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 6_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 m3 6_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 m3 6_1_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 6_1_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 m3 6_1_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 m3 6_1_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 6_1_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 m3 6_1_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 m3 6_1_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 6_1_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 m3 6_1_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 m3 6_1_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 6_1_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 m3 6_1_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 m3 6_1_NC_T ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 6_1_NC_T ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 m3 6_1_NC_T ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 m3 6_1_NC_T ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 6_1_NC_T ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 m3 6_1_NC_T ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 m3 6_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 6_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 m3 6_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 m3 6_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 6_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 m3 6_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 m3 6_2_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 6_2_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 m3 6_2_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 m3 6_2_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 6_2_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 m3 6_2_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 m3 6_2_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 6_2_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 m3 6_2_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 m3 6_2_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 6_2_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 m3 6_2_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 m3 6_2_NC_T ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 6_2_NC_T ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 m3 6_2_NC_T ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 m3 6_2_NC_T ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 6_2_NC_T ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 m3 6_2_NC_T ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 m3 6_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 6_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 m3 6_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 m3 6_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 6_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 m3 6_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 m3 6_3_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 6_3_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 m3 6_3_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 m3 6_3_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 6_3_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 m3 6_3_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 m3 6_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 6_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 m3 6_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 m3 6_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 6_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 m3 6_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 m3 6_4_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 6_4_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 m3 6_4_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 m3 6_4_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 6_4_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 m3 6_4_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 m3 6_4_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 6_4_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 m3 6_4_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 m3 6_4_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 6_4_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 m3 6_4_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 m3 6_4_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 6_4_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 m3 6_4_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 m3 6_4_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 6_4_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 m3 6_4_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 mt 7 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 7 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 mt 7 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 mt 7 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 7 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 mt 7 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 mt 7_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 7_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 mt 7_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 mt 7_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 7_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 mt 7_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 mt 7_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 7_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 mt 7_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 mt 7_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 7_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 mt 7_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 mt 7_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 7_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 mt 7_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 mt 7_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 7_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 mt 7_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 mt 7_3_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 7_3_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 mt 7_3_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 mt 7_3_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 7_3_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 mt 7_3_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 mt 7_3_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 7_3_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 mt 7_3_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 mt 7_3_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 7_3_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 mt 7_3_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 mt 7_3_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 7_3_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 mt 7_3_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 mt 7_3_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 7_3_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 mt 7_3_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 mt 7_3_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 7_3_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 mt 7_3_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 mt 7_3_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 7_3_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 mt 7_3_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 mt 7_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 7_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 mt 7_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 mt 7_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 7_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 mt 7_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 mt 8 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 8 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 mt 8 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 mt 8 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 8 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 mt 8 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 mt 8_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 8_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 mt 8_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 mt 8_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 8_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 mt 8_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 mt 8_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 8_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 mt 8_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 mt 8_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 8_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 mt 8_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 mt 9 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 9 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 mt 9 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 mt 9 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 9 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 mt 9 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 mt 10 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 10 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 mt 10 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 mt 10 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 10 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 mt 10 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 mt 10_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 10_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 mt 10_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 mt 10_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 10_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 mt 10_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 mt 10_1_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 10_1_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 mt 10_1_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 mt 10_1_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 10_1_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 mt 10_1_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 mt 10_1_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 10_1_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 mt 10_1_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 mt 10_1_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 10_1_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 mt 10_1_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 mt 10_1_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 10_1_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 mt 10_1_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 mt 10_1_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 10_1_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 mt 10_1_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 mt 10_1_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 10_1_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 mt 10_1_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 mt 10_1_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 10_1_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 mt 10_1_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 mt 10_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 10_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 mt 10_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 mt 10_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 10_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 mt 10_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 mt 10_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 10_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 mt 10_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 mt 10_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 10_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 mt 10_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 mt 10_3_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 10_3_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 mt 10_3_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 mt 10_3_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 10_3_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 mt 10_3_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 mt 10_3_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 10_3_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 mt 10_3_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 mt 10_3_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 10_3_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 mt 10_3_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 mt 10_3_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 10_3_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 mt 10_3_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 mt 10_3_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 10_3_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 mt 10_3_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 mt 10_3_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 10_3_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 mt 10_3_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 mt 10_3_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 10_3_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 mt 10_3_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 mt 10_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 10_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 mt 10_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 mt 10_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 10_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 mt 10_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!

TS-JQ3

% Min: 80% Max: 120% Notes
JQ3 Country Flow Unit Product 2017 2018 2019 2020 2021 2021 2022 17/18 18/19 19/20 20/21 21/21 21/22 2017 2018 2019 2020
AT M 1000 NAC 11_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 11_1_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 11_1_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 11_1_NC_T ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 11_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 11_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 11_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 11_5 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 11_6 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 11_7 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 11_7_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 12_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 12_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 12_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 12_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 12_5 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 12_6 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 12_6_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 12_6_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 12_6_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 12_7 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 12_7_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 12_7_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC 12_7_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 11_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 11_1_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 11_1_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 11_1_NC_T ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 11_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 11_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 11_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 11_5 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 11_6 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 11_7 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 11_7_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 12_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 12_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 12_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 12_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 12_5 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 12_6 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 12_6_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 12_6_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC 12_6_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!

TS-ECEEU

% Min: 80% Max: 120% Notes
ECEEU Country Flow Unit Product 2017 2018 2019 2020 2021 2021 2022 17/18 18/19 19/20 20/21 21/21 21/22 2017 2018 2019 2020
Q AT M 1000 m3 ST_1_2_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC ST_1_2_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 m3 ST_1_2_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 m3 ST_1_2_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC ST_1_2_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 m3 ST_1_2_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 m3 ST_1_2_C_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC ST_1_2_C_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 m3 ST_1_2_C_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 m3 ST_1_2_C_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC ST_1_2_C_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 m3 ST_1_2_C_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 m3 ST_1_2_C_1_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC ST_1_2_C_1_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 m3 ST_1_2_C_1_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 m3 ST_1_2_C_1_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC ST_1_2_C_1_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 m3 ST_1_2_C_1_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 m3 ST_1_2_C_1_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC ST_1_2_C_1_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 m3 ST_1_2_C_1_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 m3 ST_1_2_C_1_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC ST_1_2_C_1_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 m3 ST_1_2_C_1_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 m3 ST_1_2_C_1_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC ST_1_2_C_1_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 m3 ST_1_2_C_1_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 m3 ST_1_2_C_1_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC ST_1_2_C_1_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 m3 ST_1_2_C_1_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 m3 ST_1_2_C_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC ST_1_2_C_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 m3 ST_1_2_C_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 m3 ST_1_2_C_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC ST_1_2_C_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 m3 ST_1_2_C_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 m3 ST_1_2_C_2_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC ST_1_2_C_2_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 m3 ST_1_2_C_2_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 m3 ST_1_2_C_2_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC ST_1_2_C_2_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 m3 ST_1_2_C_2_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 m3 ST_1_2_C_2_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC ST_1_2_C_2_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 m3 ST_1_2_C_2_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 m3 ST_1_2_C_2_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC ST_1_2_C_2_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 m3 ST_1_2_C_2_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 m3 ST_1_2_C_2_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC ST_1_2_C_2_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 m3 ST_1_2_C_2_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 m3 ST_1_2_C_2_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC ST_1_2_C_2_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 m3 ST_1_2_C_2_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 m3 ST_1_2_C_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC ST_1_2_C_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 m3 ST_1_2_C_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 m3 ST_1_2_C_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC ST_1_2_C_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 m3 ST_1_2_C_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 m3 ST_1_2_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC ST_1_2_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 m3 ST_1_2_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 m3 ST_1_2_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC ST_1_2_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 m3 ST_1_2_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 m3 ST_1_2_NC_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC ST_1_2_NC_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 m3 ST_1_2_NC_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 m3 ST_1_2_NC_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC ST_1_2_NC_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 m3 ST_1_2_NC_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 m3 ST_1_2_NC_1_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC ST_1_2_NC_1_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 m3 ST_1_2_NC_1_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 m3 ST_1_2_NC_1_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC ST_1_2_NC_1_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 m3 ST_1_2_NC_1_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 m3 ST_1_2_NC_1_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC ST_1_2_NC_1_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 m3 ST_1_2_NC_1_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 m3 ST_1_2_NC_1_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC ST_1_2_NC_1_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 m3 ST_1_2_NC_1_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 m3 ST_1_2_NC_1_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC ST_1_2_NC_1_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 m3 ST_1_2_NC_1_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 m3 ST_1_2_NC_1_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC ST_1_2_NC_1_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 m3 ST_1_2_NC_1_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 m3 ST_1_2_NC_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC ST_1_2_NC_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 m3 ST_1_2_NC_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 m3 ST_1_2_NC_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC ST_1_2_NC_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 m3 ST_1_2_NC_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 m3 ST_1_2_NC_2_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC ST_1_2_NC_2_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 m3 ST_1_2_NC_2_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 m3 ST_1_2_NC_2_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC ST_1_2_NC_2_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 m3 ST_1_2_NC_2_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 m3 ST_1_2_NC_2_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC ST_1_2_NC_2_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 m3 ST_1_2_NC_2_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 m3 ST_1_2_NC_2_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC ST_1_2_NC_2_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 m3 ST_1_2_NC_2_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 m3 ST_1_2_NC_2_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC ST_1_2_NC_2_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 m3 ST_1_2_NC_2_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 m3 ST_1_2_NC_2_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC ST_1_2_NC_2_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 m3 ST_1_2_NC_2_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 m3 ST_1_2_NC_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC ST_1_2_NC_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 m3 ST_1_2_NC_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 m3 ST_1_2_NC_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC ST_1_2_NC_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 m3 ST_1_2_NC_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 m3 ST_1_2_NC_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC ST_1_2_NC_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 m3 ST_1_2_NC_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 m3 ST_1_2_NC_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC ST_1_2_NC_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 m3 ST_1_2_NC_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 m3 ST_1_2_NC_5 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC ST_1_2_NC_5 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 m3 ST_1_2_NC_5 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 m3 ST_1_2_NC_5 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC ST_1_2_NC_5 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 m3 ST_1_2_NC_5 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 m3 ST_5_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC ST_5_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 m3 ST_5_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 m3 ST_5_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC ST_5_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 m3 ST_5_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 m3 ST_5_C_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC ST_5_C_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 m3 ST_5_C_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 m3 ST_5_C_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC ST_5_C_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 m3 ST_5_C_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 m3 ST_5_C_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC ST_5_C_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 m3 ST_5_C_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 m3 ST_5_C_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC ST_5_C_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 m3 ST_5_C_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 m3 ST_5_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC ST_5_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 m3 ST_5_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 m3 ST_5_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC ST_5_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 m3 ST_5_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 m3 ST_5_NC_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC ST_5_NC_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 m3 ST_5_NC_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 m3 ST_5_NC_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC ST_5_NC_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 m3 ST_5_NC_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 m3 ST_5_NC_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC ST_5_NC_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 m3 ST_5_NC_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 m3 ST_5_NC_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC ST_5_NC_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 m3 ST_5_NC_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 m3 ST_5_NC_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC ST_5_NC_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 m3 ST_5_NC_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 m3 ST_5_NC_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC ST_5_NC_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 m3 ST_5_NC_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 m3 ST_5_NC_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC ST_5_NC_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 m3 ST_5_NC_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 m3 ST_5_NC_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC ST_5_NC_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 m3 ST_5_NC_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 m3 ST_5_NC_5 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC ST_5_NC_5 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 m3 ST_5_NC_5 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 m3 ST_5_NC_5 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC ST_5_NC_5 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 m3 ST_5_NC_5 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 m3 ST_5_NC_6 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC ST_5_NC_6 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 m3 ST_5_NC_6 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 m3 ST_5_NC_6 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC ST_5_NC_6 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 m3 ST_5_NC_6 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT M 1000 m3 ST_5_NC_7 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT M 1000 NAC ST_5_NC_7 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT M 1000 m3 ST_5_NC_7 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT X 1000 m3 ST_5_NC_7 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT X 1000 NAC ST_5_NC_7 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT X 1000 m3 ST_5_NC_7 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!

TS-EU1

% Min: 80% Max: 120% Notes
EU1 Country Flow Unit Product 2017 2018 2019 2020 2021 2021 2022 17/18 18/19 19/20 20/21 21/21 21/22 2017 2018 2019 2020
Q AT EX_M 1000 m3 1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_M 1000 NAC 1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_M 1000 m3 1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_X 1000 m3 1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_X 1000 NAC 1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_X 1000 m3 1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_M 1000 m3 1_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_M 1000 NAC 1_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_M 1000 m3 1_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_X 1000 m3 1_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_X 1000 NAC 1_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_X 1000 m3 1_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_M 1000 m3 1_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_M 1000 NAC 1_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_M 1000 m3 1_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_X 1000 m3 1_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_X 1000 NAC 1_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_X 1000 m3 1_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_M 1000 m3 1_2_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_M 1000 NAC 1_2_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_M 1000 m3 1_2_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_X 1000 m3 1_2_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_X 1000 NAC 1_2_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_X 1000 m3 1_2_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_M 1000 m3 1_2_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_M 1000 NAC 1_2_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_M 1000 m3 1_2_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_X 1000 m3 1_2_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_X 1000 NAC 1_2_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_X 1000 m3 1_2_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_M 1000 m3 1_2_NC_T ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_M 1000 NAC 1_2_NC_T ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_M 1000 m3 1_2_NC_T ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_X 1000 m3 1_2_NC_T ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_X 1000 NAC 1_2_NC_T ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_X 1000 m3 1_2_NC_T ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_M 1000 mt 2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_M 1000 NAC 2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_M 1000 mt 2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_X 1000 mt 2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_X 1000 NAC 2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_X 1000 mt 2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_M 1000 m3 3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_M 1000 NAC 3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_M 1000 m3 3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_X 1000 m3 3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_X 1000 NAC 3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_X 1000 m3 3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_M 1000 m3 3_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_M 1000 NAC 3_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_M 1000 m3 3_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_X 1000 m3 3_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_X 1000 NAC 3_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_X 1000 m3 3_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_M 1000 m3 3_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_M 1000 NAC 3_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_M 1000 m3 3_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_X 1000 m3 3_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_X 1000 NAC 3_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_X 1000 m3 3_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_M 1000 mt 4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_M 1000 NAC 4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_M 1000 mt 4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_X 1000 mt 4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_X 1000 NAC 4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_X 1000 mt 4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_M 1000 mt 4_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_M 1000 NAC 4_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_M 1000 mt 4_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_X 1000 mt 4_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_X 1000 NAC 4_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_X 1000 mt 4_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_M 1000 mt 4_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_M 1000 NAC 4_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_M 1000 mt 4_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_X 1000 mt 4_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_X 1000 NAC 4_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_X 1000 mt 4_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_M 1000 m3 5 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_M 1000 NAC 5 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_M 1000 m3 5 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_X 1000 m3 5 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_X 1000 NAC 5 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_X 1000 m3 5 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_M 1000 m3 5_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_M 1000 NAC 5_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_M 1000 m3 5_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_X 1000 m3 5_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_X 1000 NAC 5_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_X 1000 m3 5_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_M 1000 m3 5_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_M 1000 NAC 5_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_M 1000 m3 5_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_X 1000 m3 5_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_X 1000 NAC 5_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_X 1000 m3 5_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_M 1000 m3 5_NC_T ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_M 1000 NAC 5_NC_T ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_M 1000 m3 5_NC_T ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_X 1000 m3 5_NC_T ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_X 1000 NAC 5_NC_T ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_X 1000 m3 5_NC_T ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_M 1000 m3 6 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_M 1000 NAC 6 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_M 1000 m3 6 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_X 1000 m3 6 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_X 1000 NAC 6 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_X 1000 m3 6 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_M 1000 m3 6_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_M 1000 NAC 6_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_M 1000 m3 6_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_X 1000 m3 6_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_X 1000 NAC 6_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_X 1000 m3 6_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_M 1000 m3 6_1_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_M 1000 NAC 6_1_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_M 1000 m3 6_1_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_X 1000 m3 6_1_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_X 1000 NAC 6_1_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_X 1000 m3 6_1_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_M 1000 m3 6_1_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_M 1000 NAC 6_1_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_M 1000 m3 6_1_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_X 1000 m3 6_1_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_X 1000 NAC 6_1_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_X 1000 m3 6_1_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_M 1000 m3 6_1_NC_T ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_M 1000 NAC 6_1_NC_T ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_M 1000 m3 6_1_NC_T ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_X 1000 m3 6_1_NC_T ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_X 1000 NAC 6_1_NC_T ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_X 1000 m3 6_1_NC_T ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_M 1000 m3 6_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_M 1000 NAC 6_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_M 1000 m3 6_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_X 1000 m3 6_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_X 1000 NAC 6_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_X 1000 m3 6_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_M 1000 m3 6_2_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_M 1000 NAC 6_2_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_M 1000 m3 6_2_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_X 1000 m3 6_2_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_X 1000 NAC 6_2_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_X 1000 m3 6_2_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_M 1000 m3 6_2_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_M 1000 NAC 6_2_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_M 1000 m3 6_2_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_X 1000 m3 6_2_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_X 1000 NAC 6_2_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_X 1000 m3 6_2_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_M 1000 m3 6_2_NC_T ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_M 1000 NAC 6_2_NC_T ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_M 1000 m3 6_2_NC_T ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_X 1000 m3 6_2_NC_T ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_X 1000 NAC 6_2_NC_T ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_X 1000 m3 6_2_NC_T ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_M 1000 m3 6_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_M 1000 NAC 6_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_M 1000 m3 6_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_X 1000 m3 6_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_X 1000 NAC 6_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_X 1000 m3 6_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_M 1000 m3 6_3_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_M 1000 NAC 6_3_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_M 1000 m3 6_3_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_X 1000 m3 6_3_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_X 1000 NAC 6_3_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_X 1000 m3 6_3_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_M 1000 m3 6_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_M 1000 NAC 6_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_M 1000 m3 6_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_X 1000 m3 6_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_X 1000 NAC 6_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_X 1000 m3 6_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_M 1000 m3 6_4_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_M 1000 NAC 6_4_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_M 1000 m3 6_4_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_X 1000 m3 6_4_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_X 1000 NAC 6_4_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_X 1000 m3 6_4_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_M 1000 m3 6_4_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_M 1000 NAC 6_4_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_M 1000 m3 6_4_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_X 1000 m3 6_4_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_X 1000 NAC 6_4_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_X 1000 m3 6_4_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_M 1000 m3 6_4_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_M 1000 NAC 6_4_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_M 1000 m3 6_4_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_X 1000 m3 6_4_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_X 1000 NAC 6_4_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_X 1000 m3 6_4_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_M 1000 mt 7 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_M 1000 NAC 7 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_M 1000 mt 7 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_X 1000 mt 7 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_X 1000 NAC 7 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_X 1000 mt 7 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_M 1000 mt 7_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_M 1000 NAC 7_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_M 1000 mt 7_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_X 1000 mt 7_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_X 1000 NAC 7_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_X 1000 mt 7_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_M 1000 mt 7_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_M 1000 NAC 7_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_M 1000 mt 7_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_X 1000 mt 7_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_X 1000 NAC 7_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_X 1000 mt 7_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_M 1000 mt 7_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_M 1000 NAC 7_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_M 1000 mt 7_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_X 1000 mt 7_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_X 1000 NAC 7_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_X 1000 mt 7_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_M 1000 mt 7_3_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_M 1000 NAC 7_3_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_M 1000 mt 7_3_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_X 1000 mt 7_3_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_X 1000 NAC 7_3_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_X 1000 mt 7_3_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_M 1000 mt 7_3_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_M 1000 NAC 7_3_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_M 1000 mt 7_3_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_X 1000 mt 7_3_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_X 1000 NAC 7_3_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_X 1000 mt 7_3_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_M 1000 mt 7_3_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_M 1000 NAC 7_3_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_M 1000 mt 7_3_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_X 1000 mt 7_3_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_X 1000 NAC 7_3_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_X 1000 mt 7_3_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_M 1000 mt 7_3_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_M 1000 NAC 7_3_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_M 1000 mt 7_3_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_X 1000 mt 7_3_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_X 1000 NAC 7_3_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_X 1000 mt 7_3_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_M 1000 mt 7_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_M 1000 NAC 7_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_M 1000 mt 7_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_X 1000 mt 7_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_X 1000 NAC 7_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_X 1000 mt 7_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_M 1000 mt 8 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_M 1000 NAC 8 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_M 1000 mt 8 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_X 1000 mt 8 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_X 1000 NAC 8 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_X 1000 mt 8 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_M 1000 mt 8_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_M 1000 NAC 8_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_M 1000 mt 8_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_X 1000 mt 8_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_X 1000 NAC 8_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_X 1000 mt 8_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_M 1000 mt 8_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_M 1000 NAC 8_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_M 1000 mt 8_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_X 1000 mt 8_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_X 1000 NAC 8_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_X 1000 mt 8_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_M 1000 mt 9 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_M 1000 NAC 9 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_M 1000 mt 9 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_X 1000 mt 9 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_X 1000 NAC 9 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_X 1000 mt 9 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_M 1000 mt 10 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_M 1000 NAC 10 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_M 1000 mt 10 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_X 1000 mt 10 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_X 1000 NAC 10 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_X 1000 mt 10 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_M 1000 mt 10_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_M 1000 NAC 10_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_M 1000 mt 10_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_X 1000 mt 10_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_X 1000 NAC 10_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_X 1000 mt 10_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_M 1000 mt 10_1_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_M 1000 NAC 10_1_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_M 1000 mt 10_1_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_X 1000 mt 10_1_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_X 1000 NAC 10_1_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_X 1000 mt 10_1_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_M 1000 mt 10_1_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_M 1000 NAC 10_1_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_M 1000 mt 10_1_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_X 1000 mt 10_1_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_X 1000 NAC 10_1_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_X 1000 mt 10_1_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_M 1000 mt 10_1_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_M 1000 NAC 10_1_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_M 1000 mt 10_1_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_X 1000 mt 10_1_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_X 1000 NAC 10_1_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_X 1000 mt 10_1_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_M 1000 mt 10_1_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_M 1000 NAC 10_1_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_M 1000 mt 10_1_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_X 1000 mt 10_1_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_X 1000 NAC 10_1_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_X 1000 mt 10_1_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_M 1000 mt 10_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_M 1000 NAC 10_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_M 1000 mt 10_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_X 1000 mt 10_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_X 1000 NAC 10_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_X 1000 mt 10_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_M 1000 mt 10_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_M 1000 NAC 10_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_M 1000 mt 10_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_X 1000 mt 10_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_X 1000 NAC 10_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_X 1000 mt 10_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_M 1000 mt 10_3_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_M 1000 NAC 10_3_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_M 1000 mt 10_3_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_X 1000 mt 10_3_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_X 1000 NAC 10_3_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_X 1000 mt 10_3_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_M 1000 mt 10_3_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_M 1000 NAC 10_3_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_M 1000 mt 10_3_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_X 1000 mt 10_3_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_X 1000 NAC 10_3_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_X 1000 mt 10_3_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_M 1000 mt 10_3_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_M 1000 NAC 10_3_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_M 1000 mt 10_3_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_X 1000 mt 10_3_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_X 1000 NAC 10_3_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_X 1000 mt 10_3_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_M 1000 mt 10_3_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_M 1000 NAC 10_3_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_M 1000 mt 10_3_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_X 1000 mt 10_3_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_X 1000 NAC 10_3_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_X 1000 mt 10_3_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_M 1000 mt 10_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_M 1000 NAC 10_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_M 1000 mt 10_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
Q AT EX_X 1000 mt 10_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT EX_X 1000 NAC 10_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
UV AT EX_X 1000 mt 10_4 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!

TS-EU2

% Min: 80% Max: 120% Notes
EU2 Country Flow Unit Product 2017 2018 2019 2020 2021 2021 2022 17/18 18/19 19/20 20/21 21/21 21/22 2017 2018 2019 2020
AT P 1000 m3 EU2_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 m3 EU2_1_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 m3 EU2_1_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 m3 EU2_1_1 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 m3 EU2_1_1_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 m3 EU2_1_1_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 m3 EU2_1_2 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 m3 EU2_1_2_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 m3 EU2_1_2_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 m3 EU2_1_3 ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 m3 EU2_1_3_C ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!
AT P 1000 m3 EU2_1_3_NC ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! ERROR:#REF! !! !! !! !! !! !!

Annex2 | JQ2-Corres.

FOREST SECTOR QUESTIONNAIRE JQ2 (Supp. 1)
PRIMARY PRODUCTS
Trade
CORRESPONDENCES to HS2022, HS2017, HS2012 and SITC Rev.4
C l a s s i f i c a t i o n s
Product Product
Code HS2022 HS2017 HS2012 SITC Rev.4
1 ROUNDWOOD (WOOD IN THE ROUGH) 4401.11/12 44.03 4401.11/12 44.03 4401.10 44.03 245.01 247
1.1 WOOD FUEL (INCLUDING WOOD FOR CHARCOAL) 4401.11/12 4401.11/12 4401.10 245.01
1.1.C Coniferous 4401.11 4401.11 ex4401.10 ex245.01
1.1.NC Non-Coniferous 4401.12 4401.12 ex4401.10 ex245.01
1.2 INDUSTRIAL ROUNDWOOD 44.03 44.03 44.03 247
1.2.C Coniferous 4403.11/21/22/23/24/25/26 4403.11/21/22/23/24/25/26 ex4403.10 4403.20 ex247.3 247.4
1.2.NC Non-Coniferous 4403.12/41/42/49/91/93/94/95/96/97/98/99 4403.12/41/49/91/93/94/95/96/97/98/99 ex4403.10 4403.41/49/91/92/99 ex247.3 247.5 247.9
1.2.NC.T of which: Tropical1 ex4403.12 4403.41/42/49 4403.41/49 ex4403.10 4403.41/49 ex4403.99 ex247.3 247.5 ex247.9
2 WOOD CHARCOAL 4402.90 4402.90 4402.90 ex245.02
3 WOOD CHIPS, PARTICLES AND RESIDUES 4401.21/22 4401.41 ex4401.49 4401.21/22 ex4401.40 4401.21/22 ex4401.39 246.1 ex246.2
3.1 WOOD CHIPS AND PARTICLES 4401.21/22 4401.21/22 4401.21/22 246.1
3.2 WOOD RESIDUES (INCLUDING WOOD FOR AGGLOMERATES) 4401.41 ex4401.49++ ex4401.40++ ex4401.39 ex246.2
3.2.1 of which: Sawdust 4401.41 ex4401.40++ ex4401.39 ex246.2
4 RECOVERED POST-CONSUMER WOOD ex4401.49++ ex4401.40++ ex4401.39 ex246.2
5 WOOD PELLETS AND OTHER AGGLOMERATES 4401.31/32/39 4401.31/39 4401.31 ex4401.39 ex246.2
5.1 WOOD PELLETS 4401.31 4401.31 4401.31 ex246.2
5.2 OTHER AGGLOMERATES 4401.32/39 4401.39 ex4401.39 ex246.2
6 SAWNWOOD (INCLUDING SLEEPERS) 44.06 44.07 44.06 44.07 44.06 44.07 248.1 248.2 248.4
6.C Coniferous 4406.11/91 4407.11/12/13/14/19 4406.11/91 4407.11/12/19 ex4406.10/90 4407.10 ex248.11 ex248.19 248.2
6.NC Non-Coniferous 4406.12/92 4407.21/22/23/25/26/27/28/29/91/92/93/94/95/96/97/99 4406.12/92 4407.21/22/25/26/27/28/29/91/92/93/94/95/96/97/99 ex4406.10/90 4407.21/22/25/26/27/28/29/91/92/93/94/95/99 ex248.11 ex248.19 248.4
6.NC.T of which: Tropical1 ex4406.12/92 4407.21/22/23/25/26/27/28/29 4407.21/22/25/26/27/28/29 ex4406.10/90 4407.21/22/25/26/27/28/29 ex4407.99 ex248.11 ex248.19 ex248.4
7 VENEER SHEETS 44.08 44.08 44.08 634.1
7.C Coniferous 4408.10 4408.10 4408.10 634.11
7.NC Non-Coniferous 4408.31/39/90 4408.31/39/90 4408.31/39/90 634.12
7.NC.T of which: Tropical 4408.31/39 4408.31/39 4408.31/39 ex4408.90 ex634.12
8 WOOD-BASED PANELS 44.10 44.11 4412.31/33/34/39/41/42/49/51/52/59/91/92/99 44.10 44.11 4412.31/33/34/39/94/99 44.10 44.11 4412.31/32/39/94/99 634.22/23/31/33/39 634.5
8.1 PLYWOOD 4412.31/33/34/39/41/42/49/51/52/59/91/92/99 4412.31/33/34/39/94/99 4412.31/32/39/94/99 634.31/33/39
8.1.C Coniferous 4412.39/49/59/99 4412.39 ex4412.94 ex4412.99 4412.39 ex4412.94 ex.4412.99 ex634.31 ex634.33 ex634.39
8.1.NC Non-Coniferous 4412.33/34/42/52/92 4412.31/33/34 ex4412.94 ex4412.99 4412.31/32 ex4412.94 ex4412.99 ex634.31 ex634.33 ex634.39
8.1.NC.T of which: Tropical 4412.31/41/51/91 4412.31 ex4412.94 ex4412.99 4412.31 ex4412.32 ex4412.94 ex4412.99 ex634.31 ex634.33 ex634.39
8.1.1 of which: Laminated Veneer Lumber (LVL) 4412.41/42/49 ex4412.99 ex4412.99 ex634.39
8.1.1.C Coniferous 4412.49 ex4412.99 ex4412.99 ex634.39
8.1.1.NC Non-Coniferous 4412.41/42 ex4412.99 ex4412.99 ex634.39
8.1.1.NC.T of which: Tropical 4412.41 ex4412.99 ex4412.99 ex634.39
8.2 PARTICLE BOARD, ORIENTED STRAND BOARD (OSB) and SIMILAR BOARD 44.10 44.10 44.10 634.22/23
8.2.1 of which: ORIENTED STRAND BOARD (OSB) 4410.12 4410.12 4410.12 ex634.22
8.3 FIBREBOARD 44.11 44.11 44.11 634.5
8.3.1 HARDBOARD 4411.92 4411.92 4411.92 ex634.54 ex634.55
8.3.2 MEDIUM/HIGH DENSITY FIBREBOARD (MDF/HDF) 4411.12/13 ex4411.14* 4411.12/13 ex4411.14* 4411.12/13 ex4411.14* ex634.54 ex634.55
8.3.3 OTHER FIBREBOARD ex4411.14* 4411.93/94 ex4411.14* 4411.93/94 ex4411.14 4411.93/94 ex634.54 ex634.55
9 WOOD PULP 47.01/02/03/04/05 47.01/02/03/04/05 47.01/02/03/04/05 251.2 251.3 251.4 251.5 251.6 251.91
9.1 MECHANICAL AND SEMI-CHEMICAL WOOD PULP 47.01 47.05 47.01 47.05 47.01 47.05 251.2 251.91
9.2 CHEMICAL WOOD PULP 47.03 47.04 47.03 47.04 47.03 47.04 251.4 251.5 251.6
9.2.1 SULPHATE PULP 47.03 47.03 47.03 251.4 251.5
9.2.1.1 of which: BLEACHED 4703.21/29 4703.21/29 4703.21/29 251.5
9.2.2 SULPHITE PULP 47.04 47.04 47.04 251.6
9.3 DISSOLVING GRADES 47.02 47.02 47.02 251.3
10 OTHER PULP 47.06 47.06 47.06 251.92
10.1 PULP FROM FIBRES OTHER THAN WOOD 4706.10/30/91/92/93 4706.10/30/91/92/93 4706.10/30/91/92/93 ex251.92
10.2 RECOVERED FIBRE PULP 4706.20 4706.20 4706.20 ex251.92
11 RECOVERED PAPER 47.07 47.07 47.07 251.1
12 PAPER AND PAPERBOARD 48.01 48.02 48.03 48.04 48.05 48.06 48.08 48.09 48.10 4811.51/59 48.12 48.13 48.01 48.02 48.03 48.04 48.05 48.06 48.08 48.09 48.10 4811.51/59 48.12 48.13 48.01 48.02 48.03 48.04 48.05 48.06 48.08 48.09 48.10 4811.51/59 48.12 48.13 641.1 641.2 641.3 641.4 641.5 641.62/63/64/69/71/72/74/75/76/77/93 642.41
12.1 GRAPHIC PAPERS 48.01 4802.10/20/54/55/56/57/58/61/62/69 48.09 4810.13/14/19/22/29 48.01 4802.10/20/54/55/56/57/58/61/62/69 48.09 4810.13/14/19/22/29 48.01 4802.10/20/54/55/56/57/58/61/62/69 48.09 4810.13/14/19/22/29 641.1 641.21/22/26/29 641.3
12.1.1 NEWSPRINT 48.01 48.01 48.01 641.1
12.1.2 UNCOATED MECHANICAL 4802.61/62/69 4802.61/62/69 4802.61/62/69 641.29
12.1.3 UNCOATED WOODFREE 4802.10/20/54/55/56/57/58 4802.10/20/54/55/56/57/58 4802.10/20/54/55/56/57/58 641.21/22/26
12.1.4 COATED PAPERS 48.09 4810.13/14/19/22/29 48.09 4810.13/14/19/22/29 48.09 4810.13/14/19/22/29 641.3
12.2 HOUSEHOLD AND SANITARY PAPERS 48.03 48.03 48.03 641.63
12.3 PACKAGING MATERIALS 4804.11/19/21/29/31/39/42/49/51/52/59 4805.11/12/19/24/25/30/91/92/93 4806.10/20/40 48.08 4810.31/32/39/92/99 4811.51/59 4804.11/19/21/29/31/39/42/49/51/52/59 4805.11/12/19/24/25/30/91/92/93 4806.10/20/40 48.08 4810.31/32/39/92/99 4811.51/59 4804.11/19/21/29/31/39/42/49/51/52/59 4805.11/12/19/24/25/30/91/92/93 4806.10/20/40 48.08 4810.31/32/39/92/99 4811.51/59 641.41/42/46 ex641.47 641.48/51/52 ex641.53 641.54/59/62/64/69/71/72/74/75/76/77
12.3.1 CASE MATERIALS 4804.11/19 4805.11/12/19/24/25/91 4804.11/19 4805.11/12/19/24/25/91 4804.11/19 4805.11/12/19/24/25/91 641.41/51/54 ex641.59
12.3.2 CARTONBOARD 4804.42/49/51/52/59 4805.92 4810.32/39/92 4811.51/59 4804.42/49/51/52/59 4805.92 4810.32/39/92 4811.51/59 4804.42/49/51/52/59 4805.92 4810.32/39/92 4811.51/59 ex641.47 641.48 ex641.59 641.75/76 ex641.77 641.71/72
12.3.3 WRAPPING PAPERS 4804.21/29/31/39 4805.30 4806.10/20/40 48.08 4810.31/99 4804.21/29/31/39 4805.30 4806.10/20/40 48.08 4810.31/99 4804.21/29/31/39 4805.30 4806.10/20/40 48.08 4810.31/99 641.42/46/52 ex641.53 641.62/64/69/74 ex641.77
12.3.4 OTHER PAPERS MAINLY FOR PACKAGING 4805.93 4805.93 4805.93 ex641.59
12.4 OTHER PAPER AND PAPERBOARD N.E.S. 4802.40 4804.41 4805.40/50 4806.30 48.12 48.13 4802.40 4804.41 4805.40/50 4806.30 48.12 48.13 4802.40 4804.41 4805.40/50 4806.30 48.12 48.13 641.24 ex641.47 641.56 ex641.53 641.55/93 642.41
15 GLULAM AND CROSS-LAMINATED TIMBER (CLT or X-LAM)2 4418.81/82 ex4418.60 ex4418.60 ex635.39
15.1 GLULAM 4418.81 ex4418.60 ex4418.60 ex635.39
15.2 CROSS-LAMINATED TIMBER (CLT or X-LAM) 4418.82 ex4418.60 ex4418.60 ex635.39
16 I BEAMS (I-JOISTS)2 4418.83 ex4418.60 ex4418.60 ex635.39
1Please include the non-coniferous non-tropical species exported by tropical countries or imported from tropical countries.
2 Glulam, CLT and I Beams are classified as secondary wood products but for ease of reporting are included in JQ1 and JQ2
Notes:
The term "ex" means that there is not a complete correlation between the two codes and that only a part of the HS2012/HS2017/HS2022 or SITC Rev.4 code is applicable.
For instance "ex4401.49" under product 3.2 means that only a part of HS2022 code 4401.49 refers to wood residues coming from wood processing (the other part coded under 4401.49 is recovered post-consumer wood).
++ Please use your judgement or, as a default, assign half of 4401.49 to item 3.2 and half to item 4 (note different quantity units)
In SITC Rev.4, if only 4 digits are shown, then all sub-headings at lower degrees of aggregation are included (for example, 634.1 includes 634.11 and 634.12).
* Please assign the trade data for HS code 4411.14 to product 8.3.2 (MDF/HDF) and 8.3.3 (other fibreboard) if it is possible to do this in national statistics. If not, please assign all the trade data to item 8.3.2 as in most cases MDF/HDF will represent the large majority of trade.

Annex3 | JQ3-Corres.

FOREST SECTOR QUESTIONNAIRE JQ3 (Supp. 1)
SECONDARY PROCESSED PRODUCTS
Trade
CORRESPONDENCES to HS 2022, HS2017, HS2012 and SITC Rev.4
C l a s s i f i c a t i o n s
Product Product
Code HS2022 HS2017 HS2012 SITC Rev.4
13 SECONDARY WOOD PRODUCTS
13.1 FURTHER PROCESSED SAWNWOOD 4409.10/22/29 4409.10/22/29 4409.10/29 248.3 248.5
13.1.C Coniferous 4409.10 4409.10 4409.10 248.3
13.1.NC Non-coniferous 4409.22/29 4409.22/29 4409.29 248.5
13.1.NC.T of which: Tropical 4409.22 4409.22 ex4409.29 ex248.5
13.2 WOODEN WRAPPING AND PACKAGING MATERIAL 44.15/16 44.15/16 44.15/16 635.1 635.2
13.3 WOOD PRODUCTS FOR DOMESTIC/DECORATIVE USE 44.14 4419.20 4419.90 44.20 44.14 4419.90 44.20 44.14 ex4419.00 44.20 635.41 ex635.42 635.49
13.4 BUILDER’S JOINERY AND CARPENTRY OF WOOD1 4418.11/19/21/29/30/40/50/74/75/79/89/92/99 4418.10/20/40/50/60/74/75/79/99 4418.10/20/40/50/60 ex4418.71 ex4418.72 ex4418.79 ex4418.90 635.31/32/33 ex635.34 ex635.39
13.5 WOODEN FURNITURE 9401.31/41 9401.61/69/91 9403.30/40/50/60/91 9401.61/69 ex9401.90 9403.30/40/50/60 ex9403.90 9401.61/69 ex9401.90 9403.30/40/50/60 ex9403.90 821.16 ex821.19 821.51/53/55/59 ex821.8
13.6 PREFABRICATED BUILDINGS OF WOOD 9406.10 9406.10 ex94.06 ex811.0
13.7 OTHER MANUFACTURED WOOD PRODUCTS 44.04/05/13/17 4421.10/20/99 44.04/05/13/17 4421.10/99 44.04/05/13/17 4421.10 ex4421.90 634.21/91/93 635.91 ex635.99
14 SECONDARY PAPER PRODUCTS
14.1 COMPOSITE PAPER AND PAPERBOARD 48.07 48.07 48.07 641.92
14.2 SPECIAL COATED PAPER AND PULP PRODUCTS 4811.10/41/49/60/90 4811.10/41/49/60/90 4811.10/41/49/60/90 641.73/78/79
14.3 HOUSEHOLD AND SANITARY PAPER, READY FOR USE 48.18 48.18 48.18 642.43/94
14.4 PACKAGING CARTONS, BOXES ETC. 48.19 48.19 48.19 642.1
14.5 OTHER ARTICLES OF PAPER AND PAPERBOARD, READY FOR USE 48.14/16/17/20/21/22/23 48.14/16/17/20/21/22/23 48.14/16/17/20/21/22/23 641.94 642.2 642.3 642.42/45/91/93/99 892.81
14.5.1 of which: PRINTING AND WRITING PAPER, READY FOR USE ex4823.90 ex4823.90 ex4823.90 ex642.99
14.5.2 of which: ARTICLES, MOULDED OR PRESSED FROM PULP 4823.70 4823.70 4823.70 ex642.99
14.5.3 of which: FILTER PAPER AND PAPERBOARD, READY FOR USE 4823.20 4823.20 4823.20 642.45
1 In February 2023 this definition was updated to exclude Glulam, Cross-Laminated Timber and I-Beams which are now distinct items in the JFSQ (15.1, 15.2 and 16).
This change was made to reflect the update of HS2022.
Notes:
The term "ex" means that there is not a complete correlation between the two codes and that only a part of the HS2012/HS2017/2022 or SITC Rev.4 code is applicable.
For instance "ex811.00" under "Prefabricated buildings of wood" means that only a part of SITC code 811.00 refers to buildings prefabricated from wood, as that code does not distinguish between the materials buildings were prefabricated from.
In SITC Rev.4, if only 4 digits are shown, then all subheadings at lower degrees of aggregation are included (for example, 892.2 includes 892.21 and 892.29).

Annex4 |JQ2-JQ3-Corres.

JQ Product code Nomenclature HS Code Remarks on HS codes
1 HS2002 440110 Annex 4 does not include HS2022 codes
1 HS2002 4403
1 HS2007 440110
1 HS2007 4403
1 HS2012 440110
1 HS2012 4403
1 HS2017 440111
1 HS2017 440112
1 HS2017 4403
1.1 HS2002 440110
1.1 HS2007 440110
1.1 HS2012 440110
1.1 HS2017 440111
1.1 HS2017 440112
1.1C HS2002 440110 Only some part of it
1.1C HS2007 440110 Only some part of it
1.1C HS2012 440110 Only some part of it
1.1C HS2017 440111
1.1NC HS2002 440110 Only some part of it
1.1NC HS2007 440110 Only some part of it
1.1NC HS2012 440110 Only some part of it
1.1NC HS2017 440112
1.2 HS2002 4403
1.2 HS2007 4403
1.2 HS2012 4403
1.2 HS2017 4403
1.2.C HS2002 440310 Only some part of it
1.2.C HS2002 440320
1.2.C HS2007 440310 Only some part of it
1.2.C HS2007 440320
1.2.C HS2012 440310 Only some part of it
1.2.C HS2012 440320
1.2.C HS2017 440311
1.2.C HS2017 440321
1.2.C HS2017 440322
1.2.C HS2017 440323
1.2.C HS2017 440324
1.2.C HS2017 440325
1.2.C HS2017 440326
1.2.NC HS2002 440310 Only some part of it
1.2.NC HS2002 440341
1.2.NC HS2002 440349
1.2.NC HS2002 440391
1.2.NC HS2002 440392
1.2.NC HS2002 440399
1.2.NC HS2007 440310 Only some part of it
1.2.NC HS2007 440341
1.2.NC HS2007 440349
1.2.NC HS2007 440391
1.2.NC HS2007 440392
1.2.NC HS2007 440399
1.2.NC HS2012 440310 Only some part of it
1.2.NC HS2012 440341
1.2.NC HS2012 440349
1.2.NC HS2012 440391
1.2.NC HS2012 440392
1.2.NC HS2012 440399
1.2.NC HS2017 440312
1.2.NC HS2017 440341
1.2.NC HS2017 440349
1.2.NC HS2017 440391
1.2.NC HS2017 440393
1.2.NC HS2017 440394
1.2.NC HS2017 440395
1.2.NC HS2017 440396
1.2.NC HS2017 440397
1.2.NC HS2017 440398
1.2.NC HS2017 440399
1.2.NC.T HS2002 440310 Only some part of it
1.2.NC.T HS2002 440341
1.2.NC.T HS2002 440349
1.2.NC.T HS2002 440399 Only some part of it
1.2.NC.T HS2007 440310 Only some part of it
1.2.NC.T HS2007 440341
1.2.NC.T HS2007 440349
1.2.NC.T HS2007 440399 Only some part of it
1.2.NC.T HS2012 440310 Only some part of it
1.2.NC.T HS2012 440341
1.2.NC.T HS2012 440349
1.2.NC.T HS2012 440399 Only some part of it
1.2.NC.T HS2017 440312 Only some part of it
1.2.NC.T HS2017 440341
1.2.NC.T HS2017 440349
2 HS2002 440200 Only some part of it
2 HS2007 440290
2 HS2012 440290
2 HS2017 440290
3 HS2002 440121
3 HS2002 440122
3 HS2002 440130 Only some part of it
3 HS2007 440121
3 HS2007 440122
3 HS2007 440130 Only some part of it
3 HS2012 440121
3 HS2012 440122
3 HS2012 440139 Only some part of it
3 HS2017 440121
3 HS2017 440122
3 HS2017 440140
3.1 HS2002 440121
3.1 HS2002 440122
3.1 HS2007 440121
3.1 HS2007 440122
3.1 HS2012 440121
3.1 HS2012 440122
3.1 HS2017 440121
3.1 HS2017 440122
3.2 HS2002 440130 Only some part of it
3.2 HS2012 440130 Only some part of it
3.2 HS2012 440139 Only some part of it
3.2 HS2017 440140 Only some part of it
4 HS2002 440130 Only some part of it
4 HS2007 440130 Only some part of it
4 HS2012 440139 Only some part of it
4 HS2017 440140 Only some part of it
5 HS2002 440130 Only some part of it
5 HS2007 440130 Only some part of it
5 HS2012 440131
5 HS2012 440139 Only some part of it
5 HS2017 440131
5 HS2017 440139
5.1 HS2002 440130 Only some part of it
5.1 HS2007 440130 Only some part of it
5.1 HS2012 440131
5.1 HS2017 440131
5.2 HS2002 440130 Only some part of it
5.2 HS2007 440130 Only some part of it
5.2 HS2012 440139 Only some part of it
5.2 HS2017 440139
6 HS2002 4406
6 HS2002 4407
6 HS2007 4406
6 HS2007 4407
6 HS2012 4406
6 HS2012 4407
6 HS2017 4406
6 HS2017 4407
6.C HS2002 440610 Only some part of it
6.C HS2002 440690 Only some part of it
6.C HS2002 440710
6.C HS2007 440610 Only some part of it
6.C HS2007 440690 Only some part of it
6.C HS2007 440710
6.C HS2012 440610 Only some part of it
6.C HS2012 440690 Only some part of it
6.C HS2012 440710
6.C HS2017 440611
6.C HS2017 440691
6.C HS2017 440711
6.C HS2017 440712
6.C HS2017 440719
6.NC HS2002 440610 Only some part of it
6.NC HS2002 440690 Only some part of it
6.NC HS2002 440724
6.NC HS2002 440725
6.NC HS2002 440726
6.NC HS2002 440729
6.NC HS2002 440791
6.NC HS2002 440792
6.NC HS2002 440799
6.NC HS2007 440610 Only some part of it
6.NC HS2007 440690 Only some part of it
6.NC HS2007 440721
6.NC HS2007 440722
6.NC HS2007 440725
6.NC HS2007 440726
6.NC HS2007 440727
6.NC HS2007 440728
6.NC HS2007 440729
6.NC HS2007 440791
6.NC HS2007 440792
6.NC HS2007 440793
6.NC HS2007 440794
6.NC HS2007 440795
6.NC HS2007 440799
6.NC HS2012 440610 Only some part of it
6.NC HS2012 440690 Only some part of it
6.NC HS2012 440721
6.NC HS2012 440722
6.NC HS2012 440725
6.NC HS2012 440726
6.NC HS2012 440727
6.NC HS2012 440728
6.NC HS2012 440729
6.NC HS2012 440791
6.NC HS2012 440792
6.NC HS2012 440793
6.NC HS2012 440794
6.NC HS2012 440795
6.NC HS2012 440799
6.NC HS2017 4406.12
6.NC HS2017 4406.92
6.NC HS2017 4407.21
6.NC HS2017 4407.22
6.NC HS2017 4407.25
6.NC HS2017 4407.26
6.NC HS2017 4407.27
6.NC HS2017 4407.28
6.NC HS2017 4407.29
6.NC HS2017 4407.91
6.NC HS2017 4407.92
6.NC HS2017 4407.93
6.NC HS2017 4407.94
6.NC HS2017 4407.95
6.NC HS2017 4407.96
6.NC HS2017 4407.97
6.NC HS2017 4407.99
6.NC.T HS2002 440610 Only some part of it
6.NC.T HS2002 440690 Only some part of it
6.NC.T HS2002 440724
6.NC.T HS2002 440725
6.NC.T HS2002 440726
6.NC.T HS2002 440729
6.NC.T HS2002 440799 Only some part of it
6.NC.T HS2007 440610 Only some part of it
6.NC.T HS2007 440690 Only some part of it
6.NC.T HS2007 440721
6.NC.T HS2007 440722
6.NC.T HS2007 440725
6.NC.T HS2007 440726
6.NC.T HS2007 440727
6.NC.T HS2007 440728
6.NC.T HS2007 440729
6.NC.T HS2007 440799 Only some part of it
6.NC.T HS2012 440610 Only some part of it
6.NC.T HS2012 440690 Only some part of it
6.NC.T HS2012 440721
6.NC.T HS2012 440722
6.NC.T HS2012 440725
6.NC.T HS2012 440726
6.NC.T HS2012 440727
6.NC.T HS2012 440728
6.NC.T HS2012 440729
6.NC.T HS2012 440799 Only some part of it
6.NC.T HS2017 440612 Only some part of it
6.NC.T HS2017 440692 Only some part of it
6.NC.T HS2017 440721
6.NC.T HS2017 440722
6.NC.T HS2017 440725
6.NC.T HS2017 440726
6.NC.T HS2017 440727
6.NC.T HS2017 440728
6.NC.T HS2017 440729
7 HS2002 4408
7 HS2007 4408
7 HS2012 4408
7 HS2017 4408
7.C HS2002 440810
7.C HS2007 440810
7.C HS2012 440810
7.C HS2017 440810
7.NC HS2002 440831
7.NC HS2002 440839
7.NC HS2002 440890
7.NC HS2007 440831
7.NC HS2007 440839
7.NC HS2007 440890
7.NC HS2012 440831
7.NC HS2012 440839
7.NC HS2012 440890
7.NC HS2017 440831
7.NC HS2017 440839
7.NC HS2017 440890
7.NC.T HS2002 440831
7.NC.T HS2002 440839
7.NC.T HS2002 440890 Only some part of it
7.NC.T HS2007 440831
7.NC.T HS2007 440839
7.NC.T HS2007 440890 Only some part of it
7.NC.T HS2012 440831
7.NC.T HS2012 440839
7.NC.T HS2012 440890 Only some part of it
7.NC.T HS2017 440831
7.NC.T HS2017 440839
8 HS2002 4410
8 HS2002 4411
8 HS2002 441213
8 HS2002 441214
8 HS2002 441219
8 HS2002 441299 Only some part of it
8 HS2007 4410
8 HS2007 4411
8 HS2007 441231
8 HS2007 441232
8 HS2007 441239
8 HS2007 441294
8 HS2007 441299
8 HS2012 4410
8 HS2012 4411
8 HS2012 441231
8 HS2012 441232
8 HS2012 441239
8 HS2012 441294
8 HS2012 441299
8 HS2017 4410
8 HS2017 4411
8 HS2017 441231
8 HS2017 441233
8 HS2017 441234
8 HS2017 441239
8 HS2017 441294
8 HS2017 441299
8.1 HS2002 441213
8.1 HS2002 441214
8.1 HS2002 441219
8.1 HS2002 441299 Only some part of it
8.1 HS2007 441231
8.1 HS2007 441232
8.1 HS2007 441239
8.1 HS2007 441294
8.1 HS2007 441299
8.1 HS2012 441231
8.1 HS2012 441232
8.1 HS2012 441239
8.1 HS2012 441294
8.1 HS2012 441299
8.1 HS2017 441231
8.1 HS2017 441233
8.1 HS2017 441234
8.1 HS2017 441239
8.1 HS2017 441294
8.1 HS2017 441299
8.1.C HS2002 441219
8.1.C HS2002 441299 Only some part of it
8.1.C HS2007 441239
8.1.C HS2007 441294 Only some part of it
8.1.C HS2007 441299 Only some part of it
8.1.C HS2012 441239
8.1.C HS2012 441294 Only some part of it
8.1.C HS2012 441299 Only some part of it
8.1.C HS2017 441239
8.1.C HS2017 441294 Only some part of it
8.1.C HS2017 441299 Only some part of it
8.1.NC HS2002 441213
8.1.NC HS2002 441214
8.1.NC HS2002 441299 Only some part of it
8.1.NC HS2007 441231
8.1.NC HS2007 441232
8.1.NC HS2007 441294 Only some part of it
8.1.NC HS2007 441299 Only some part of it
8.1.NC HS2012 441231
8.1.NC HS2012 441232
8.1.NC HS2012 441294 Only some part of it
8.1.NC HS2012 441299 Only some part of it
8.1.NC HS2017 441231
8.1.NC HS2017 441233
8.1.NC HS2017 441234
8.1.NC HS2017 441294 Only some part of it
8.1.NC HS2017 441299 Only some part of it
8.1.NC.T HS2002 441213
8.1.NC.T HS2002 441214 Only some part of it
8.1.NC.T HS2002 441299 Only some part of it
8.1.NC.T HS2007 441231
8.1.NC.T HS2007 441232 Only some part of it
8.1.NC.T HS2007 441294 Only some part of it
8.1.NC.T HS2007 441299 Only some part of it
8.1.NC.T HS2012 441231
8.1.NC.T HS2012 441232 Only some part of it
8.1.NC.T HS2012 441294 Only some part of it
8.1.NC.T HS2012 441299 Only some part of it
8.1.NC.T HS2017 441231
8.1.NC.T HS2017 441294 Only some part of it
8.1.NC.T HS2017 441299 Only some part of it
8.2 HS2002 4410
8.2 HS2007 4410
8.2 HS2012 4410
8.2 HS2017 4410
8.2.1 HS2002 441021 Only some part of it
8.2.1 HS2002 441029 Only some part of it
8.2.1 HS2007 441012
8.2.1 HS2012 441012
8.2.1 HS2017 441012
8.3 HS2002 4411
8.3 HS2007 4411
8.3 HS2012 4411
8.3 HS2017 4411
8.3.1 HS2002 441111 Only some part of it
8.3.1 HS2002 441119 Only some part of it
8.3.1 HS2007 441192
8.3.1 HS2012 441192
8.3.1 HS2017 441192
8.3.2 HS2002 441111 Only some part of it
8.3.2 HS2002 441119 Only some part of it
8.3.2 HS2002 441121 Only some part of it
8.3.2 HS2002 441129 Only some part of it
8.3.2 HS2007 441112
8.3.2 HS2007 441113
8.3.2 HS2007 441114 Only some part of it
8.3.2 HS2012 441112
8.3.2 HS2012 441113
8.3.2 HS2012 441114 Only some part of it
8.3.2 HS2017 441112
8.3.2 HS2017 441113
8.3.2 HS2017 441114 Only some part of it
8.3.3 HS2002 441131
8.3.3 HS2002 441139
8.3.3 HS2002 441191
8.3.3 HS2002 441199
8.3.3 HS2007 441114 Only some part of it
8.3.3 HS2007 441193
8.3.3 HS2007 441194
8.3.3 HS2012 441114 Only some part of it
8.3.3 HS2012 441193
8.3.3 HS2012 441194
8.3.3 HS2017 441114 Only some part of it
8.3.3 HS2017 441193
8.3.3 HS2017 441194
9 HS2002 4701
9 HS2002 4702
9 HS2002 4703
9 HS2002 4704
9 HS2002 4705
9 HS2007 4701
9 HS2007 4702
9 HS2007 4703
9 HS2007 4704
9 HS2007 4705
9 HS2012 4701
9 HS2012 4702
9 HS2012 4703
9 HS2012 4704
9 HS2012 4705
9 HS2017 4701
9 HS2017 4702
9 HS2017 4703
9 HS2017 4704
9 HS2017 4705
9.1 HS2002 4701
9.1 HS2002 4705
9.1 HS2007 4701
9.1 HS2007 4705
9.1 HS2012 4701
9.1 HS2012 4705
9.1 HS2017 4701
9.1 HS2017 4705
9.2 HS2002 4703
9.2 HS2002 4704
9.2 HS2007 4703
9.2 HS2007 4704
9.2 HS2012 4703
9.2 HS2012 4704
9.2 HS2017 4703
9.2 HS2017 4704
9.2.1 HS2002 4703
9.2.1 HS2007 4703
9.2.1 HS2012 4703
9.2.1 HS2017 4703
9.2.1.1 HS2002 470321
9.2.1.1 HS2002 470329
9.2.1.1 HS2007 470321
9.2.1.1 HS2007 470329
9.2.1.1 HS2012 470321
9.2.1.1 HS2012 470329
9.2.1.1 HS2017 470321
9.2.1.1 HS2017 470329
9.2.2 HS2002 4704
9.2.2 HS2007 4704
9.2.2 HS2012 4704
9.2.2 HS2017 4704
9.3 HS2002 4702
9.3 HS2007 4702
9.3 HS2012 4702
9.3 HS2017 4702
10 HS2002 4706
10 HS2007 4706
10 HS2012 4706
10 HS2017 4706
10.1 HS2002 470610
10.1 HS2002 470691
10.1 HS2002 470692
10.1 HS2002 470693
10.1 HS2007 470610
10.1 HS2007 470630
10.1 HS2007 470691
10.1 HS2007 470692
10.1 HS2007 470693
10.1 HS2012 470610
10.1 HS2012 470630
10.1 HS2012 470691
10.1 HS2012 470692
10.1 HS2012 470693
10.1 HS2017 470610
10.1 HS2017 470630
10.1 HS2017 470691
10.1 HS2017 470692
10.1 HS2017 470693
10.2 HS2002 470620
10.2 HS2007 470620
10.2 HS2012 470620
10.2 HS2017 470620
11 HS2002 4707
11 HS2007 4707
11 HS2012 4707
11 HS2017 4707
12 HS2002 4801
12 HS2002 4802
12 HS2002 4803
12 HS2002 4804
12 HS2002 4805
12 HS2002 4806
12 HS2002 4808
12 HS2002 4809
12 HS2002 4810
12 HS2002 481151
12 HS2002 481159
12 HS2002 4812
12 HS2002 4813
12 HS2007 4801
12 HS2007 4802
12 HS2007 4803
12 HS2007 4804
12 HS2007 4805
12 HS2007 4806
12 HS2007 4808
12 HS2007 4809
12 HS2007 4810
12 HS2007 481151
12 HS2007 481159
12 HS2007 4812
12 HS2007 4813
12 HS2012 4801
12 HS2012 4802
12 HS2012 4803
12 HS2012 4804
12 HS2012 4805
12 HS2012 4806
12 HS2012 4808
12 HS2012 4809
12 HS2012 4810
12 HS2012 481151
12 HS2012 481159
12 HS2012 4812
12 HS2012 4813
12 HS2017 4801
12 HS2017 4802
12 HS2017 4803
12 HS2017 4804
12 HS2017 4805
12 HS2017 4806
12 HS2017 4808
12 HS2017 4809
12 HS2017 4810
12 HS2017 481151
12 HS2017 481159
12 HS2017 4812
12 HS2017 4813
12.1 HS2002 4801
12.1 HS2002 480210
12.1 HS2002 480220
12.1 HS2002 480254
12.1 HS2002 480255
12.1 HS2002 480256
12.1 HS2002 480257
12.1 HS2002 480258
12.1 HS2002 480261
12.1 HS2002 480262
12.1 HS2002 480269
12.1 HS2002 4809
12.1 HS2002 481013
12.1 HS2002 481014
12.1 HS2002 481019
12.1 HS2002 481022
12.1 HS2002 481029
12.1 HS2007 4801
12.1 HS2007 480210
12.1 HS2007 480220
12.1 HS2007 480254
12.1 HS2007 480255
12.1 HS2007 480256
12.1 HS2007 480257
12.1 HS2007 480258
12.1 HS2007 480261
12.1 HS2007 480262
12.1 HS2007 480269
12.1 HS2007 4809
12.1 HS2007 481013
12.1 HS2007 481014
12.1 HS2007 481019
12.1 HS2007 481022
12.1 HS2007 481029
12.1 HS2012 4801
12.1 HS2012 480210
12.1 HS2012 480220
12.1 HS2012 480254
12.1 HS2012 480255
12.1 HS2012 480256
12.1 HS2012 480257
12.1 HS2012 480258
12.1 HS2012 480261
12.1 HS2012 480262
12.1 HS2012 480269
12.1 HS2012 4809
12.1 HS2012 481013
12.1 HS2012 481014
12.1 HS2012 481019
12.1 HS2012 481022
12.1 HS2012 481029
12.1 HS2017 4801
12.1 HS2017 480210
12.1 HS2017 480220
12.1 HS2017 480254
12.1 HS2017 480255
12.1 HS2017 480256
12.1 HS2017 480257
12.1 HS2017 480258
12.1 HS2017 480261
12.1 HS2017 480262
12.1 HS2017 480269
12.1 HS2017 4809
12.1 HS2017 481013
12.1 HS2017 481014
12.1 HS2017 481019
12.1 HS2017 481022
12.1 HS2017 481029
12.1.1 HS2002 4801
12.1.1 HS2007 4801
12.1.1 HS2012 4801
12.1.1 HS2017 4801
12.1.2 HS2002 480261
12.1.2 HS2002 480262
12.1.2 HS2002 480269
12.1.2 HS2007 480261
12.1.2 HS2007 480262
12.1.2 HS2007 480269
12.1.2 HS2012 480261
12.1.2 HS2012 480262
12.1.2 HS2012 480269
12.1.2 HS2017 480261
12.1.2 HS2017 480262
12.1.2 HS2017 480269
12.1.3 HS2002 480210
12.1.3 HS2002 480220
12.1.3 HS2002 480254
12.1.3 HS2002 480255
12.1.3 HS2002 480256
12.1.3 HS2002 480257
12.1.3 HS2002 480258
12.1.3 HS2007 480210
12.1.3 HS2007 480220
12.1.3 HS2007 480254
12.1.3 HS2007 480255
12.1.3 HS2007 480256
12.1.3 HS2007 480257
12.1.3 HS2007 480258
12.1.3 HS2012 480210
12.1.3 HS2012 480220
12.1.3 HS2012 480254
12.1.3 HS2012 480255
12.1.3 HS2012 480256
12.1.3 HS2012 480257
12.1.3 HS2012 480258
12.1.3 HS2017 480210
12.1.3 HS2017 480220
12.1.3 HS2017 480254
12.1.3 HS2017 480255
12.1.3 HS2017 480256
12.1.3 HS2017 480257
12.1.3 HS2017 480258
12.1.4 HS2002 4809
12.1.4 HS2002 481013
12.1.4 HS2002 481014
12.1.4 HS2002 481019
12.1.4 HS2002 481022
12.1.4 HS2002 481029
12.1.4 HS2007 4809
12.1.4 HS2007 481013
12.1.4 HS2007 481014
12.1.4 HS2007 481019
12.1.4 HS2007 481022
12.1.4 HS2007 481029
12.1.4 HS2012 4809
12.1.4 HS2012 481013
12.1.4 HS2012 481014
12.1.4 HS2012 481019
12.1.4 HS2012 481022
12.1.4 HS2012 481029
12.1.4 HS2017 4809
12.1.4 HS2017 481013
12.1.4 HS2017 481014
12.1.4 HS2017 481019
12.1.4 HS2017 481022
12.1.4 HS2017 481029
12.2 HS2002 4803
12.2 HS2007 4803
12.2 HS2012 4803
12.2 HS2017 4803
12.3 HS2002 480411
12.3 HS2002 480419
12.3 HS2002 480421
12.3 HS2002 480429
12.3 HS2002 480431
12.3 HS2002 480439
12.3 HS2002 480442
12.3 HS2002 480449
12.3 HS2002 480451
12.3 HS2002 480452
12.3 HS2002 480459
12.3 HS2002 480511
12.3 HS2002 480512
12.3 HS2002 480519
12.3 HS2002 480524
12.3 HS2002 480525
12.3 HS2002 480530
12.3 HS2002 480591
12.3 HS2002 480592
12.3 HS2002 480593
12.3 HS2002 480610
12.3 HS2002 480620
12.3 HS2002 480640
12.3 HS2002 4808
12.3 HS2002 481031
12.3 HS2002 481032
12.3 HS2002 481039
12.3 HS2002 481092
12.3 HS2002 481099
12.3 HS2002 481151
12.3 HS2002 481159
12.3 HS2007 480411
12.3 HS2007 480419
12.3 HS2007 480421
12.3 HS2007 480429
12.3 HS2007 480431
12.3 HS2007 480439
12.3 HS2007 480442
12.3 HS2007 480449
12.3 HS2007 480451
12.3 HS2007 480452
12.3 HS2007 480459
12.3 HS2007 480511
12.3 HS2007 480512
12.3 HS2007 480519
12.3 HS2007 480524
12.3 HS2007 480525
12.3 HS2007 480530
12.3 HS2007 480591
12.3 HS2007 480592
12.3 HS2007 480593
12.3 HS2007 480610
12.3 HS2007 480620
12.3 HS2007 480640
12.3 HS2007 4808
12.3 HS2007 481031
12.3 HS2007 481032
12.3 HS2007 481039
12.3 HS2007 481092
12.3 HS2007 481099
12.3 HS2007 481151
12.3 HS2007 481159
12.3 HS2012 480411
12.3 HS2012 480419
12.3 HS2012 480421
12.3 HS2012 480429
12.3 HS2012 480431
12.3 HS2012 480439
12.3 HS2012 480442
12.3 HS2012 480449
12.3 HS2012 480451
12.3 HS2012 480452
12.3 HS2012 480459
12.3 HS2012 480511
12.3 HS2012 480512
12.3 HS2012 480519
12.3 HS2012 480524
12.3 HS2012 480525
12.3 HS2012 480530
12.3 HS2012 480591
12.3 HS2012 480592
12.3 HS2012 480593
12.3 HS2012 480610
12.3 HS2012 480620
12.3 HS2012 480640
12.3 HS2012 4808
12.3 HS2012 481031
12.3 HS2012 481032
12.3 HS2012 481039
12.3 HS2012 481092
12.3 HS2012 481099
12.3 HS2012 481151
12.3 HS2012 481159
12.3 HS2017 480411
12.3 HS2017 480419
12.3 HS2017 480421
12.3 HS2017 480429
12.3 HS2017 480431
12.3 HS2017 480439
12.3 HS2017 480442
12.3 HS2017 480449
12.3 HS2017 480451
12.3 HS2017 480452
12.3 HS2017 480459
12.3 HS2017 480511
12.3 HS2017 480512
12.3 HS2017 480519
12.3 HS2017 480524
12.3 HS2017 480525
12.3 HS2017 480530
12.3 HS2017 480591
12.3 HS2017 480592
12.3 HS2017 480593
12.3 HS2017 480610
12.3 HS2017 480620
12.3 HS2017 480640
12.3 HS2017 4808
12.3 HS2017 481031
12.3 HS2017 481032
12.3 HS2017 481039
12.3 HS2017 481092
12.3 HS2017 481099
12.3 HS2017 481151
12.3 HS2017 481159
12.3.1 HS2002 480411
12.3.1 HS2002 480419
12.3.1 HS2002 480511
12.3.1 HS2002 480512
12.3.1 HS2002 480519
12.3.1 HS2002 480524
12.3.1 HS2002 480525
12.3.1 HS2002 480591
12.3.1 HS2007 480411
12.3.1 HS2007 480419
12.3.1 HS2007 480511
12.3.1 HS2007 480512
12.3.1 HS2007 480519
12.3.1 HS2007 480524
12.3.1 HS2007 480525
12.3.1 HS2007 480591
12.3.1 HS2012 480411
12.3.1 HS2012 480419
12.3.1 HS2012 480511
12.3.1 HS2012 480512
12.3.1 HS2012 480519
12.3.1 HS2012 480524
12.3.1 HS2012 480525
12.3.1 HS2012 480591
12.3.2 HS2002 480442
12.3.2 HS2002 480449
12.3.2 HS2002 480451
12.3.2 HS2002 480452
12.3.2 HS2002 480459
12.3.2 HS2002 480592
12.3.2 HS2002 481032
12.3.2 HS2002 481039
12.3.2 HS2002 481092
12.3.2 HS2002 481151
12.3.2 HS2002 481159
12.3.2 HS2007 480442
12.3.2 HS2007 480449
12.3.2 HS2007 480451
12.3.2 HS2007 480452
12.3.2 HS2007 480459
12.3.2 HS2007 480592
12.3.2 HS2007 481032
12.3.2 HS2007 481039
12.3.2 HS2007 481092
12.3.2 HS2007 481151
12.3.2 HS2007 481159
12.3.2 HS2012 480442
12.3.2 HS2012 480449
12.3.2 HS2012 480451
12.3.2 HS2012 480452
12.3.2 HS2012 480459
12.3.2 HS2012 480592
12.3.2 HS2012 481032
12.3.2 HS2012 481039
12.3.2 HS2012 481092
12.3.2 HS2012 481151
12.3.2 HS2012 481159
12.3.2 HS2017 480442
12.3.2 HS2017 480449
12.3.2 HS2017 480451
12.3.2 HS2017 480452
12.3.2 HS2017 480459
12.3.2 HS2017 480592
12.3.2 HS2017 481032
12.3.2 HS2017 481039
12.3.2 HS2017 481092
12.3.2 HS2017 481151
12.3.2 HS2017 481159
12.3.3 HS2002 480421
12.3.3 HS2002  480429
12.3.3 HS2002  480431
12.3.3 HS2002 480439
12.3.3 HS2002 480530
12.3.3 HS2002 480610
12.3.3 HS2002 480620
12.3.3 HS2002 480640
12.3.3 HS2002 4808
12.3.3 HS2002 481031
12.3.3 HS2002 481099
12.3.3 HS2007 480421
12.3.3 HS2007 480429
12.3.3 HS2007 480431
12.3.3 HS2007 480439
12.3.3 HS2007 480530
12.3.3 HS2007 480610
12.3.3 HS2007 480620
12.3.3 HS2007 480640
12.3.3 HS2007 4808
12.3.3 HS2007 481031
12.3.3 HS2007 481099
12.3.3 HS2012 480421
12.3.3 HS2012 480429
12.3.3 HS2012 480431
12.3.3 HS2012 480439
12.3.3 HS2012 480530
12.3.3 HS2012 480610
12.3.3 HS2012 480620
12.3.3 HS2012 480640
12.3.3 HS2012 4808
12.3.3 HS2012 481031
12.3.3 HS2012 481099
12.3.3 HS2017 480421
12.3.3 HS2017 480429
12.3.3 HS2017 480431
12.3.3 HS2017 480439
12.3.3 HS2017 480530
12.3.3 HS2017 480610
12.3.3 HS2017 480620
12.3.3 HS2017 480640
12.3.3 HS2017 4808
12.3.3 HS2017 481031
12.3.3 HS2017 481099
12.3.4 HS2002 480593
12.3.4 HS2007 480593
12.3.4 HS2012 480593
12.3.4 HS2017 480593
12.4 HS2002 480240
12.4 HS2002 480441
12.4 HS2002 480540
12.4 HS2002 480550
12.4 HS2002 480630
12.4 HS2002 4812
12.4 HS2002 4813
12.4 HS2007 480240
12.4 HS2007 480441
12.4 HS2007 480540
12.4 HS2007 480550
12.4 HS2007 480630
12.4 HS2007 4812
12.4 HS2007 4813
12.4 HS2012 480240
12.4 HS2012 480441
12.4 HS2012 480540
12.4 HS2012 480550
12.4 HS2012 480630
12.4 HS2012 4812
12.4 HS2012 4813
12.4 HS2017 480240
12.4 HS2017 480441
12.4 HS2017 480540
12.4 HS2017 480550
12.4 HS2017 480630
12.4 HS2017 4812
12.4 HS2017 4813
13.1 HS2002 440910
13.1 HS2002 440920 Only some part of it
13.1 HS2007 440910
13.1 HS2007 440929
13.1 HS2012 440910
13.1 HS2012 440929
13.1 HS2017 440910
13.1 HS2017 440922
13.1 HS2017 440929
13.1.C HS2002 440910
13.1.C HS2007 440910
13.1.C HS2012 440910
13.1.C HS2017 440910
13.1.NC HS2002 440920 Only some part of it
13.1.NC HS2007 440929
13.1.NC HS2012 440929
13.1.NC HS2017 440922
13.1.NC HS2017 440929
13.1.NC.T HS2002 440920 Only some part of it
13.1.NC.T HS2007 440929 Only some part of it
13.1.NC.T HS2012 440929 Only some part of it
13.1.NC.T HS2017 440922
13.2 HS2002 4415
13.2 HS2002 4416
13.2 HS2007 4415
13.2 HS2007 4416
13.2 HS2012 4415
13.2 HS2012 4416
13.2 HS2017 4415
13.2 HS2017 4416
13.3 HS2002 4414
13.3 HS2002 4419 Only some part of it
13.3 HS2002 4420
13.3 HS2007 4414
13.3 HS2007 4419 Only some part of it
13.3 HS2007 4420
13.3 HS2012 4414
13.3 HS2012 4419 Only some part of it
13.3 HS2012 4420
13.3 HS2017 4414
13.3 HS2017 441990
13.3 HS2017 4420
13.4 HS2002 441810
13.4 HS2002 441820
13.4 HS2002 441830
13.4 HS2002 441840
13.4 HS2002 441850
13.4 HS2002 441890 Only some part of it
13.4 HS2007 441810
13.4 HS2007 481820
13.4 HS2007 441840
13.4 HS2007 441850
13.4 HS2007 441860
13.4 HS2007 441871 Only some part of it
13.4 HS2007 441872 Only some part of it
13.4 HS2007 441879 Only some part of it
13.4 HS2007 441890 Only some part of it
13.4 HS2012 441810
13.4 HS2012 441820
13.4 HS2012 441840
13.4 HS2012 441850
13.4 HS2012 441860
13.4 HS2012 441871 Only some part of it
13.4 HS2012 441872 Only some part of it
13.4 HS2012 441879 Only some part of it
13.4 HS2012 441890 Only some part of it
13.4 HS2017 441810
13.4 HS2017 441820
13.4 HS2017 441840
13.4 HS2017 441850
13.4 HS2017 441860
13.4 HS2017 441874
13.4 HS2017 441875
13.4 HS2017 441879
13.4 HS2017 441899
13.5 HS2002 940161
13.5 HS2002 940169
13.5 HS2002 940190 Only some part of it
13.5 HS2002 940330
13.5 HS2002 940340
13.5 HS2002 940350
13.5 HS2002 940360
13.5 HS2002 940390 Only some part of it
13.5 HS2007 940161
13.5 HS2007 940169
13.5 HS2007 940190 Only some part of it
13.5 HS2007 940330
13.5 HS2007 940340
13.5 HS2007 940350
13.5 HS2007 940360
13.5 HS2007 940390 Only some part of it
13.5 HS2012 940161
13.5 HS2012 940169
13.5 HS2012 940190 Only some part of it
13.5 HS2012 940330
13.5 HS2012 940340
13.5 HS2012 940350
13.5 HS2012 940360
13.5 HS2012 940390 Only some part of it
13.5 HS2017 940161
13.5 HS2017 940169
13.5 HS2017 940190 Only some part of it
13.5 HS2017 940330
13.5 HS2017 940340
13.5 HS2017 940350
13.5 HS2017 940360
13.5 HS2017 940390 Only some part of it
13.6 HS2002 9406 Only some part of it
13.6 HS2007 9406 Only some part of it
13.6 HS2012 9406 Only some part of it
13.6 HS2017 940610
13.7 HS2002 4404
13.7 HS2002 4405
13.7 HS2002 4413
13.7 HS2002 4417
13.7 HS2002 442110
13.7 HS2002 442190 Only some part of it
13.7 HS2007 4404
13.7 HS2007 4405
13.7 HS2007 4413
13.7 HS2007 4417
13.7 HS2007 442110
13.7 HS2007 442190 Only some part of it
13.7 HS2012 4404
13.7 HS2012 4405
13.7 HS2012 4413
13.7 HS2012 4417
13.7 HS2012 442110
13.7 HS2012 442190 Only some part of it
13.7 HS2017 4404
13.7 HS2017 4405
13.7 HS2017 4413
13.7 HS2017 4417
13.7 HS2017 442110
13.7 HS2017 442199
14.1 HS2002 4807
14.1 HS2007 4807
14.1 HS2012 4807
14.1 HS2017 4807
14.2 HS2002 481110
14.2 HS2002 481141
14.2 HS2002 481149
14.2 HS2002 481160
14.2 HS2002 481190
14.2 HS2007 481110
14.2 HS2007 481141
14.2 HS2007 481149
14.2 HS2007 481160
14.2 HS2007 481190
14.2 HS2012 481110
14.2 HS2012 481141
14.2 HS2012 481149
14.2 HS2012 481160
14.2 HS2012 481190
14.2 HS2017 481110
14.2 HS2017 481141
14.2 HS2017 481149
14.2 HS2017 481160
14.2 HS2017 481190
14.3 HS2002 4818
14.3 HS2007 4818
14.3 HS2012 4818
14.3 HS2017 4818
14.4 HS2002 4819
14.4 HS2007 4819
14.4 HS2012 4819
14.4 HS2017 4819
14.5 HS2002 4814
14.5 HS2002 4816
14.5 HS2002 4817
14.5 HS2002 4820
14.5 HS2002 4821
14.5 HS2002 4822
14.5 HS2002 4823
14.5 HS2007 4814
14.5 HS2007 4816
14.5 HS2007 4817
14.5 HS2007 4820
14.5 HS2007 4821
14.5 HS2007 4822
14.5 HS2007 4823
14.5 HS2012 4814
14.5 HS2012 4816
14.5 HS2012 4817
14.5 HS2012 4820
14.5 HS2012 4821
14.5 HS2012 4822
14.5 HS2012 4823
14.5 HS2017 4814
14.5 HS2017 4816
14.5 HS2017 4817
14.5 HS2017 4820
14.5 HS2017 4821
14.5 HS2017 4822
14.5 HS2017 4823
14.5.1 HS2002 482390 Only some part of it
14.5.1 HS2007 482390 Only some part of it
14.5.1 HS2012 482390 Only some part of it
14.5.1 HS2017 482390 Only some part of it
14.5.2 HS2002 482370
14.5.2 HS2007 482370
14.5.2 HS2012 482370
14.5.2 HS2017 482370
14.5.3 HS2002 482320
14.5.3 HS2007 482320
14.5.3 HS2012 482320
14.5.3 HS2017 482320
12.6 HS2002 482110 Only some part of it
12.6 HS2002 482190 Only some part of it
12.6 HS2002 482210 Only some part of it
12.6 HS2002 482290 Only some part of it
12.6 HS2002 482312 Only some part of it
12.6 HS2002 482319 Only some part of it
12.6 HS2002 482320 Only some part of it
12.6 HS2002 482340 Only some part of it
12.6 HS2002 482360 Only some part of it
12.6 HS2002 482370 Only some part of it
12.6 HS2002 482390 Only some part of it
12.6 HS2002 480210 Only some part of it
12.6 HS2002 480220 Only some part of it
12.6 HS2002 480230 Only some part of it
12.6 HS2002 480240 Only some part of it
12.6 HS2002 480254 Only some part of it
12.6 HS2002 480255 Only some part of it
12.6 HS2002 480256 Only some part of it
12.6 HS2002 480257 Only some part of it
12.6 HS2002 480258 Only some part of it
12.6 HS2002 480261 Only some part of it
12.6 HS2002  480262 Only some part of it
12.6 HS2002  480269 Only some part of it
12.6 HS2002 481013 Only some part of it
12.6 HS2002 481014 Only some part of it
12.6 HS2002 481019 Only some part of it
12.6 HS2002 481022 Only some part of it
12.6 HS2002 481029 Only some part of it
12.6 HS2002 481031 Only some part of it
12.6 HS2002 481032 Only some part of it
12.6 HS2002 481039 Only some part of it
12.6 HS2002 481092 Only some part of it
12.6 HS2002  481099 Only some part of it
12.6 HS2007 481410
12.6 HS2007 481420
12.6 HS2007 481490
12.6 HS2007 481710
12.6 HS2007 481720
12.6 HS2007 481730
12.6 HS2007 482010
12.6 HS2007 482020
12.6 HS2007 482030
12.6 HS2007 482040
12.6 HS2007 482050
12.6 HS2007 482090
12.6 HS2007 482110
12.6 HS2007 482190
12.6 HS2007 482210
12.6 HS2007 482290
12.6 HS2007 482320
12.6 HS2007 482340
12.6 HS2007 482361
12.6 HS2007 482369
12.6 HS2007 482370
12.6 HS2007 482390
12.6 HS2012 481420
12.6 HS2012 481490
12.6 HS2012 481710
12.6 HS2012 481720
12.6 HS2012 481730
12.6 HS2012 482020
12.6 HS2012 482030
12.6 HS2012 482040
12.6 HS2012 482050
12.6 HS2012 482090
12.6 HS2012 482110
12.6 HS2012 482190
12.6 HS2012 482210
12.6 HS2012 482290
12.6 HS2012 482320
12.6 HS2012 482340
12.6 HS2012 482361
12.6 HS2012 482369
12.6 HS2012 482370
12.6 HS2012 482390
12.6.1 HS2002 480210 Only some part of it
12.6.1 HS2002 480220 Only some part of it
12.6.1 HS2002 480230 Only some part of it
12.6.1 HS2002 480240 Only some part of it
12.6.1 HS2002 480254 Only some part of it
12.6.1 HS2002 480255 Only some part of it
12.6.1 HS2002 480256 Only some part of it
12.6.1 HS2002 480257 Only some part of it
12.6.1 HS2002 480258 Only some part of it
12.6.1 HS2002 480261 Only some part of it
12.6.1 HS2002  480262 Only some part of it
12.6.1 HS2002  480269 Only some part of it
12.6.1 HS2002 481013 Only some part of it
12.6.1 HS2002 481014 Only some part of it
12.6.1 HS2002 481019 Only some part of it
12.6.1 HS2002 481022 Only some part of it
12.6.1 HS2002 481029 Only some part of it
12.6.1 HS2002 481031 Only some part of it
12.6.1 HS2002 481032 Only some part of it
12.6.1 HS2002 481039 Only some part of it
12.6.1 HS2002 481092 Only some part of it
12.6.1 HS2002  481099 Only some part of it
12.6.1 HS2002 482390 Only some part of it
12.6.1 HS2007 482390 Only some part of it
12.6.1 HS2012 482390 Only some part of it
12.6.2 HS2002 482370
12.6.2 HS2007 482370
12.6.2 HS2012 482370
12.6.3 HS2002 482320
12.6.3 HS2007 482320
12.6.3 HS2012 482320

Conversion factors

JFSQ
JOINT FOREST SECTOR QUESTIONNAIRE
Conversion Factors
NOTE THESE ARE ONLY GENERAL FACTORS. IT WOULD BE PREFERABLE TO USE SPECIES- OR COUNTRY-SPECIFIC FACTORS
Multiply the quantity expressed in units on the right side of "per" with the factor to get the value expressed in units on left side of "per".
Items in BOLD RED text were added to the JFSQ in February 2023
Product Code Product JFSQ Quantity Unit Results from UNECE/FAO/ITTO 2020 publication "Forest Product Conversion Factors" UNECE/FAO Engineered Wood Products Questionnaire (last revised 2020) Results from UNECE/FAO 2009 Conversion Factors Questionnaire (median) FAO and UNECE Statistical Publications (Pre-2009)
volume to weight volume/weight of finished product to volume of roundwood Notes to Results volume to weight Notes to Results volume to weight volume/weight of finished product to volume of roundwood Notes to Results volume to weight volume to area volume/weight of finished product to volume of roundwood
m3 per MT m3 per MT m3 per MT Roundwood equivalent Roundwood equivalent Roundwood equivalent m3 per MT m3 per MT Roundwood equivalent m3 per MT m3 per m2 Roundwood
equivalent
Europe NA** EECCA** Europe NA** EECCA**
1 ROUNDWOOD (WOOD IN THE ROUGH) 1000 m3 ub
1.1 WOOD FUEL, INCLUDING WOOD FOR CHARCOAL 1000 m3 ub 1.38
1.1.C Coniferous 1000 m3 ub 1.64 typical shipping weight Green = 1.12 Based on 891 kg/m3 green, basic density of .41, and 20% moisture seasoned 1.60
1000 m3 ub Seasoned = 1.82 Based on 407 kg/m3 dry, assuming 20% moisture
1.1.NC Non-Coniferous 1000 m3 ub 1.11 typical shipping weight Green=1.05 Based on 1137 kg/m3 green, specific gravity of .55, and 20% moisture seasoned 1.33
1000 m3 ub Seasoned=1.43
1.2 INDUSTRIAL ROUNDWOOD 1000 m3 ub
1.2.C Coniferous 1000 m3 ub 1.11 1.08 1.27 Averaged pulp and log 1.10 Based on 50/50 ratio of share of logs/pulpwood in industrial roundwood
1.2.C.Fir Fir (and Spruce) 1000 m3 ub 1.21 Austrian Energy Agency, 2009. weighted by share of standing inventory of European speices (57% spruce, 10% silver fir and remaining species)
1.2.C.Pine Pine 1000 m3 ub 1.08 Austrian Energy Agency, 2009, weighted 25% Scots Pine, 2% maritime pine, 2% black pine and remaining species
1.2.NC Non-Coniferous 1000 m3 ub 0.98 1.02 1.15 0.91 Based on 50/50 ratio of share of logs/pulpwood in industrial roundwood
1.2.NC.T of which:Tropical 1000 m3 ub AFRICA=1.31, ASIA=0.956, LA. AM= 0.847, World=1.12 Source: Fonseca "Measurement of Roundwood" 2005, ITTO Annual Review 2007, table 3-2-a Species weight averaged using m3/tonne from Fonseca 2005 and volume exported by species from each region as shown in ITTO 2007 (assumes that bark is removed) 1.37
1.2.1 SAWLOGS AND VENEER LOGS 1000 m3 ub 1.04 0.96 1.12 Averaged C & NC 1.05 Based on 950 kg/m3 green. Bark is included in weight but not in volume.
1.2.1.C Coniferous 1000 m3 ub 1.10 1.00 1.19 1.07 Based on 935 kg/m3 green. Bark is included in weight but not in volume. 1.43
1.2.1.NC Non-Coniferous 1000 m3 ub 0.97 0.92 1.04 0.91 Based on 1093 kg/m3 green. Bark is included in weight but not in volume. 1.25
1.2.NC.Beech Beech 1000 m3 ub 0.92 Austrian Energy Agency, 2009
1.2.NC.Birch Birch 1000 m3 ub 0.88 Austrian Energy Agency, 2009
1.2.NC.Eucalyptus Eucalyptus 1000 m3 ub 0.77 ATIBT, 1982
1.2.NC.Oak Oak 1000 m3 ub 0.88 Austrian Energy Agency, 2009
1.2.NC.Poplar Poplar 1000 m3 ub 1.06 Austrian Energy Agency, 2009
1.2.2 PULPWOOD (ROUND & SPLIT) 1000 m3 ub 1.05 1.14 1.30 Averaged C & NC 1.08 Based on 930 kg/m3 green. Bark is included in weight but not in volume. 1.48
1.2.2.C Coniferous 1000 m3 ub 1.11 1.16 1.35 1.12 Based on 891 kg/m3 green. Bark is included in weight but not in volume. 1.54
1.2.2.NC Non-Coniferous 1000 m3 ub 0.98 1.11 1.25 0.91 Based on 1095 kg/m3 green. Bark is included in weight but not in volume. 1.33
1.2.3 OTHER INDUSTRIAL ROUNDWOOD 1000 m3 ub 1.07 1.33
1.2.3.C Coniferous 1000 m3 ub 1.11 1.16 1.35 used pulpwood data 1.12 same as 1.2.2.C 1.43
1.2.3.NC Non-Coniferous 1000 m3 ub 0.98 1.11 1.25 0.91 same as 1.2.2.NC 1.25
2 WOOD CHARCOAL 1000 MT 6 m3rw/tonne 5.35 Does not include the use of any of the wood fiber to generate the heat to make (add about 30% if inputted wood fiber used to provide heat) 6.00
3 WOOD CHIPS, PARTICLES AND RESIDUES 1000 m3
3.1 WOOD CHIPS AND PARTICLES 1000 m3 1.205 1.07 1.21 1.08 m3 /MT = green swe per odmt / avg delivered tonne/odmt, rwe= +1% softwood=1.19 1.205 Based on swe/odmt of 2.41 and avg delivered mt / odmt of 2.0 in solid m3 1.60
1000 m3 hardwood = 1.05 1.123 Based on swe/odmt of 2.01 and avg delivered mt / odmt of 1.79 in solid m3
1000 m3 Woodchip, Green swe to oven-dry tonne m3/odmt mix = 1.15
3.2 WOOD RESIDUES 1000 m3 1.205 1.07 1.21 1.08 Based on wood chips Green=1.15 Based on wood chips 1.50
1000 m3 2.12 2.07 Seasoned = 2.12 2.07 Assumption for seasoned is based on average basic density of .42 from questionnaire and assumes 15% moisture content
3.2.1 of which: SAWDUST 1000 m3 1.205 1.07 1.21 1.08 Based on wood chips
4 RECOVERED POST-CONSUMER WOOD 1000 mt Delivered MT (12-20% atmospheric moisture). Convert to dry weight for energy purposes (multiply by 0.88 - 0.80)
5 WOOD PELLETS AND OTHER AGGLOMERATES 1000 MT
5.1 WOOD PELLETS 1000 MT 1.54 1.45 1.54 1.51 1.44 nodata m3/ton - bulk density, loose volume, 5-10% mcw- Equivalent - solid wood imput to bulk m3 pellets 1.51 1.44 Bulk (loose) volume, 5-10% moisture
5.2 OTHER AGGLOMERATES 1000 MT 1.12 nodata nodata 2.32 nodata nodata m3/ton - Pressed logs and briquettes, bulk density, loose volume. Equivalent - m3rw/odmt 1.31 2.29 roundwood equivalent is m3rw/odmt, volume to weight is bulk (loose volume)
6 SAWNWOOD 1000 m3 1.6 / 1.82*
6.C Coniferous 1000 m3 1.202 1.69 1.62 1.85 m3/ton - Average Sawnwood shipping weight. Equivalent - Sawnwood green rough Green=1.202 RoughGreen=1.67 Green sawnwood based on basic density of .94, less bark (11%) 1.82
1000 m3 1.82 1.72 Nodata 2 1.69 2.05 Sawnwood dry rough Dry = 1.99 RoughDry=1.99 Dry sawnwood weight based on basic density of .42, 4% shrinkage and 15% moisture content
1000 m3 2.26 2.08 nodata Sawnwood dry planed PlanedDry=2.13
6.C.Fir Fir and Spruce 1000 m3 2.16 Austrian Energy Agency, 2009. Dried weight (15% moisture content dry weight). Weighted ratio of standing inventory.
6.C.Pine Pine 1000 m3 1.72 Austrian Energy Agency, 2009. Dried weight (15% moisture content dry weight). Weighted ratio of standing inventory.
6.NC Non-Coniferous 1000 m3 1.04 1.89 1.79 nodata Sawnwood green rough Green=1.04 RoughGreen=1.86 Green sawnwood based on basic density of 1.09, less bark (12%) 1.43
1000 m3 1.43 nodata nodata 2.01 1.92 nodata m3/ton - Average Sawnwood shipping weight. Equivalent - Sawnwood green rough Seasoned=1.50 RoughDry=2.01 Dry sawnwood weight based on basic density of .55, 5% shrinkage and 15% moisture content
1000 m3 3.25 3.38 nodata Sawnwood dry planed PlanedDry=2.81
6.NC.Ash Ash 1000 m3 1.47 Wood Database (wood-database.com). Air-dry.
6.NC.Beech Beech 1000 m3 1.42 Austrian Energy Agency, 2009. Dried weight (15% moisture content dry weight).
6.NC.Birch Birch 1000 m3 1.47 Austrian Energy Agency, 2009. Dried weight (15% moisture content dry weight).
6.NC.Cherry Cherry 1000 m3 1.62 Giordano, 1976, Tecnologia del legno. Air-dry. Prunus avium.
6.NC.Maple Maple 1000 m3 1.35 Giordano, 1976, Tecnologia del legno. Air-dry
6.NC.Oak Oak 1000 m3 1.38 Austrian Energy Agency, 2009. Dried weight (15% moisture content dry weight).
6.NC.Poplar Poplar 1000 m3 2.29 Austrian Energy Agency, 2009. Dried weight (15% moisture content dry weight).
6.NC.T of which:Tropical 1000 m3 1.38 Based on FP Conversion Factors (2019), Asia (720 kg / m3)
7 VENEER SHEETS 1000 m3 1.33 0.0025 1.9*
7.C Coniferous 1000 m3 1.05 1.95 1.5 Green veneer based on the ratio from the old conversion factors Green=1.20 1.5*** Green veneer based on basic density of .94, less bark (11%) 0.003
1000 m3 1.8 nodata nodata 2.08 1.6 nodata m3/ton - Average panel shipping weight; Roundwood equivalent - m3rw = cubic metre roundwood, m3p = cubic metre product Seasoned=2.06 1.6*** Dry veneer weight based on basic density of .42, 9% shrinkage and 5% moisture content
7.NC Non-Coniferous 1000 m3 1.15 nodata nodata 2.11 1.89 Green veneer based on the ratio from the old conversion factors Green=1.04 1.5*** Green veneer based on basic density of 1.09, less bark (11%) 0.001
1000 m3 1.7 nodata nodata 2.25 2 nodata m3/ton - Average panel shipping weight; Roundwood equivalent - m3rw = cubic metre roundwood, m3p = cubic metre product Seasoned=1.53 1.6*** Dry veneer weight based on basic density of .55, 11.5% shrinkage and 5% moisture content
7.NC.T of which:Tropical 1000 m3
8 WOOD-BASED PANELS 1000 m3 1.6
8.1 PLYWOOD 1000 m3 1.54 0.105 2.3*
8,1.C Coniferous 1000 m3 1.67 Nodata Nodata 2.16 1.92 nodata 1.69 2.12 dried, sanded, peeled 0.0165***
8.1.NC Non-Coniferous 1000 m3 1.54 Nodata Nodata 2.54 2.14 nodata 1.54 1.92 dried, sanded, sliced 0.0215***
8.1.NC.T of which:Tropical 1000 m3
8.1.1 of which: LAMINATED VENEER LUMBER 1000 m3 1.69 Same as coniferous plywood
8.1.1.C Coniferous 1000 m3 1.69 Same as coniferous plywood
8.1.1.NC Non-Coniferous 1000 m3 no data
8.1.1.NC.T of which:Tropical 1000 m3 no data
8.2 PARTICLE BOARD (including OSB) 1000 m3 1.54
8.2x PARTICLE BOARD (excluding OSB) 1000 m3 1.54 Nodata Nodata 1.51 1.54 nodata m3/ton - Based on Product based density; Roundwood equivalent - m3rw = cubic metre roundwood, m3p = cubic metre product. 1.53 1.50 0.018***
8.2.1 of which: OSB 1000 m3 1.64 Nodata Nodata 1.72 1.63 nodata m3/ton - Based on Product based density; Roundwood equivalent - m3rw = cubic metre roundwood, m3p = cubic metre product. 1.67 1.63 0.018***
8.3 FIBREBOARD 1000 m3 nodata nodata nodata m3/ton - Based on Product based density; Roundwood equivalent - m3rw = cubic metre roundwood, m3p = cubic metre product.
8.3.1 HARDBOARD 1000 m3 1.06 Nodata Nodata 2.2 1.77 nodata m3/ton - Based on Product based density; Roundwood equivalent - m3rw = cubic metre roundwood, m3p = cubic metre product. 1.06 1.93 solid wood per m3 of product 1.05 0.005
Alex McCusker: Alex McCusker: 0.003 per Conversion Factors Study
8.3.2 MEDIUM/HIGH DENSITY FIBREBOARD (MDF/HDF) 1000 m3 1.35 Nodata Nodata 1.80 1.53 nodata m3/ton - Based on Product based density; Roundwood equivalent - m3rw = cubic metre roundwood, m3p = cubic metre product. 1.37 1.70 solid wood per m3 of product 2.00 0.016
8.3.3 OTHER FIBREBOARD 1000 m3 3.85 Nodata Nodata 0.68 0.71 nodata m3/ton - Based on Product based density; Roundwood equivalent - m3rw = cubic metre roundwood, m3p = cubic metre product. 3.44 0.71 solid wood per m3 of product, mostly insulating board 4.00 0.025
9 WOOD PULP 1000 MT 3.7 nodata 3.76 m3sw/MT, where m3sw = cubic metre solid wood, and MT = tonne (in this case assumed air-dry – 10% moisture, wet basis) 3.86 3.37
9.1 MECHANICAL AND SEMI-CHEMICAL 1000 MT 2.59 2.45 2.94 m3sw/MT, where m3sw = cubic metre solid wood, and MT = tonne (in this case assumed air-dry – 10% moisture, wet basis) 2.60 air-dried metric ton (mechanical 2.50, semi-chemical 2.70)
9..2 CHEMICAL 1000 MT 4.80 4.29 4.10 m3sw/MT, where m3sw = cubic metre solid wood, and MT = tonne (in this case assumed air-dry – 10% moisture, wet basis) 4.90
9.2.1 SULPHATE 1000 MT 4.50 nodata 4.60 m3sw/MT, where m3sw = cubic metre solid wood, and MT = tonne (in this case assumed air-dry – 10% moisture, wet basis) 4.57 air-dried metric ton (unbleached 4.63, bleached 4.50)
9.2.1.1 of which: bleached 1000 MT 4.50 nodata 4.90 m3sw/MT, where m3sw = cubic metre solid wood, and MT = tonne (in this case assumed air-dry – 10% moisture, wet basis) 4.50 air-dried metric ton
9.2.2 SULPHITE 1000 MT 4.73 nodata 4.15 m3sw/MT, where m3sw = cubic metre solid wood, and MT = tonne (in this case assumed air-dry – 10% moisture, wet basis) 4.83 air-dried metric ton (unbleached 4.64 and bleached 5.01)
9.3 DISSOLVING GRADES 1000 MT 4.46 nodata nodata m3sw/MT, where m3sw = cubic metre solid wood, and MT = tonne (in this case assumed air-dry – 10% moisture, wet basis) 5.65 air-dried metric ton
10 OTHER PULP 1000 MT nodata nodata nodata m3sw/MT, where m3sw = cubic metre solid wood, and MT = tonne (in this case assumed air-dry – 10% moisture, wet basis)
10.1 PULP FROM FIBRES OTHER THAN WOOD 1000 MT nodata nodata nodata m3sw/MT, where m3sw = cubic metre solid wood, and MT = tonne (in this case assumed air-dry – 10% moisture, wet basis)
10.2 RECOVERED FIBRE PULP 1000 MT nodata nodata nodata m3sw/MT, where m3sw = cubic metre solid wood, and MT = tonne (in this case assumed air-dry – 10% moisture, wet basis)
11 RECOVERED PAPER 1000 MT nodata nodata nodata m3sw/MT, where m3sw = cubic metre solid wood, and MT = tonne (in this case assumed air-dry – 10% moisture, wet basis) 1.28 MT in per MT out
12 PAPER AND PAPERBOARD 1000 MT 3.85 nodata 4.15 m3sw/MT, where m3sw = cubic metre solid wood, and MT = tonne (in this case assumed air-dry – 10% moisture, wet basis) 3.6 3.37
12.1 GRAPHIC PAPERS 1000 MT nodata nodata nodata
12.1.1 NEWSPRINT 1000 MT 2.80 2.50 3.15 m3sw/MT, where m3sw = cubic metre solid wood, and MT = tonne (in this case assumed air-dry – 10% moisture, wet basis) 2.80 air-dried metric ton
12.1.2 UNCOATED MECHANICAL 1000 MT 3.50 nodata 4.00 3.50 air-dried metric ton
12.1.3 UNCOATED WOODFREE 1000 MT nodata nodata nodata
12.1.4 COATED PAPERS 1000 MT 3.50 nodata 4.00 m3sw/MT, where m3sw = cubic metre solid wood, and MT = tonne (in this case assumed air-dry – 10% moisture, wet basis) 3.95 air-dried metric ton
12.2 SANITARY AND HOUSEHOLD PAPERS 1000 MT 4.60 nodata 4.20 m3sw/MT, where m3sw = cubic metre solid wood, and MT = tonne (in this case assumed air-dry – 10% moisture, wet basis) 4.90 air-dried metric ton
12.3 PACKAGING MATERIALS 1000 MT 3.25 nodata 4.30 m3sw/MT, where m3sw = cubic metre solid wood, and MT = tonne (in this case assumed air-dry – 10% moisture, wet basis) 3.25 air-dried metric ton
12.3.1 CASE MATERIALS 1000 MT 4.20 nodata 4.00 m3sw/MT, where m3sw = cubic metre solid wood, and MT = tonne (in this case assumed air-dry – 10% moisture, wet basis) 4.20 air-dried metric ton
12.3.2 CARTONBOARD 1000 MT 4.00 nodata 4.30 m3sw/MT, where m3sw = cubic metre solid wood, and MT = tonne (in this case assumed air-dry – 10% moisture, wet basis) 4.00 air-dried metric ton
12.3.3 WRAPPING PAPERS 1000 MT 4.10 nodata 4.40 m3sw/MT, where m3sw = cubic metre solid wood, and MT = tonne (in this case assumed air-dry – 10% moisture, wet basis) 4.10 air-dried metric ton
12.3.4 OTHER PAPERS MAINLY FOR PACKAGING 1000 MT 4.00 nodata 3.30 m3sw/MT, where m3sw = cubic metre solid wood, and MT = tonne (in this case assumed air-dry – 10% moisture, wet basis) 4.00 air-dried metric ton
12.4 OTHER PAPER AND PAPERBOARD N.E.S 1000 MT 3.48 nodata 3.30 m3sw/MT, where m3sw = cubic metre solid wood, and MT = tonne (in this case assumed air-dry – 10% moisture, wet basis) 3.48 air-dried metric ton
15 GLULAM AND CROSS-LAMINATED TIMBER 1000 m3
15.1 GLULAM 1000 m3 1.69 same as coniferous plywood
15.2 CROSS-LAMINATED TIMBER 1000 m3 2.00
16 I-BEAMS 1000 MT 1.68 222 linear meters per MT
For inverse relationships divide 1 by the factor given, e.g. to convert m3 of wood charcoal to mt divide 1 by m3/mt factor of 6 = 0.167
Notes: Forest Measures
MT = metric tonnes (1000 kg) Unit m3/unit
m3 = cubic meters (solid volume) 1000 board feet (sawlogs) 4.53**** **** = obsolete - more recent figures would be:
m2 = square meters 1000 board feet (sawnwood - nominal) 2.36 for Oregon, Washington State, Alaska (west of Cascades), South East United States (Doyle region): 6.3
(s) = solid volume 1000 board feet (sawnwood - actual) 1.69 Inland Western North America, Great Lakes (North America), Eastern Canada: 5.7
1000 square feet (1/8 inch thickness) 0.295 Northeast United States Int 1/4": 5
Unit Conversion cord 3.625
1 inch = 25.4 millimetres cord (pulpwood) 2.55
1 square foot = 0.0929 square metre cord (wood fuel) 2.12
1 pound = 0.454 kilograms cubic foot 0.02832
1 short ton (2000 pounds) = 0.9072 metric ton cubic foot (stacked) 0.01841
1 long ton (2240 pounds) = 1.016 metric ton cunit 2.83
Bold = FAO published figure fathom 6.1164
hoppus cubic foot 0.0222
* = ITTO hoppus super(ficial) foot 0.00185
hoppus ton (50 hoppus cubic feet) 1.11
** NA = North America; EECCA = Eastern Europe, Caucasus and Central Asia Petrograd Standard 4.672
stere 1
*** = Conversion Factor Study, US figures, rotary for conifer and sliced for non-conifer stere (pulpwood) 0.72
stere (wood fuel) 0.65
Fonseca "Measurement of Roundwood" 2005. Estimated by Matt Fonseca based on regional knowledge of the scaling methods and timber types
prepared February 2004
updated 2007 with RWE factors
updated 2009 with provisional results of forest products conversion factors study
updated 2011 with results of forest products conversion factors study (DP49)
updated 2023 with results of 2019 UNECE/FAO/ITTO study - https://www.fao.org/documents/card/en/c/ca7952en

Flatfile

geo stk_flow time prod_wd treespec unit obs_value obs_flag
AT PRD 2021 RW_OB TOTAL THS_M3 20630.6968 4
AT PRD 2021 RW_FW_OB TOTAL THS_M3 5487.44896 4
AT PRD 2021 RW_FW_OB CONIF THS_M3 3352.0424 4
AT PRD 2021 RW_FW_OB NCONIF THS_M3 2135.40656 4
AT PRD 2021 RW_IN_OB TOTAL THS_M3 15143.24784 4
AT PRD 2021 RW_IN_OB CONIF THS_M3 14190.98352 4
AT PRD 2021 RW_IN_OB NCONIF THS_M3 952.26432 4
AT PRD 2021 RW_IN_OB NC_TRO THS_M3 0 4
AT PRD 2021 RW_IN_LG_OB TOTAL THS_M3 11669.87696 4
AT PRD 2021 RW_IN_LG_OB CONIF THS_M3 11355.83456 4
AT PRD 2021 RW_IN_LG_OB NCONIF THS_M3 314.0424 4
AT PRD 2021 RW_IN_PW_OB TOTAL THS_M3 3473.37088 4
AT PRD 2021 RW_IN_PW_OB CONIF THS_M3 2835.14896 4
AT PRD 2021 RW_IN_PW_OB NCONIF THS_M3 638.22192 4
AT PRD 2021 RW_IN_O_OB TOTAL THS_M3 0 4
AT PRD 2021 RW_IN_O_OB CONIF THS_M3 0 4
AT PRD 2021 RW_IN_O_OB NCONIF THS_M3 0 4
AT PRD 2022 RW_OB TOTAL THS_M3 21680.8872 4
AT PRD 2022 RW_FW_OB TOTAL THS_M3 6074.55072 4
AT PRD 2022 RW_FW_OB CONIF THS_M3 3637.46208 4
AT PRD 2022 RW_FW_OB NCONIF THS_M3 2437.08864 4
AT PRD 2022 RW_IN_OB TOTAL THS_M3 15606.33648 4
AT PRD 2022 RW_IN_OB CONIF THS_M3 14512.29808 4
AT PRD 2022 RW_IN_OB NCONIF THS_M3 1094.0384 4
AT PRD 2022 RW_IN_OB NC_TRO THS_M3 0 4
AT PRD 2022 RW_IN_LG_OB TOTAL THS_M3 11996.32112 4
AT PRD 2022 RW_IN_LG_OB CONIF THS_M3 11627.37632 4
AT PRD 2022 RW_IN_LG_OB NCONIF THS_M3 368.9448 4
AT PRD 2022 RW_IN_PW_OB TOTAL THS_M3 3610.01536 4
AT PRD 2022 RW_IN_PW_OB CONIF THS_M3 2884.92176 4
AT PRD 2022 RW_IN_PW_OB NCONIF THS_M3 725.0936 4
AT PRD 2022 RW_IN_O_OB TOTAL THS_M3 0 4
AT PRD 2022 RW_IN_O_OB CONIF THS_M3 0 4
AT PRD 2022 RW_IN_O_OB NCONIF THS_M3 0 4
AT PRD 2021 RW TOTAL THS_M3 18420.265 4
AT PRD 2021 RW_FW TOTAL THS_M3 4899.508 4
AT PRD 2021 RW_FW CONIF THS_M3 2992.895 4
AT PRD 2021 RW_FW NCONIF THS_M3 1906.613 4
AT PRD 2021 RW_IN TOTAL THS_M3 13520.757 4
AT PRD 2021 RW_IN CONIF THS_M3 12670.521 4
AT PRD 2021 RW_IN NCONIF THS_M3 850.236 4
AT PRD 2021 RW_IN NC_TRO THS_M3 0 4
AT PRD 2021 RW_IN_LG TOTAL THS_M3 10419.533 4
AT PRD 2021 RW_IN_LG CONIF THS_M3 10139.138 4
AT PRD 2021 RW_IN_LG NCONIF THS_M3 280.395 4
AT PRD 2021 RW_IN_PW TOTAL THS_M3 3101.224 4
AT PRD 2021 RW_IN_PW CONIF THS_M3 2531.383 4
AT PRD 2021 RW_IN_PW NCONIF THS_M3 569.841 4
AT PRD 2021 RW_IN_O TOTAL THS_M3 0 4
AT PRD 2021 RW_IN_O CONIF THS_M3 0 4
AT PRD 2021 RW_IN_O NCONIF THS_M3 0 4
AT PRD 2021 CHA TOTAL THS_T 1.463
AT PRD 2021 CHP_RES TOTAL THS_M3 7466.5
AT PRD 2021 CHP TOTAL THS_M3 3903.9
AT PRD 2021 RES TOTAL THS_M3 3562.6
AT PRD 2021 RES_SWD TOTAL THS_M3 3120.6
AT PRD 2021 RCW TOTAL THS_T 1131.22
AT PRD 2021 PEL_AGG TOTAL THS_T 1675.3
AT PRD 2021 PEL TOTAL THS_T 1607
AT PRD 2021 AGG TOTAL THS_T 68.3
AT PRD 2021 SN TOTAL THS_M3 10764
AT PRD 2021 SN CONIF THS_M3 10582
AT PRD 2021 SN NCONIF THS_M3 182
AT PRD 2021 SN NC_TRO THS_M3 0 9
AT PRD 2021 PN_VN TOTAL THS_M3 7.5 5
AT PRD 2021 PN_VN CONIF THS_M3
AT PRD 2021 PN_VN NCONIF THS_M3
AT PRD 2021 PN_VN NC_TRO THS_M3 0 9
AT PRD 2021 PN TOTAL THS_M3 3423.8
AT PRD 2021 PN_PY TOTAL THS_M3 183.8
AT PRD 2021 PN_PY CONIF THS_M3 179.5
AT PRD 2021 PN_PY NCONIF THS_M3 4.3
AT PRD 2021 PN_PY NC_TRO THS_M3 0 9
AT PRD 2021 PN_PY_LVL TOTAL THS_M3
AT PRD 2021 PN_PY_LVL CONIF THS_M3
AT PRD 2021 PN_PY_LVL NCONIF THS_M3
AT PRD 2021 PN_PY_LVL NC_TRO THS_M3
AT PRD 2021 PN_PB TOTAL THS_M3 2550
AT PRD 2021 PN_PB_OSB TOTAL THS_M3 0
AT PRD 2021 PN_FB TOTAL THS_M3 690
AT PRD 2021 PN_FB_HB TOTAL THS_M3 75
AT PRD 2021 PN_FB_MDF TOTAL THS_M3 615
AT PRD 2021 PN_FB_O TOTAL THS_M3 0
AT PRD 2021 PL TOTAL THS_T 2004.481
AT PRD 2021 PL_MC_SCH TOTAL THS_T 314.049
AT PRD 2021 PL_CH TOTAL THS_T 1305.542
AT PRD 2021 PL_CH_SA TOTAL THS_T
AT PRD 2021 PL_CH_SAB TOTAL THS_T
AT PRD 2021 PL_CH_SI TOTAL THS_T
AT PRD 2021 PL_DS TOTAL THS_T 384.89
AT PRD 2021 PLO TOTAL THS_T 2197.166
AT PRD 2021 PLO_NW TOTAL THS_T 0
AT PRD 2021 PLO_RC TOTAL THS_T 2197.166
AT PRD 2021 RCP TOTAL THS_T 1694 3
AT PRD 2021 PP TOTAL THS_T 5065.256
AT PRD 2021 PP_GR TOTAL THS_T 2247.582
AT PRD 2021 PP_GR_NP TOTAL THS_T
AT PRD 2021 PP_GR_MC TOTAL THS_T
AT PRD 2021 PP_GR_NW TOTAL THS_T
AT PRD 2021 PP_GR_CO TOTAL THS_T 1270
AT PRD 2021 PP_HS TOTAL THS_T 125
AT PRD 2021 PP_PK TOTAL THS_T 2492.708
AT PRD 2021 PP_PK_CS TOTAL THS_T 1700
AT PRD 2021 PP_PK_CB TOTAL THS_T
AT PRD 2021 PP_PK_WR TOTAL THS_T
AT PRD 2021 PP_PK_O TOTAL THS_T
AT PRD 2021 PP_O TOTAL THS_T 199.966
AT PRD 2021 GLT_CLT TOTAL THS_M3 2578.0363504167
AT PRD 2021 GLT TOTAL THS_M3 2063.1351733333
AT PRD 2021 CLT TOTAL THS_M3 514.9011770833
AT PRD 2021 I_BEAMS TOTAL THS_T
AT PRD 2022 RW TOTAL THS_M3 19357.935 4
AT PRD 2022 RW_FW TOTAL THS_M3 5423.706 4
AT PRD 2022 RW_FW CONIF THS_M3 3247.734 4
AT PRD 2022 RW_FW NCONIF THS_M3 2175.972 4
AT PRD 2022 RW_IN TOTAL THS_M3 13934.229 4
AT PRD 2022 RW_IN CONIF THS_M3 12957.409 4
AT PRD 2022 RW_IN NCONIF THS_M3 976.82 4
AT PRD 2022 RW_IN NC_TRO THS_M3 0 4
AT PRD 2022 RW_IN_LG TOTAL THS_M3 10711.001 4
AT PRD 2022 RW_IN_LG CONIF THS_M3 10381.586 4
AT PRD 2022 RW_IN_LG NCONIF THS_M3 329.415 4
AT PRD 2022 RW_IN_PW TOTAL THS_M3 3223.228 4
AT PRD 2022 RW_IN_PW CONIF THS_M3 2575.823 4
AT PRD 2022 RW_IN_PW NCONIF THS_M3 647.405 4
AT PRD 2022 RW_IN_O TOTAL THS_M3 0 4
AT PRD 2022 RW_IN_O CONIF THS_M3 0 4
AT PRD 2022 RW_IN_O NCONIF THS_M3 0 4
AT PRD 2022 CHA TOTAL THS_T 1.096
AT PRD 2022 CHP_RES TOTAL THS_M3 7823.6
AT PRD 2022 CHP TOTAL THS_M3 3994.2
AT PRD 2022 RES TOTAL THS_M3 3829.4
AT PRD 2022 RES_SWD TOTAL THS_M3 3308.4
AT PRD 2022 RCW TOTAL THS_T
AT PRD 2022 PEL_AGG TOTAL THS_T 1743
AT PRD 2022 PEL TOTAL THS_T 1691
AT PRD 2022 AGG TOTAL THS_T 52
AT PRD 2022 SN TOTAL THS_M3 10342
AT PRD 2022 SN CONIF THS_M3 10104
AT PRD 2022 SN NCONIF THS_M3 238
AT PRD 2022 SN NC_TRO THS_M3 0 9
AT PRD 2022 PN_VN TOTAL THS_M3 7.5 5
AT PRD 2022 PN_VN CONIF THS_M3
AT PRD 2022 PN_VN NCONIF THS_M3
AT PRD 2022 PN_VN NC_TRO THS_M3 0 9
AT PRD 2022 PN TOTAL THS_M3 2886.388
AT PRD 2022 PN_PY TOTAL THS_M3 131.388
AT PRD 2022 PN_PY CONIF THS_M3 127.582
AT PRD 2022 PN_PY NCONIF THS_M3 3.806
AT PRD 2022 PN_PY NC_TRO THS_M3 0 9
AT PRD 2022 PN_PY_LVL TOTAL THS_M3
AT PRD 2022 PN_PY_LVL CONIF THS_M3
AT PRD 2022 PN_PY_LVL NCONIF THS_M3
AT PRD 2022 PN_PY_LVL NC_TRO THS_M3
AT PRD 2022 PN_PB TOTAL THS_M3 2280
AT PRD 2022 PN_PB_OSB TOTAL THS_M3 0
AT PRD 2022 PN_FB TOTAL THS_M3 470
AT PRD 2022 PN_FB_HB TOTAL THS_M3 54
AT PRD 2022 PN_FB_MDF TOTAL THS_M3 416
AT PRD 2022 PN_FB_O TOTAL THS_M3 0
AT PRD 2022 PL TOTAL THS_T 1977.16
AT PRD 2022 PL_MC_SCH TOTAL THS_T 254.362
AT PRD 2022 PL_CH TOTAL THS_T 1303.67
AT PRD 2022 PL_CH_SA TOTAL THS_T
AT PRD 2022 PL_CH_SAB TOTAL THS_T
AT PRD 2022 PL_CH_SI TOTAL THS_T
AT PRD 2022 PL_DS TOTAL THS_T 419.128
AT PRD 2022 PLO TOTAL THS_T 2007.557
AT PRD 2022 PLO_NW TOTAL THS_T 0
AT PRD 2022 PLO_RC TOTAL THS_T 2007.557
AT PRD 2022 RCP TOTAL THS_T
AT PRD 2022 PP TOTAL THS_T 4633.352
AT PRD 2022 PP_GR TOTAL THS_T 1869.263
AT PRD 2022 PP_GR_NP TOTAL THS_T
AT PRD 2022 PP_GR_MC TOTAL THS_T
AT PRD 2022 PP_GR_NW TOTAL THS_T
AT PRD 2022 PP_GR_CO TOTAL THS_T 1100
AT PRD 2022 PP_HS TOTAL THS_T 125
AT PRD 2022 PP_PK TOTAL THS_T 2474.466
AT PRD 2022 PP_PK_CS TOTAL THS_T 1600
AT PRD 2022 PP_PK_CB TOTAL THS_T
AT PRD 2022 PP_PK_WR TOTAL THS_T
AT PRD 2022 PP_PK_O TOTAL THS_T
AT PRD 2022 PP_O TOTAL THS_T 164.623
AT PRD 2022 GLT_CLT TOTAL THS_M3 2457.227885
AT PRD 2022 GLT TOTAL THS_M3 1991.4507266667
AT PRD 2022 CLT TOTAL THS_M3 465.7771583333
AT PRD 2022 I_BEAMS TOTAL THS_T
AT IMP 2021 RW TOTAL THS_M3 11072.732
AT IMP 2021 RW_FW TOTAL THS_M3 169.696
AT IMP 2021 RW_FW CONIF THS_M3 90.7685555556
AT IMP 2021 RW_FW NCONIF THS_M3 78.9274444444
AT IMP 2021 RW_IN TOTAL THS_M3 10903.036
AT IMP 2021 RW_IN CONIF THS_M3 10017.644
AT IMP 2021 RW_IN NCONIF THS_M3 885.392
AT IMP 2021 RW_IN NC_TRO THS_M3 0.054
AT IMP 2021 CHA TOTAL THS_T 15.8724
AT IMP 2021 CHP_RES TOTAL THS_M3 1907.0669825606
AT IMP 2021 CHP TOTAL THS_M3 818.4287989928
AT IMP 2021 RES TOTAL THS_M3 1088.6381835678
AT IMP 2021 RES_SWD TOTAL THS_M3
AT IMP 2021 RCW TOTAL THS_T 333.201
AT IMP 2021 PEL_AGG TOTAL THS_T 509.1592
AT IMP 2021 PEL TOTAL THS_T 412.744
AT IMP 2021 AGG TOTAL THS_T 96.4152
AT IMP 2021 SN TOTAL THS_M3 2088.125229
AT IMP 2021 SN CONIF THS_M3 1911.235
AT IMP 2021 SN NCONIF THS_M3 176.890229
AT IMP 2021 SN NC_TRO THS_M3 5.209
AT IMP 2021 PN_VN TOTAL THS_M3 69.64
AT IMP 2021 PN_VN CONIF THS_M3 20.887
AT IMP 2021 PN_VN NCONIF THS_M3 48.753
AT IMP 2021 PN_VN NC_TRO THS_M3 1.13
AT IMP 2021 PN TOTAL THS_M3 1190.778
AT IMP 2021 PN_PY TOTAL THS_M3 267.176
AT IMP 2021 PN_PY CONIF THS_M3
AT IMP 2021 PN_PY NCONIF THS_M3
AT IMP 2021 PN_PY NC_TRO THS_M3 15.611
AT IMP 2021 PN_PY_LVL TOTAL THS_M3
AT IMP 2021 PN_PY_LVL CONIF THS_M3
AT IMP 2021 PN_PY_LVL NCONIF THS_M3
AT IMP 2021 PN_PY_LVL NC_TRO THS_M3
AT IMP 2021 PN_PB TOTAL THS_M3 553.182
AT IMP 2021 PN_PB_OSB TOTAL THS_M3 192.199
AT IMP 2021 PN_FB TOTAL THS_M3 370.42
AT IMP 2021 PN_FB_HB TOTAL THS_M3 17.049
AT IMP 2021 PN_FB_MDF TOTAL THS_M3 191.844
AT IMP 2021 PN_FB_O TOTAL THS_M3 161.527
AT IMP 2021 PL TOTAL THS_T 578.391401
AT IMP 2021 PL_MC_SCH TOTAL THS_T 10.176325
AT IMP 2021 PL_CH TOTAL THS_T 487.515753
AT IMP 2021 PL_CH_SA TOTAL THS_T 463.299666
AT IMP 2021 PL_CH_SAB TOTAL THS_T 461.880405
AT IMP 2021 PL_CH_SI TOTAL THS_T 24.216087
AT IMP 2021 PL_DS TOTAL THS_T 80.699323
AT IMP 2021 PLO TOTAL THS_T 36.111609
AT IMP 2021 PLO_NW TOTAL THS_T 26.396422
AT IMP 2021 PLO_RC TOTAL THS_T 9.715187
AT IMP 2021 RCP TOTAL THS_T 1675.5731
AT IMP 2021 PP TOTAL THS_T 1296.0147
AT IMP 2021 PP_GR TOTAL THS_T 415.4706
AT IMP 2021 PP_GR_NP TOTAL THS_T 77.2091
AT IMP 2021 PP_GR_MC TOTAL THS_T 55.2754
AT IMP 2021 PP_GR_NW TOTAL THS_T 97.8884
AT IMP 2021 PP_GR_CO TOTAL THS_T 185.0977
AT IMP 2021 PP_HS TOTAL THS_T 9.3556
AT IMP 2021 PP_PK TOTAL THS_T 857.9451
AT IMP 2021 PP_PK_CS TOTAL THS_T 446.6904
AT IMP 2021 PP_PK_CB TOTAL THS_T 209.6801
AT IMP 2021 PP_PK_WR TOTAL THS_T 163.0399
AT IMP 2021 PP_PK_O TOTAL THS_T 38.5347
AT IMP 2021 PP_O TOTAL THS_T 13.2434
AT IMP 2021 GLT_CLT TOTAL THS_M3
AT IMP 2021 GLT TOTAL THS_M3
AT IMP 2021 CLT TOTAL THS_M3
AT IMP 2021 I_BEAMS TOTAL THS_T
AT IMP 2021 RW TOTAL THS_NAC 829053.407
AT IMP 2021 RW_FW TOTAL THS_NAC 15776.141
AT IMP 2021 RW_FW CONIF THS_NAC 6760.457
AT IMP 2021 RW_FW NCONIF THS_NAC 9015.684
AT IMP 2021 RW_IN TOTAL THS_NAC 813277.266
AT IMP 2021 RW_IN CONIF THS_NAC 736655.091
AT IMP 2021 RW_IN NCONIF THS_NAC 76622.175
AT IMP 2021 RW_IN NC_TRO THS_NAC 98.892
AT IMP 2021 CHA TOTAL THS_NAC 10138.882
AT IMP 2021 CHP_RES TOTAL THS_NAC 75722.516270836
AT IMP 2021 CHP TOTAL THS_NAC 40624.556
AT IMP 2021 RES TOTAL THS_NAC 35097.960270836
AT IMP 2021 RES_SWD TOTAL THS_NAC
AT IMP 2021 RCW TOTAL THS_NAC 10250.339729164
AT IMP 2021 PEL_AGG TOTAL THS_NAC 80413.631
AT IMP 2021 PEL TOTAL THS_NAC 61103.552
AT IMP 2021 AGG TOTAL THS_NAC 19310.079
AT IMP 2021 SN TOTAL THS_NAC 697948.403
AT IMP 2021 SN CONIF THS_NAC 567134.475
AT IMP 2021 SN NCONIF THS_NAC 130813.928
AT IMP 2021 SN NC_TRO THS_NAC 5516.127
AT IMP 2021 PN_VN TOTAL THS_NAC 143253.64
AT IMP 2021 PN_VN CONIF THS_NAC 13262.585
AT IMP 2021 PN_VN NCONIF THS_NAC 129991.055
AT IMP 2021 PN_VN NC_TRO THS_NAC 2121.346
AT IMP 2021 PN TOTAL THS_NAC 509732.742
AT IMP 2021 PN_PY TOTAL THS_NAC 202041.843
AT IMP 2021 PN_PY CONIF THS_NAC
AT IMP 2021 PN_PY NCONIF THS_NAC
AT IMP 2021 PN_PY NC_TRO THS_NAC 15344.632
AT IMP 2021 PN_PY_LVL TOTAL THS_NAC
AT IMP 2021 PN_PY_LVL CONIF THS_NAC
AT IMP 2021 PN_PY_LVL NCONIF THS_NAC
AT IMP 2021 PN_PY_LVL NC_TRO THS_NAC
AT IMP 2021 PN_PB TOTAL THS_NAC 182262.003
AT IMP 2021 PN_PB_OSB TOTAL THS_NAC 74866.011
AT IMP 2021 PN_FB TOTAL THS_NAC 125428.896
AT IMP 2021 PN_FB_HB TOTAL THS_NAC 14047.224
AT IMP 2021 PN_FB_MDF TOTAL THS_NAC 85511.393
AT IMP 2021 PN_FB_O TOTAL THS_NAC 25870.279
AT IMP 2021 PL TOTAL THS_NAC 388955.369
AT IMP 2021 PL_MC_SCH TOTAL THS_NAC 4644.245
AT IMP 2021 PL_CH TOTAL THS_NAC 322117.425
AT IMP 2021 PL_CH_SA TOTAL THS_NAC 303271.57
AT IMP 2021 PL_CH_SAB TOTAL THS_NAC 302185.673
AT IMP 2021 PL_CH_SI TOTAL THS_NAC 18845.855
AT IMP 2021 PL_DS TOTAL THS_NAC 62193.699
AT IMP 2021 PLO TOTAL THS_NAC 30268.35
AT IMP 2021 PLO_NW TOTAL THS_NAC 26604.304
AT IMP 2021 PLO_RC TOTAL THS_NAC 3664.046
AT IMP 2021 RCP TOTAL THS_NAC 326060.51
AT IMP 2021 PP TOTAL THS_NAC 1039400.877
AT IMP 2021 PP_GR TOTAL THS_NAC 302424.625
AT IMP 2021 PP_GR_NP TOTAL THS_NAC 33808.58
AT IMP 2021 PP_GR_MC TOTAL THS_NAC 30205.271
AT IMP 2021 PP_GR_NW TOTAL THS_NAC 96878.247
AT IMP 2021 PP_GR_CO TOTAL THS_NAC 141532.527
AT IMP 2021 PP_HS TOTAL THS_NAC 13709.523
AT IMP 2021 PP_PK TOTAL THS_NAC 695474.188
AT IMP 2021 PP_PK_CS TOTAL THS_NAC 254507.325
AT IMP 2021 PP_PK_CB TOTAL THS_NAC 251729.552
AT IMP 2021 PP_PK_WR TOTAL THS_NAC 168493.331
AT IMP 2021 PP_PK_O TOTAL THS_NAC 20743.98
AT IMP 2021 PP_O TOTAL THS_NAC 27792.541
AT IMP 2021 GLT_CLT TOTAL THS_NAC
AT IMP 2021 GLT TOTAL THS_NAC
AT IMP 2021 CLT TOTAL THS_NAC
AT IMP 2021 I_BEAMS TOTAL THS_NAC
AT IMP 2022 RW TOTAL THS_M3 8700.75967 7
AT IMP 2022 RW_FW TOTAL THS_M3 181.850667 7
AT IMP 2022 RW_FW CONIF THS_M3 95.641 7
AT IMP 2022 RW_FW NCONIF THS_M3 86.208 7
AT IMP 2022 RW_IN TOTAL THS_M3 8518.909 7
AT IMP 2022 RW_IN CONIF THS_M3 7975.906 7
AT IMP 2022 RW_IN NCONIF THS_M3 543.003 7
AT IMP 2022 RW_IN NC_TRO THS_M3 0.081 7
AT IMP 2022 CHA TOTAL THS_T 13.446 7
AT IMP 2022 CHP_RES TOTAL THS_M3 2271.8951316482 7
AT IMP 2022 CHP TOTAL THS_M3 907.1151316482 7
AT IMP 2022 RES TOTAL THS_M3 1364.78 7
AT IMP 2022 RES_SWD TOTAL THS_M3 192.41 7
AT IMP 2022 RCW TOTAL THS_T
AT IMP 2022 PEL_AGG TOTAL THS_T 432.93 7
AT IMP 2022 PEL TOTAL THS_T 345.648 7
AT IMP 2022 AGG TOTAL THS_T 87.282 7
AT IMP 2022 SN TOTAL THS_M3 2552.218 7
AT IMP 2022 SN CONIF THS_M3 1785.572 7
AT IMP 2022 SN NCONIF THS_M3 214.696 7
AT IMP 2022 SN NC_TRO THS_M3 3.948 7
AT IMP 2022 PN_VN TOTAL THS_M3 75.673 7
AT IMP 2022 PN_VN CONIF THS_M3 23.349 7
AT IMP 2022 PN_VN NCONIF THS_M3 52.324 7
AT IMP 2022 PN_VN NC_TRO THS_M3 1.26 7
AT IMP 2022 PN TOTAL THS_M3 1028.253 7
AT IMP 2022 PN_PY TOTAL THS_M3 190.121 7
AT IMP 2022 PN_PY CONIF THS_M3 75.374 7
AT IMP 2022 PN_PY NCONIF THS_M3 110.082 7
AT IMP 2022 PN_PY NC_TRO THS_M3 25.575 7
AT IMP 2022 PN_PY_LVL TOTAL THS_M3 4.665 7
AT IMP 2022 PN_PY_LVL CONIF THS_M3 1.15 7
AT IMP 2022 PN_PY_LVL NCONIF THS_M3 3.515 7
AT IMP 2022 PN_PY_LVL NC_TRO THS_M3 2.436 7
AT IMP 2022 PN_PB TOTAL THS_M3 526.783 7
AT IMP 2022 PN_PB_OSB TOTAL THS_M3 211.923 7
AT IMP 2022 PN_FB TOTAL THS_M3 311.349 7
AT IMP 2022 PN_FB_HB TOTAL THS_M3 18.568 7
AT IMP 2022 PN_FB_MDF TOTAL THS_M3 159.373 7
AT IMP 2022 PN_FB_O TOTAL THS_M3 133.408 7
AT IMP 2022 PL TOTAL THS_T 559.363 7
AT IMP 2022 PL_MC_SCH TOTAL THS_T 7.288 7
AT IMP 2022 PL_CH TOTAL THS_T 465.158 7
AT IMP 2022 PL_CH_SA TOTAL THS_T 444.085 7
AT IMP 2022 PL_CH_SAB TOTAL THS_T 443.731 7
AT IMP 2022 PL_CH_SI TOTAL THS_T 21.073 7
AT IMP 2022 PL_DS TOTAL THS_T 86.917 7
AT IMP 2022 PLO TOTAL THS_T 32.986776 7
AT IMP 2022 PLO_NW TOTAL THS_T 23.297606 7
AT IMP 2022 PLO_RC TOTAL THS_T 9.68917 7
AT IMP 2022 RCP TOTAL THS_T 1451 7
AT IMP 2022 PP TOTAL THS_T 1235.669 7
AT IMP 2022 PP_GR TOTAL THS_T 388.537 7
AT IMP 2022 PP_GR_NP TOTAL THS_T 81.789 7
AT IMP 2022 PP_GR_MC TOTAL THS_T 54.763 7
AT IMP 2022 PP_GR_NW TOTAL THS_T 103.186 7
AT IMP 2022 PP_GR_CO TOTAL THS_T 148.798 7
AT IMP 2022 PP_HS TOTAL THS_T 11.321 7
AT IMP 2022 PP_PK TOTAL THS_T 822.419 7
AT IMP 2022 PP_PK_CS TOTAL THS_T 414.619 7
AT IMP 2022 PP_PK_CB TOTAL THS_T 214.936 7
AT IMP 2022 PP_PK_WR TOTAL THS_T 160.531 7
AT IMP 2022 PP_PK_O TOTAL THS_T 32.333 7
AT IMP 2022 PP_O TOTAL THS_T 13.392 7
AT IMP 2022 GLT_CLT TOTAL THS_M3 66.9292777778 7
AT IMP 2022 GLT TOTAL THS_M3 41.4784444444 7
AT IMP 2022 CLT TOTAL THS_M3 25.4508333333 7
AT IMP 2022 I_BEAMS TOTAL THS_T 0.031 7
AT IMP 2022 RW TOTAL THS_NAC 842358.654 7
AT IMP 2022 RW_FW TOTAL THS_NAC 26309.873 7
AT IMP 2022 RW_FW CONIF THS_NAC 9946.706 7
AT IMP 2022 RW_FW NCONIF THS_NAC 16363.167 7
AT IMP 2022 RW_IN TOTAL THS_NAC 816048.781 7
AT IMP 2022 RW_IN CONIF THS_NAC 743290.23 7
AT IMP 2022 RW_IN NCONIF THS_NAC 72758.551 7
AT IMP 2022 RW_IN NC_TRO THS_NAC 83.939 7
AT IMP 2022 CHA TOTAL THS_NAC 9358.494 7
AT IMP 2022 CHP_RES TOTAL THS_NAC 152461.669 7
AT IMP 2022 CHP TOTAL THS_NAC 74020.062 7
AT IMP 2022 RES TOTAL THS_NAC 78441.607 7
AT IMP 2022 RES_SWD TOTAL THS_NAC 18214.944 7
AT IMP 2022 RCW TOTAL THS_NAC
AT IMP 2022 PEL_AGG TOTAL THS_NAC 137115.241 7
AT IMP 2022 PEL TOTAL THS_NAC 106355.506 7
AT IMP 2022 AGG TOTAL THS_NAC 30759.735 7
AT IMP 2022 SN TOTAL THS_NAC 748526.153 7
AT IMP 2022 SN CONIF THS_NAC 552085.779 7
AT IMP 2022 SN NCONIF THS_NAC 196440.374 7
AT IMP 2022 SN NC_TRO THS_NAC 5622.454 7
AT IMP 2022 PN_VN TOTAL THS_NAC 187927.781 7
AT IMP 2022 PN_VN CONIF THS_NAC 16243.009 7
AT IMP 2022 PN_VN NCONIF THS_NAC 171684.772 7
AT IMP 2022 PN_VN NC_TRO THS_NAC 4979.045 7
AT IMP 2022 PN TOTAL THS_NAC 519037 7
AT IMP 2022 PN_PY TOTAL THS_NAC 190555.378 7
AT IMP 2022 PN_PY CONIF THS_NAC 59132.576 7
AT IMP 2022 PN_PY NCONIF THS_NAC 127044.133 7
AT IMP 2022 PN_PY NC_TRO THS_NAC 23939.063 7
AT IMP 2022 PN_PY_LVL TOTAL THS_NAC 4378.336 7
AT IMP 2022 PN_PY_LVL CONIF THS_NAC 1090.86 7
AT IMP 2022 PN_PY_LVL NCONIF THS_NAC 3287.476 7
AT IMP 2022 PN_PY_LVL NC_TRO THS_NAC 2079.611 7
AT IMP 2022 PN_PB TOTAL THS_NAC 182186.728 7
AT IMP 2022 PN_PB_OSB TOTAL THS_NAC 62204.247 7
AT IMP 2022 PN_FB TOTAL THS_NAC 146294.746 7
AT IMP 2022 PN_FB_HB TOTAL THS_NAC 21840.398 7
AT IMP 2022 PN_FB_MDF TOTAL THS_NAC 97168.361 7
AT IMP 2022 PN_FB_O TOTAL THS_NAC 27285.987 7
AT IMP 2022 PL TOTAL THS_NAC 498789.403 7
AT IMP 2022 PL_MC_SCH TOTAL THS_NAC 4496.57 7
AT IMP 2022 PL_CH TOTAL THS_NAC 404064.314 7
AT IMP 2022 PL_CH_SA TOTAL THS_NAC 382924.46 7
AT IMP 2022 PL_CH_SAB TOTAL THS_NAC 382600.627 7
AT IMP 2022 PL_CH_SI TOTAL THS_NAC 21139.854 7
AT IMP 2022 PL_DS TOTAL THS_NAC 90228.519 7
AT IMP 2022 PLO TOTAL THS_NAC 34337.322 7
AT IMP 2022 PLO_NW TOTAL THS_NAC 29736.17 7
AT IMP 2022 PLO_RC TOTAL THS_NAC 4601.152 7
AT IMP 2022 RCP TOTAL THS_NAC 342624.247 7
AT IMP 2022 PP TOTAL THS_NAC 1340354.78 7
AT IMP 2022 PP_GR TOTAL THS_NAC 421848.919 7
AT IMP 2022 PP_GR_NP TOTAL THS_NAC 64146.972 7
AT IMP 2022 PP_GR_MC TOTAL THS_NAC 46829.498 7
AT IMP 2022 PP_GR_NW TOTAL THS_NAC 137377.247 7
AT IMP 2022 PP_GR_CO TOTAL THS_NAC 173495.202 7
AT IMP 2022 PP_HS TOTAL THS_NAC 22621.126 7
AT IMP 2022 PP_PK TOTAL THS_NAC 861857.784 7
AT IMP 2022 PP_PK_CS TOTAL THS_NAC 308240.279 7
AT IMP 2022 PP_PK_CB TOTAL THS_NAC 307856.53 7
AT IMP 2022 PP_PK_WR TOTAL THS_NAC 221705.385 7
AT IMP 2022 PP_PK_O TOTAL THS_NAC 24055.59 7
AT IMP 2022 PP_O TOTAL THS_NAC 34026.947 7
AT IMP 2022 GLT_CLT TOTAL THS_NAC 48541.452 7
AT IMP 2022 GLT TOTAL THS_NAC 27991.269 7
AT IMP 2022 CLT TOTAL THS_NAC 20550.183 7
AT IMP 2022 I_BEAMS TOTAL THS_NAC 52.008 7
AT EXP 2021 RW TOTAL THS_M3 1105.553
AT EXP 2021 RW_FW TOTAL THS_M3 12.724
AT EXP 2021 RW_FW CONIF THS_M3 1.821
AT EXP 2021 RW_FW NCONIF THS_M3 10.903
AT EXP 2021 RW_IN TOTAL THS_M3 1092.829
AT EXP 2021 RW_IN CONIF THS_M3 954.007
AT EXP 2021 RW_IN NCONIF THS_M3 138.822
AT EXP 2021 RW_IN NC_TRO THS_M3 0
AT EXP 2021 CHA TOTAL THS_T 1.4643
AT EXP 2021 CHP_RES TOTAL THS_M3 768.6277792664
AT EXP 2021 CHP TOTAL THS_M3 313.994737241
AT EXP 2021 RES TOTAL THS_M3 454.6330420254
AT EXP 2021 RES_SWD TOTAL THS_M3
AT EXP 2021 RCW TOTAL THS_T 141.021
AT EXP 2021 PEL_AGG TOTAL THS_T 901.202
AT EXP 2021 PEL TOTAL THS_T 875.445
AT EXP 2021 AGG TOTAL THS_T 25.757
AT EXP 2021 SN TOTAL THS_M3 6119.574148
AT EXP 2021 SN CONIF THS_M3 5946.608
AT EXP 2021 SN NCONIF THS_M3 172.966148
AT EXP 2021 SN NC_TRO THS_M3 1.117
AT EXP 2021 PN_VN TOTAL THS_M3 17.744
AT EXP 2021 PN_VN CONIF THS_M3 3.014
AT EXP 2021 PN_VN NCONIF THS_M3 14.73
AT EXP 2021 PN_VN NC_TRO THS_M3 0.307
AT EXP 2021 PN TOTAL THS_M3 2962.339
AT EXP 2021 PN_PY TOTAL THS_M3 356.923
AT EXP 2021 PN_PY CONIF THS_M3
AT EXP 2021 PN_PY NCONIF THS_M3
AT EXP 2021 PN_PY NC_TRO THS_M3 0.292
AT EXP 2021 PN_PY_LVL TOTAL THS_M3
AT EXP 2021 PN_PY_LVL CONIF THS_M3
AT EXP 2021 PN_PY_LVL NCONIF THS_M3
AT EXP 2021 PN_PY_LVL NC_TRO THS_M3
AT EXP 2021 PN_PB TOTAL THS_M3 2049.439
AT EXP 2021 PN_PB_OSB TOTAL THS_M3 5.96
AT EXP 2021 PN_FB TOTAL THS_M3 555.977
AT EXP 2021 PN_FB_HB TOTAL THS_M3 60.206
AT EXP 2021 PN_FB_MDF TOTAL THS_M3 490.961
AT EXP 2021 PN_FB_O TOTAL THS_M3 4.81
AT EXP 2021 PL TOTAL THS_T 321.447066
AT EXP 2021 PL_MC_SCH TOTAL THS_T 0.073992
AT EXP 2021 PL_CH TOTAL THS_T 254.4515
AT EXP 2021 PL_CH_SA TOTAL THS_T 246.205522
AT EXP 2021 PL_CH_SAB TOTAL THS_T 223.608906
AT EXP 2021 PL_CH_SI TOTAL THS_T 8.245978
AT EXP 2021 PL_DS TOTAL THS_T 66.921574
AT EXP 2021 PLO TOTAL THS_T 10.872601
AT EXP 2021 PLO_NW TOTAL THS_T 0.918774
AT EXP 2021 PLO_RC TOTAL THS_T 9.953827
AT EXP 2021 RCP TOTAL THS_T 248.7739
AT EXP 2021 PP TOTAL THS_T 4027.5845
AT EXP 2021 PP_GR TOTAL THS_T 1911.1241
AT EXP 2021 PP_GR_NP TOTAL THS_T 305.8724
AT EXP 2021 PP_GR_MC TOTAL THS_T 218.3511
AT EXP 2021 PP_GR_NW TOTAL THS_T 335.1617
AT EXP 2021 PP_GR_CO TOTAL THS_T 1051.7389
AT EXP 2021 PP_HS TOTAL THS_T 5.3816
AT EXP 2021 PP_PK TOTAL THS_T 2105.4535
AT EXP 2021 PP_PK_CS TOTAL THS_T 1243.9191
AT EXP 2021 PP_PK_CB TOTAL THS_T 353.2203
AT EXP 2021 PP_PK_WR TOTAL THS_T 497.8413
AT EXP 2021 PP_PK_O TOTAL THS_T 10.4728
AT EXP 2021 PP_O TOTAL THS_T 5.6253
AT EXP 2021 GLT_CLT TOTAL THS_M3
AT EXP 2021 GLT TOTAL THS_M3
AT EXP 2021 CLT TOTAL THS_M3
AT EXP 2021 I_BEAMS TOTAL THS_T
AT EXP 2021 RW TOTAL THS_NAC 98279.099
AT EXP 2021 RW_FW TOTAL THS_NAC 1050.048
AT EXP 2021 RW_FW CONIF THS_NAC 122.117
AT EXP 2021 RW_FW NCONIF THS_NAC 927.931
AT EXP 2021 RW_IN TOTAL THS_NAC 97229.051
AT EXP 2021 RW_IN CONIF THS_NAC 77676.779
AT EXP 2021 RW_IN NCONIF THS_NAC 19552.272
AT EXP 2021 RW_IN NC_TRO THS_NAC 0
AT EXP 2021 CHA TOTAL THS_NAC 1294.801
AT EXP 2021 CHP_RES TOTAL THS_NAC 36172.3431197599
AT EXP 2021 CHP TOTAL THS_NAC 15692.899
AT EXP 2021 RES TOTAL THS_NAC 20479.4441197599
AT EXP 2021 RES_SWD TOTAL THS_NAC
AT EXP 2021 RCW TOTAL THS_NAC 5290.6648802401
AT EXP 2021 PEL_AGG TOTAL THS_NAC 178315.793
AT EXP 2021 PEL TOTAL THS_NAC 173381.456
AT EXP 2021 AGG TOTAL THS_NAC 4934.337
AT EXP 2021 SN TOTAL THS_NAC 1985783.059
AT EXP 2021 SN CONIF THS_NAC 1870911.483
AT EXP 2021 SN NCONIF THS_NAC 114871.576
AT EXP 2021 SN NC_TRO THS_NAC 1696.693
AT EXP 2021 PN_VN TOTAL THS_NAC 56389.66
AT EXP 2021 PN_VN CONIF THS_NAC 8418.815
AT EXP 2021 PN_VN NCONIF THS_NAC 47970.845
AT EXP 2021 PN_VN NC_TRO THS_NAC 1199.84
AT EXP 2021 PN TOTAL THS_NAC 1446998.663
AT EXP 2021 PN_PY TOTAL THS_NAC 320511.706
AT EXP 2021 PN_PY CONIF THS_NAC
AT EXP 2021 PN_PY NCONIF THS_NAC
AT EXP 2021 PN_PY NC_TRO THS_NAC 852.271
AT EXP 2021 PN_PY_LVL TOTAL THS_NAC
AT EXP 2021 PN_PY_LVL CONIF THS_NAC
AT EXP 2021 PN_PY_LVL NCONIF THS_NAC
AT EXP 2021 PN_PY_LVL NC_TRO THS_NAC
AT EXP 2021 PN_PB TOTAL THS_NAC 744738.395
AT EXP 2021 PN_PB_OSB TOTAL THS_NAC 2849.891
AT EXP 2021 PN_FB TOTAL THS_NAC 381748.562
AT EXP 2021 PN_FB_HB TOTAL THS_NAC 36242.421
AT EXP 2021 PN_FB_MDF TOTAL THS_NAC 343776.794
AT EXP 2021 PN_FB_O TOTAL THS_NAC 1729.347
AT EXP 2021 PL TOTAL THS_NAC 210213.55
AT EXP 2021 PL_MC_SCH TOTAL THS_NAC 45.97
AT EXP 2021 PL_CH TOTAL THS_NAC 168694.894
AT EXP 2021 PL_CH_SA TOTAL THS_NAC 163108.096
AT EXP 2021 PL_CH_SAB TOTAL THS_NAC 151139.89
AT EXP 2021 PL_CH_SI TOTAL THS_NAC 5586.798
AT EXP 2021 PL_DS TOTAL THS_NAC 41472.686
AT EXP 2021 PLO TOTAL THS_NAC 9282.097
AT EXP 2021 PLO_NW TOTAL THS_NAC 2732.688
AT EXP 2021 PLO_RC TOTAL THS_NAC 6549.409
AT EXP 2021 RCP TOTAL THS_NAC 48133.721
AT EXP 2021 PP TOTAL THS_NAC 2824374.984
AT EXP 2021 PP_GR TOTAL THS_NAC 1355927.041
AT EXP 2021 PP_GR_NP TOTAL THS_NAC 125405.012
AT EXP 2021 PP_GR_MC TOTAL THS_NAC 112596.501
AT EXP 2021 PP_GR_NW TOTAL THS_NAC 336354.074
AT EXP 2021 PP_GR_CO TOTAL THS_NAC 781571.454
AT EXP 2021 PP_HS TOTAL THS_NAC 9738.323
AT EXP 2021 PP_PK TOTAL THS_NAC 1395977.397
AT EXP 2021 PP_PK_CS TOTAL THS_NAC 670617.573
AT EXP 2021 PP_PK_CB TOTAL THS_NAC 332238.32
AT EXP 2021 PP_PK_WR TOTAL THS_NAC 385636.683
AT EXP 2021 PP_PK_O TOTAL THS_NAC 7484.821
AT EXP 2021 PP_O TOTAL THS_NAC 62732.223
AT EXP 2021 GLT_CLT TOTAL THS_NAC
AT EXP 2021 GLT TOTAL THS_NAC
AT EXP 2021 CLT TOTAL THS_NAC
AT EXP 2021 I_BEAMS TOTAL THS_NAC
AT EXP 2022 RW TOTAL THS_M3 1318.69 7
AT EXP 2022 RW_FW TOTAL THS_M3 11.984 7
AT EXP 2022 RW_FW CONIF THS_M3 4.558 7
AT EXP 2022 RW_FW NCONIF THS_M3 7.426 7
AT EXP 2022 RW_IN TOTAL THS_M3 1306.706 7
AT EXP 2022 RW_IN CONIF THS_M3 1151.168 7
AT EXP 2022 RW_IN NCONIF THS_M3 155.538 7
AT EXP 2022 RW_IN NC_TRO THS_M3 0.032 7
AT EXP 2022 CHA TOTAL THS_T 1.315 7
AT EXP 2022 CHP_RES TOTAL THS_M3 650.2614304703 7
AT EXP 2022 CHP TOTAL THS_M3 240.65 7
AT EXP 2022 RES TOTAL THS_M3 409.6114304703 7
AT EXP 2022 RES_SWD TOTAL THS_M3 256.116 7
AT EXP 2022 RCW TOTAL THS_T
AT EXP 2022 PEL_AGG TOTAL THS_T 759.737 7
AT EXP 2022 PEL TOTAL THS_T 748.723 7
AT EXP 2022 AGG TOTAL THS_T 11.014 7
AT EXP 2022 SN TOTAL THS_M3 6099.443 7
AT EXP 2022 SN CONIF THS_M3 5730.805 7
AT EXP 2022 SN NCONIF THS_M3 145.138 7
AT EXP 2022 SN NC_TRO THS_M3 0.927 7
AT EXP 2022 PN_VN TOTAL THS_M3 16.952 7
AT EXP 2022 PN_VN CONIF THS_M3 2.653 7
AT EXP 2022 PN_VN NCONIF THS_M3 14.299 7
AT EXP 2022 PN_VN NC_TRO THS_M3 0.596 7
AT EXP 2022 PN TOTAL THS_M3 2356.429 7
AT EXP 2022 PN_PY TOTAL THS_M3 295.904 7
AT EXP 2022 PN_PY CONIF THS_M3 263.965 7
AT EXP 2022 PN_PY NCONIF THS_M3 31.434 7
AT EXP 2022 PN_PY NC_TRO THS_M3 1.378 7
AT EXP 2022 PN_PY_LVL TOTAL THS_M3 0.505 7
AT EXP 2022 PN_PY_LVL CONIF THS_M3 0.199 7
AT EXP 2022 PN_PY_LVL NCONIF THS_M3 0.306 7
AT EXP 2022 PN_PY_LVL NC_TRO THS_M3 0.164 7
AT EXP 2022 PN_PB TOTAL THS_M3 1680.026 7
AT EXP 2022 PN_PB_OSB TOTAL THS_M3 6.824 7
AT EXP 2022 PN_FB TOTAL THS_M3 380.499 7
AT EXP 2022 PN_FB_HB TOTAL THS_M3 43.023 7
AT EXP 2022 PN_FB_MDF TOTAL THS_M3 333.141 7
AT EXP 2022 PN_FB_O TOTAL THS_M3 4.335 7
AT EXP 2022 PL TOTAL THS_T 385.924 7
AT EXP 2022 PL_MC_SCH TOTAL THS_T 0.045 7
AT EXP 2022 PL_CH TOTAL THS_T 271.278 7
AT EXP 2022 PL_CH_SA TOTAL THS_T 258.028 7
AT EXP 2022 PL_CH_SAB TOTAL THS_T 223.036 7
AT EXP 2022 PL_CH_SI TOTAL THS_T 13.25 7
AT EXP 2022 PL_DS TOTAL THS_T 114.601 7
AT EXP 2022 PLO TOTAL THS_T 9.828 7
AT EXP 2022 PLO_NW TOTAL THS_T 1.288 7
AT EXP 2022 PLO_RC TOTAL THS_T 8.54 7
AT EXP 2022 RCP TOTAL THS_T 260.3464 7
AT EXP 2022 PP TOTAL THS_T 3695.052 7
AT EXP 2022 PP_GR TOTAL THS_T 1661.78 7
AT EXP 2022 PP_GR_NP TOTAL THS_T 234.523 7
AT EXP 2022 PP_GR_MC TOTAL THS_T 216.596 7
AT EXP 2022 PP_GR_NW TOTAL THS_T 276.97 7
AT EXP 2022 PP_GR_CO TOTAL THS_T 933.691 7
AT EXP 2022 PP_HS TOTAL THS_T 5.191 7
AT EXP 2022 PP_PK TOTAL THS_T 2022.706 7
AT EXP 2022 PP_PK_CS TOTAL THS_T 1196.577 7
AT EXP 2022 PP_PK_CB TOTAL THS_T 311.639 7
AT EXP 2022 PP_PK_WR TOTAL THS_T 503.301 7
AT EXP 2022 PP_PK_O TOTAL THS_T 11.189 7
AT EXP 2022 PP_O TOTAL THS_T 5.375 7
AT EXP 2022 GLT_CLT TOTAL THS_M3 1728.4705416667 7
AT EXP 2022 GLT TOTAL THS_M3 1340.822 7
AT EXP 2022 CLT TOTAL THS_M3 387.6485416667 7
AT EXP 2022 I_BEAMS TOTAL THS_T 0.32 7
AT EXP 2022 RW TOTAL THS_NAC 145003.898 7
AT EXP 2022 RW_FW TOTAL THS_NAC 1563.896 7
AT EXP 2022 RW_FW CONIF THS_NAC 403.803 7
AT EXP 2022 RW_FW NCONIF THS_NAC 1160.093 7
AT EXP 2022 RW_IN TOTAL THS_NAC 143440.002 7
AT EXP 2022 RW_IN CONIF THS_NAC 114972.276 7
AT EXP 2022 RW_IN NCONIF THS_NAC 28467.726 7
AT EXP 2022 RW_IN NC_TRO THS_NAC 17.392 7
AT EXP 2022 CHA TOTAL THS_NAC 1057.357 7
AT EXP 2022 CHP_RES TOTAL THS_NAC 47879.56 7
AT EXP 2022 CHP TOTAL THS_NAC 19641.656 7
AT EXP 2022 RES TOTAL THS_NAC 28237.904 7
AT EXP 2022 RES_SWD TOTAL THS_NAC 23143.165 7
AT EXP 2022 RCW TOTAL THS_NAC
AT EXP 2022 PEL_AGG TOTAL THS_NAC 278475.939 7
AT EXP 2022 PEL TOTAL THS_NAC 275257.498 7
AT EXP 2022 AGG TOTAL THS_NAC 3218.441 7
AT EXP 2022 SN TOTAL THS_NAC 2026472.18 7
AT EXP 2022 SN CONIF THS_NAC 1895011.47 7
AT EXP 2022 SN NCONIF THS_NAC 131460.702 7
AT EXP 2022 SN NC_TRO THS_NAC 1687.321 7
AT EXP 2022 PN_VN TOTAL THS_NAC 65332.48 7
AT EXP 2022 PN_VN CONIF THS_NAC 8542.801 7
AT EXP 2022 PN_VN NCONIF THS_NAC 56789.679 7
AT EXP 2022 PN_VN NC_TRO THS_NAC 1053.541 7
AT EXP 2022 PN TOTAL THS_NAC 1472778 7
AT EXP 2022 PN_PY TOTAL THS_NAC 309247 7
AT EXP 2022 PN_PY CONIF THS_NAC 252322 7
AT EXP 2022 PN_PY NCONIF THS_NAC 56925 7
AT EXP 2022 PN_PY NC_TRO THS_NAC 2583.122 7
AT EXP 2022 PN_PY_LVL TOTAL THS_NAC 2318.432 7
AT EXP 2022 PN_PY_LVL CONIF THS_NAC 1034.514 7
AT EXP 2022 PN_PY_LVL NCONIF THS_NAC 1283.918 7
AT EXP 2022 PN_PY_LVL NC_TRO THS_NAC 224.647 7
AT EXP 2022 PN_PB TOTAL THS_NAC 831654 7
AT EXP 2022 PN_PB_OSB TOTAL THS_NAC 3261.304 7
AT EXP 2022 PN_FB TOTAL THS_NAC 331876 7
AT EXP 2022 PN_FB_HB TOTAL THS_NAC 32599.416 7
AT EXP 2022 PN_FB_MDF TOTAL THS_NAC 297033.885 7
AT EXP 2022 PN_FB_O TOTAL THS_NAC 2242.525 7
AT EXP 2022 PL TOTAL THS_NAC 300796 7
AT EXP 2022 PL_MC_SCH TOTAL THS_NAC 19 7
AT EXP 2022 PL_CH TOTAL THS_NAC 222375 7
AT EXP 2022 PL_CH_SA TOTAL THS_NAC 210667 7
AT EXP 2022 PL_CH_SAB TOTAL THS_NAC 187211 7
AT EXP 2022 PL_CH_SI TOTAL THS_NAC 11708 7
AT EXP 2022 PL_DS TOTAL THS_NAC 78402 7
AT EXP 2022 PLO TOTAL THS_NAC 11415.113 7
AT EXP 2022 PLO_NW TOTAL THS_NAC 4428.226 7
AT EXP 2022 PLO_RC TOTAL THS_NAC 6986.887 7
AT EXP 2022 RCP TOTAL THS_NAC 58553.351 7
AT EXP 2022 PP TOTAL THS_NAC 3889356 7
AT EXP 2022 PP_GR TOTAL THS_NAC 1975938 7
AT EXP 2022 PP_GR_NP TOTAL THS_NAC 190703.731 7
AT EXP 2022 PP_GR_MC TOTAL THS_NAC 192892.213 7
AT EXP 2022 PP_GR_NW TOTAL THS_NAC 440891.382 7
AT EXP 2022 PP_GR_CO TOTAL THS_NAC 1151450.2 7
AT EXP 2022 PP_HS TOTAL THS_NAC 10860.18 7
AT EXP 2022 PP_PK TOTAL THS_NAC 1841897.97 7
AT EXP 2022 PP_PK_CS TOTAL THS_NAC 867197.851 7
AT EXP 2022 PP_PK_CB TOTAL THS_NAC 409579.908 7
AT EXP 2022 PP_PK_WR TOTAL THS_NAC 554440.137 7
AT EXP 2022 PP_PK_O TOTAL THS_NAC 10680.07 7
AT EXP 2022 PP_O TOTAL THS_NAC 60659.745 7
AT EXP 2022 GLT_CLT TOTAL THS_NAC 1127564.39 7
AT EXP 2022 GLT TOTAL THS_NAC 836889.832 7
AT EXP 2022 CLT TOTAL THS_NAC 290674.558 7
AT EXP 2022 I_BEAMS TOTAL THS_NAC 2149.928 7
AT IMP_XEU 2021 RW TOTAL THS_M3 156.6775555556
AT IMP_XEU 2021 RW_FW TOTAL THS_M3 44.6325555556
AT IMP_XEU 2021 RW_FW CONIF THS_M3 1.5532222222
AT IMP_XEU 2021 RW_FW NCONIF THS_M3 43.0793333333
AT IMP_XEU 2021 RW_IN TOTAL THS_M3 112.045
AT IMP_XEU 2021 RW_IN CONIF THS_M3 90.717
AT IMP_XEU 2021 RW_IN NCONIF THS_M3 21.328
AT IMP_XEU 2021 RW_IN NC_TRO THS_M3 0.049
AT IMP_XEU 2021 CHA TOTAL THS_T 10.4529
AT IMP_XEU 2021 CHP_RES TOTAL THS_M3 64.1200529802 4
AT IMP_XEU 2021 CHP TOTAL THS_M3 19.2666723238
AT IMP_XEU 2021 RES TOTAL THS_M3 44.8533806564 4
AT IMP_XEU 2021 RES_SWD TOTAL THS_M3
AT IMP_XEU 2021 RCW TOTAL THS_T
AT IMP_XEU 2021 PEL_AGG TOTAL THS_T 24.2013
AT IMP_XEU 2021 PEL TOTAL THS_T 2.3549
AT IMP_XEU 2021 AGG TOTAL THS_T 21.8464
AT IMP_XEU 2021 SN TOTAL THS_M3 155.590101
AT IMP_XEU 2021 SN CONIF THS_M3 131.433
AT IMP_XEU 2021 SN NCONIF THS_M3 24.157101
AT IMP_XEU 2021 SN NC_TRO THS_M3 4.301
AT IMP_XEU 2021 PN_VN TOTAL THS_M3 25.562
AT IMP_XEU 2021 PN_VN CONIF THS_M3 0.143
AT IMP_XEU 2021 PN_VN NCONIF THS_M3 25.419
AT IMP_XEU 2021 PN_VN NC_TRO THS_M3 0.256
AT IMP_XEU 2021 PN TOTAL THS_M3 52.299
AT IMP_XEU 2021 PN_PY TOTAL THS_M3 30.817
AT IMP_XEU 2021 PN_PY CONIF THS_M3
AT IMP_XEU 2021 PN_PY NCONIF THS_M3
AT IMP_XEU 2021 PN_PY NC_TRO THS_M3 0.531
AT IMP_XEU 2021 PN_PY_LVL TOTAL THS_M3
AT IMP_XEU 2021 PN_PY_LVL CONIF THS_M3
AT IMP_XEU 2021 PN_PY_LVL NCONIF THS_M3
AT IMP_XEU 2021 PN_PY_LVL NC_TRO THS_M3
AT IMP_XEU 2021 PN_PB TOTAL THS_M3 15.71
AT IMP_XEU 2021 PN_PB_OSB TOTAL THS_M3 5.61
AT IMP_XEU 2021 PN_FB TOTAL THS_M3 5.772
AT IMP_XEU 2021 PN_FB_HB TOTAL THS_M3 0.044
AT IMP_XEU 2021 PN_FB_MDF TOTAL THS_M3 1.418
AT IMP_XEU 2021 PN_FB_O TOTAL THS_M3 4.31
AT IMP_XEU 2021 PL TOTAL THS_T 219.808647
AT IMP_XEU 2021 PL_MC_SCH TOTAL THS_T 2.52674
AT IMP_XEU 2021 PL_CH TOTAL THS_T 193.194373
AT IMP_XEU 2021 PL_CH_SA TOTAL THS_T 193.1908
AT IMP_XEU 2021 PL_CH_SAB TOTAL THS_T 192.155257
AT IMP_XEU 2021 PL_CH_SI TOTAL THS_T 0.003573
AT IMP_XEU 2021 PL_DS TOTAL THS_T 24.087534
AT IMP_XEU 2021 PLO TOTAL THS_T 2.965707
AT IMP_XEU 2021 PLO_NW TOTAL THS_T 0.127988
AT IMP_XEU 2021 PLO_RC TOTAL THS_T 2.837719
AT IMP_XEU 2021 RCP TOTAL THS_T 40.649
AT IMP_XEU 2021 PP TOTAL THS_T 48.639
AT IMP_XEU 2021 PP_GR TOTAL THS_T 20.2177
AT IMP_XEU 2021 PP_GR_NP TOTAL THS_T 13.0777
AT IMP_XEU 2021 PP_GR_MC TOTAL THS_T 1.6053
AT IMP_XEU 2021 PP_GR_NW TOTAL THS_T 1.5219
AT IMP_XEU 2021 PP_GR_CO TOTAL THS_T 4.0128
AT IMP_XEU 2021 PP_HS TOTAL THS_T 0.459
AT IMP_XEU 2021 PP_PK TOTAL THS_T 27.7072
AT IMP_XEU 2021 PP_PK_CS TOTAL THS_T 16.0033
AT IMP_XEU 2021 PP_PK_CB TOTAL THS_T 8.4064
AT IMP_XEU 2021 PP_PK_WR TOTAL THS_T 3.1137
AT IMP_XEU 2021 PP_PK_O TOTAL THS_T 0.1838
AT IMP_XEU 2021 PP_O TOTAL THS_T 0.2551
AT IMP_XEU 2021 GLT_CLT TOTAL THS_M3
AT IMP_XEU 2021 GLT TOTAL THS_M3
AT IMP_XEU 2021 CLT TOTAL THS_M3
AT IMP_XEU 2021 I_BEAMS TOTAL THS_T
AT IMP_XEU 2021 RW TOTAL THS_NAC 15472.016
AT IMP_XEU 2021 RW_FW TOTAL THS_NAC 5393.509
AT IMP_XEU 2021 RW_FW CONIF THS_NAC 222.539
AT IMP_XEU 2021 RW_FW NCONIF THS_NAC 5170.97
AT IMP_XEU 2021 RW_IN TOTAL THS_NAC 10078.507
AT IMP_XEU 2021 RW_IN CONIF THS_NAC 7313.844
AT IMP_XEU 2021 RW_IN NCONIF THS_NAC 2764.663
AT IMP_XEU 2021 RW_IN NC_TRO THS_NAC 88.197
AT IMP_XEU 2021 CHA TOTAL THS_NAC 6197.622
AT IMP_XEU 2021 CHP_RES TOTAL THS_NAC 2600.685 4
AT IMP_XEU 2021 CHP TOTAL THS_NAC 1682.811
AT IMP_XEU 2021 RES TOTAL THS_NAC 917.874 4
AT IMP_XEU 2021 RES_SWD TOTAL THS_NAC
AT IMP_XEU 2021 RCW TOTAL THS_NAC
AT IMP_XEU 2021 PEL_AGG TOTAL THS_NAC 3503.275
AT IMP_XEU 2021 PEL TOTAL THS_NAC 401.853
AT IMP_XEU 2021 AGG TOTAL THS_NAC 3101.422
AT IMP_XEU 2021 SN TOTAL THS_NAC 66246.208
AT IMP_XEU 2021 SN CONIF THS_NAC 46389.458
AT IMP_XEU 2021 SN NCONIF THS_NAC 19856.75
AT IMP_XEU 2021 SN NC_TRO THS_NAC 4505.195
AT IMP_XEU 2021 PN_VN TOTAL THS_NAC 77925.674
AT IMP_XEU 2021 PN_VN CONIF THS_NAC 424.425
AT IMP_XEU 2021 PN_VN NCONIF THS_NAC 77501.249
AT IMP_XEU 2021 PN_VN NC_TRO THS_NAC 408.97
AT IMP_XEU 2021 PN TOTAL THS_NAC 29152.593
AT IMP_XEU 2021 PN_PY TOTAL THS_NAC 21882.167
AT IMP_XEU 2021 PN_PY CONIF THS_NAC
AT IMP_XEU 2021 PN_PY NCONIF THS_NAC
AT IMP_XEU 2021 PN_PY NC_TRO THS_NAC 481.719
AT IMP_XEU 2021 PN_PY_LVL TOTAL THS_NAC
AT IMP_XEU 2021 PN_PY_LVL CONIF THS_NAC
AT IMP_XEU 2021 PN_PY_LVL NCONIF THS_NAC
AT IMP_XEU 2021 PN_PY_LVL NC_TRO THS_NAC
AT IMP_XEU 2021 PN_PB TOTAL THS_NAC 5781.203
AT IMP_XEU 2021 PN_PB_OSB TOTAL THS_NAC 3270.849
AT IMP_XEU 2021 PN_FB TOTAL THS_NAC 1489.223
AT IMP_XEU 2021 PN_FB_HB TOTAL THS_NAC 104.697
AT IMP_XEU 2021 PN_FB_MDF TOTAL THS_NAC 736.572
AT IMP_XEU 2021 PN_FB_O TOTAL THS_NAC 647.954
AT IMP_XEU 2021 PL TOTAL THS_NAC 141717.647
AT IMP_XEU 2021 PL_MC_SCH TOTAL THS_NAC 1176.315
AT IMP_XEU 2021 PL_CH TOTAL THS_NAC 119943.478
AT IMP_XEU 2021 PL_CH_SA TOTAL THS_NAC 119934.446
AT IMP_XEU 2021 PL_CH_SAB TOTAL THS_NAC 119047.912
AT IMP_XEU 2021 PL_CH_SI TOTAL THS_NAC 9.032
AT IMP_XEU 2021 PL_DS TOTAL THS_NAC 20597.854
AT IMP_XEU 2021 PLO TOTAL THS_NAC 399.638
AT IMP_XEU 2021 PLO_NW TOTAL THS_NAC 167.565
AT IMP_XEU 2021 PLO_RC TOTAL THS_NAC 232.073
AT IMP_XEU 2021 RCP TOTAL THS_NAC 8666.01
AT IMP_XEU 2021 PP TOTAL THS_NAC 50259.017
AT IMP_XEU 2021 PP_GR TOTAL THS_NAC 12882.258
AT IMP_XEU 2021 PP_GR_NP TOTAL THS_NAC 5797.731
AT IMP_XEU 2021 PP_GR_MC TOTAL THS_NAC 1065.559
AT IMP_XEU 2021 PP_GR_NW TOTAL THS_NAC 2604.024
AT IMP_XEU 2021 PP_GR_CO TOTAL THS_NAC 3414.944
AT IMP_XEU 2021 PP_HS TOTAL THS_NAC 1392.442
AT IMP_XEU 2021 PP_PK TOTAL THS_NAC 33594.547
AT IMP_XEU 2021 PP_PK_CS TOTAL THS_NAC 11551.078
AT IMP_XEU 2021 PP_PK_CB TOTAL THS_NAC 16379.222
AT IMP_XEU 2021 PP_PK_WR TOTAL THS_NAC 5185.545
AT IMP_XEU 2021 PP_PK_O TOTAL THS_NAC 478.702
AT IMP_XEU 2021 PP_O TOTAL THS_NAC 2389.77
AT IMP_XEU 2021 GLT_CLT TOTAL THS_NAC
AT IMP_XEU 2021 GLT TOTAL THS_NAC
AT IMP_XEU 2021 CLT TOTAL THS_NAC
AT IMP_XEU 2021 I_BEAMS TOTAL THS_NAC
AT IMP_XEU 2022 RW TOTAL THS_M3 170.34 7
AT IMP_XEU 2022 RW_FW TOTAL THS_M3 40.706 7
AT IMP_XEU 2022 RW_FW CONIF THS_M3 0.51 7
AT IMP_XEU 2022 RW_FW NCONIF THS_M3 40.196 7
AT IMP_XEU 2022 RW_IN TOTAL THS_M3 129.634 7
AT IMP_XEU 2022 RW_IN CONIF THS_M3 96.166 7
AT IMP_XEU 2022 RW_IN NCONIF THS_M3 33.468 7
AT IMP_XEU 2022 RW_IN NC_TRO THS_M3 0.077 7
AT IMP_XEU 2022 CHA TOTAL THS_T 7.619 7
AT IMP_XEU 2022 CHP_RES TOTAL THS_M3 32.598 4
AT IMP_XEU 2022 CHP TOTAL THS_M3 6.908 7
AT IMP_XEU 2022 RES TOTAL THS_M3 25.69 4
AT IMP_XEU 2022 RES_SWD TOTAL THS_M3 0.258 7
AT IMP_XEU 2022 RCW TOTAL THS_T
AT IMP_XEU 2022 PEL_AGG TOTAL THS_T 25.69 7
AT IMP_XEU 2022 PEL TOTAL THS_T 7.366 7
AT IMP_XEU 2022 AGG TOTAL THS_T 18.324 7
AT IMP_XEU 2022 SN TOTAL THS_M3 144.273 7
AT IMP_XEU 2022 SN CONIF THS_M3 78.815 7
AT IMP_XEU 2022 SN NCONIF THS_M3 25.232 7
AT IMP_XEU 2022 SN NC_TRO THS_M3 2.657 7
AT IMP_XEU 2022 PN_VN TOTAL THS_M3 27.745 7
AT IMP_XEU 2022 PN_VN CONIF THS_M3 0.139 7
AT IMP_XEU 2022 PN_VN NCONIF THS_M3 27.606 7
AT IMP_XEU 2022 PN_VN NC_TRO THS_M3 0.439 7
AT IMP_XEU 2022 PN TOTAL THS_M3 37.705 7
AT IMP_XEU 2022 PN_PY TOTAL THS_M3 19.283 7
AT IMP_XEU 2022 PN_PY CONIF THS_M3 5.327 7
AT IMP_XEU 2022 PN_PY NCONIF THS_M3 13.708 7
AT IMP_XEU 2022 PN_PY NC_TRO THS_M3 0.142 7
AT IMP_XEU 2022 PN_PY_LVL TOTAL THS_M3 0.076 7
AT IMP_XEU 2022 PN_PY_LVL CONIF THS_M3 0.052 7
AT IMP_XEU 2022 PN_PY_LVL NCONIF THS_M3 0.022 7
AT IMP_XEU 2022 PN_PY_LVL NC_TRO THS_M3 0.002 7
AT IMP_XEU 2022 PN_PB TOTAL THS_M3 7.135 7
AT IMP_XEU 2022 PN_PB_OSB TOTAL THS_M3 3.806 7
AT IMP_XEU 2022 PN_FB TOTAL THS_M3 11.287 7
AT IMP_XEU 2022 PN_FB_HB TOTAL THS_M3 5.597 7
AT IMP_XEU 2022 PN_FB_MDF TOTAL THS_M3 4.056 7
AT IMP_XEU 2022 PN_FB_O TOTAL THS_M3 1.634 7
AT IMP_XEU 2022 PL TOTAL THS_T 213.627231 7
AT IMP_XEU 2022 PL_MC_SCH TOTAL THS_T 1.757789 7
AT IMP_XEU 2022 PL_CH TOTAL THS_T 184.64187 7
AT IMP_XEU 2022 PL_CH_SA TOTAL THS_T 184.641729 7
AT IMP_XEU 2022 PL_CH_SAB TOTAL THS_T 184.546 7
AT IMP_XEU 2022 PL_CH_SI TOTAL THS_T 0.000141 7
AT IMP_XEU 2022 PL_DS TOTAL THS_T 27.227572 7
AT IMP_XEU 2022 PLO TOTAL THS_T 4.926176 7
AT IMP_XEU 2022 PLO_NW TOTAL THS_T 1.405976 7
AT IMP_XEU 2022 PLO_RC TOTAL THS_T 3.5202 7
AT IMP_XEU 2022 RCP TOTAL THS_T 36.251 7
AT IMP_XEU 2022 PP TOTAL THS_T 48.867 7
AT IMP_XEU 2022 PP_GR TOTAL THS_T 17.391 7
AT IMP_XEU 2022 PP_GR_NP TOTAL THS_T 11.199 7
AT IMP_XEU 2022 PP_GR_MC TOTAL THS_T 1.897 7
AT IMP_XEU 2022 PP_GR_NW TOTAL THS_T 2.116 7
AT IMP_XEU 2022 PP_GR_CO TOTAL THS_T 2.179 7
AT IMP_XEU 2022 PP_HS TOTAL THS_T 0.481 7
AT IMP_XEU 2022 PP_PK TOTAL THS_T 30.789 7
AT IMP_XEU 2022 PP_PK_CS TOTAL THS_T 16.507 7
AT IMP_XEU 2022 PP_PK_CB TOTAL THS_T 11.049 7
AT IMP_XEU 2022 PP_PK_WR TOTAL THS_T 2.818 7
AT IMP_XEU 2022 PP_PK_O TOTAL THS_T 0.415 7
AT IMP_XEU 2022 PP_O TOTAL THS_T 0.206 7
AT IMP_XEU 2022 GLT_CLT TOTAL THS_M3 1.106 7
AT IMP_XEU 2022 GLT TOTAL THS_M3 0.493 7
AT IMP_XEU 2022 CLT TOTAL THS_M3 0.613 7
AT IMP_XEU 2022 I_BEAMS TOTAL THS_T 0.001 7
AT IMP_XEU 2022 RW TOTAL THS_NAC 22094.269 7
AT IMP_XEU 2022 RW_FW TOTAL THS_NAC 7931.349 7
AT IMP_XEU 2022 RW_FW CONIF THS_NAC 81.726 7
AT IMP_XEU 2022 RW_FW NCONIF THS_NAC 7849.623 7
AT IMP_XEU 2022 RW_IN TOTAL THS_NAC 14162.92 7
AT IMP_XEU 2022 RW_IN CONIF THS_NAC 9316.555 7
AT IMP_XEU 2022 RW_IN NCONIF THS_NAC 4846.365 7
AT IMP_XEU 2022 RW_IN NC_TRO THS_NAC 72.367 7
AT IMP_XEU 2022 CHA TOTAL THS_NAC 5271.425 7
AT IMP_XEU 2022 CHP_RES TOTAL THS_NAC 1448.89 4
AT IMP_XEU 2022 CHP TOTAL THS_NAC 788.665 7
AT IMP_XEU 2022 RES TOTAL THS_NAC 660.225 4
AT IMP_XEU 2022 RES_SWD TOTAL THS_NAC 40.394 7
AT IMP_XEU 2022 RCW TOTAL THS_NAC
AT IMP_XEU 2022 PEL_AGG TOTAL THS_NAC 9487.734 7
AT IMP_XEU 2022 PEL TOTAL THS_NAC 3435.232 7
AT IMP_XEU 2022 AGG TOTAL THS_NAC 6052.502 7
AT IMP_XEU 2022 SN TOTAL THS_NAC 73074.233 7
AT IMP_XEU 2022 SN CONIF THS_NAC 40457.641 7
AT IMP_XEU 2022 SN NCONIF THS_NAC 32616.592 7
AT IMP_XEU 2022 SN NC_TRO THS_NAC 3933.09 7
AT IMP_XEU 2022 PN_VN TOTAL THS_NAC 108061.499 7
AT IMP_XEU 2022 PN_VN CONIF THS_NAC 428.856 7
AT IMP_XEU 2022 PN_VN NCONIF THS_NAC 107632.643 7
AT IMP_XEU 2022 PN_VN NC_TRO THS_NAC 681.08 7
AT IMP_XEU 2022 PN TOTAL THS_NAC 35044 7
AT IMP_XEU 2022 PN_PY TOTAL THS_NAC 19249 7
AT IMP_XEU 2022 PN_PY CONIF THS_NAC 4725.667 7
AT IMP_XEU 2022 PN_PY NCONIF THS_NAC 14329.965 7
AT IMP_XEU 2022 PN_PY NC_TRO THS_NAC 194.102 7
AT IMP_XEU 2022 PN_PY_LVL TOTAL THS_NAC 51.857 7
AT IMP_XEU 2022 PN_PY_LVL CONIF THS_NAC 23.198 7
AT IMP_XEU 2022 PN_PY_LVL NCONIF THS_NAC 27 7
AT IMP_XEU 2022 PN_PY_LVL NC_TRO THS_NAC 0.925 7
AT IMP_XEU 2022 PN_PB TOTAL THS_NAC 3734.888 7
AT IMP_XEU 2022 PN_PB_OSB TOTAL THS_NAC 2424.733 7
AT IMP_XEU 2022 PN_FB TOTAL THS_NAC 12059.687 7
AT IMP_XEU 2022 PN_FB_HB TOTAL THS_NAC 9590.035 7
AT IMP_XEU 2022 PN_FB_MDF TOTAL THS_NAC 2069.148 7
AT IMP_XEU 2022 PN_FB_O TOTAL THS_NAC 400.504 7
AT IMP_XEU 2022 PL TOTAL THS_NAC 186718.113 7
AT IMP_XEU 2022 PL_MC_SCH TOTAL THS_NAC 1248.997 7
AT IMP_XEU 2022 PL_CH TOTAL THS_NAC 155746.613 7
AT IMP_XEU 2022 PL_CH_SA TOTAL THS_NAC 155745.433 7
AT IMP_XEU 2022 PL_CH_SAB TOTAL THS_NAC 155647.669 7
AT IMP_XEU 2022 PL_CH_SI TOTAL THS_NAC 1.18 7
AT IMP_XEU 2022 PL_DS TOTAL THS_NAC 29722.503 7
AT IMP_XEU 2022 PLO TOTAL THS_NAC 3147.353 7
AT IMP_XEU 2022 PLO_NW TOTAL THS_NAC 2407.098 7
AT IMP_XEU 2022 PLO_RC TOTAL THS_NAC 740.255 7
AT IMP_XEU 2022 RCP TOTAL THS_NAC 9365.014 7
AT IMP_XEU 2022 PP TOTAL THS_NAC 67903.5 7
AT IMP_XEU 2022 PP_GR TOTAL THS_NAC 17841.5 7
AT IMP_XEU 2022 PP_GR_NP TOTAL THS_NAC 9085.39 7
AT IMP_XEU 2022 PP_GR_MC TOTAL THS_NAC 1885.549 7
AT IMP_XEU 2022 PP_GR_NW TOTAL THS_NAC 3825.274 7
AT IMP_XEU 2022 PP_GR_CO TOTAL THS_NAC 3045.229 7
AT IMP_XEU 2022 PP_HS TOTAL THS_NAC 2098.082 7
AT IMP_XEU 2022 PP_PK TOTAL THS_NAC 44480.377 7
AT IMP_XEU 2022 PP_PK_CS TOTAL THS_NAC 14835.309 7
AT IMP_XEU 2022 PP_PK_CB TOTAL THS_NAC 23686.093 7
AT IMP_XEU 2022 PP_PK_WR TOTAL THS_NAC 5227.201 7
AT IMP_XEU 2022 PP_PK_O TOTAL THS_NAC 731.774 7
AT IMP_XEU 2022 PP_O TOTAL THS_NAC 3483.521 7
AT IMP_XEU 2022 GLT_CLT TOTAL THS_NAC 906.115 7
AT IMP_XEU 2022 GLT TOTAL THS_NAC 502.724 7
AT IMP_XEU 2022 CLT TOTAL THS_NAC 403.391 7
AT IMP_XEU 2022 I_BEAMS TOTAL THS_NAC 0.887 7
AT EXP_XEU 2021 RW TOTAL THS_M3 9.2613333333
AT EXP_XEU 2021 RW_FW TOTAL THS_M3 0.0783333333
AT EXP_XEU 2021 RW_FW CONIF THS_M3 0
AT EXP_XEU 2021 RW_FW NCONIF THS_M3 0.0783333333
AT EXP_XEU 2021 RW_IN TOTAL THS_M3 9.183
AT EXP_XEU 2021 RW_IN CONIF THS_M3 5.68
AT EXP_XEU 2021 RW_IN NCONIF THS_M3 3.503
AT EXP_XEU 2021 RW_IN NC_TRO THS_M3 0
AT EXP_XEU 2021 CHA TOTAL THS_T 0.2753
AT EXP_XEU 2021 CHP_RES TOTAL THS_M3 16.2864402575 4
AT EXP_XEU 2021 CHP TOTAL THS_M3 4.1799309448
AT EXP_XEU 2021 RES TOTAL THS_M3 12.1065093127 4
AT EXP_XEU 2021 RES_SWD TOTAL THS_M3
AT EXP_XEU 2021 RCW TOTAL THS_T
AT EXP_XEU 2021 PEL_AGG TOTAL THS_T 27.2639
AT EXP_XEU 2021 PEL TOTAL THS_T 27.1055
AT EXP_XEU 2021 AGG TOTAL THS_T 0.1584
AT EXP_XEU 2021 SN TOTAL THS_M3 1056.149471
AT EXP_XEU 2021 SN CONIF THS_M3 1010.012
AT EXP_XEU 2021 SN NCONIF THS_M3 46.137471
AT EXP_XEU 2021 SN NC_TRO THS_M3 0.224
AT EXP_XEU 2021 PN_VN TOTAL THS_M3 3.483
AT EXP_XEU 2021 PN_VN CONIF THS_M3 0.319
AT EXP_XEU 2021 PN_VN NCONIF THS_M3 3.164
AT EXP_XEU 2021 PN_VN NC_TRO THS_M3 0.092
AT EXP_XEU 2021 PN TOTAL THS_M3 621.119
AT EXP_XEU 2021 PN_PY TOTAL THS_M3 101.152
AT EXP_XEU 2021 PN_PY CONIF THS_M3
AT EXP_XEU 2021 PN_PY NCONIF THS_M3
AT EXP_XEU 2021 PN_PY NC_TRO THS_M3 0.113
AT EXP_XEU 2021 PN_PY_LVL TOTAL THS_M3
AT EXP_XEU 2021 PN_PY_LVL CONIF THS_M3
AT EXP_XEU 2021 PN_PY_LVL NCONIF THS_M3
AT EXP_XEU 2021 PN_PY_LVL NC_TRO THS_M3
AT EXP_XEU 2021 PN_PB TOTAL THS_M3 344.047
AT EXP_XEU 2021 PN_PB_OSB TOTAL THS_M3 1.188
AT EXP_XEU 2021 PN_FB TOTAL THS_M3 175.92
AT EXP_XEU 2021 PN_FB_HB TOTAL THS_M3 6.405
AT EXP_XEU 2021 PN_FB_MDF TOTAL THS_M3 169.396
AT EXP_XEU 2021 PN_FB_O TOTAL THS_M3 0.119
AT EXP_XEU 2021 PL TOTAL THS_T 17.931273
AT EXP_XEU 2021 PL_MC_SCH TOTAL THS_T 0.004277
AT EXP_XEU 2021 PL_CH TOTAL THS_T 15.185229
AT EXP_XEU 2021 PL_CH_SA TOTAL THS_T 15.162742
AT EXP_XEU 2021 PL_CH_SAB TOTAL THS_T 9.772025
AT EXP_XEU 2021 PL_CH_SI TOTAL THS_T 0.022487
AT EXP_XEU 2021 PL_DS TOTAL THS_T 2.741767
AT EXP_XEU 2021 PLO TOTAL THS_T 0.301329
AT EXP_XEU 2021 PLO_NW TOTAL THS_T 0.013358
AT EXP_XEU 2021 PLO_RC TOTAL THS_T 0.287971
AT EXP_XEU 2021 RCP TOTAL THS_T 1.3359
AT EXP_XEU 2021 PP TOTAL THS_T 638.8577
AT EXP_XEU 2021 PP_GR TOTAL THS_T 475.7728
AT EXP_XEU 2021 PP_GR_NP TOTAL THS_T 57.1537
AT EXP_XEU 2021 PP_GR_MC TOTAL THS_T 21.5859
AT EXP_XEU 2021 PP_GR_NW TOTAL THS_T 96.7492
AT EXP_XEU 2021 PP_GR_CO TOTAL THS_T 300.284
AT EXP_XEU 2021 PP_HS TOTAL THS_T 0.0101
AT EXP_XEU 2021 PP_PK TOTAL THS_T 162.9066
AT EXP_XEU 2021 PP_PK_CS TOTAL THS_T 78.465
AT EXP_XEU 2021 PP_PK_CB TOTAL THS_T 39.4723
AT EXP_XEU 2021 PP_PK_WR TOTAL THS_T 42.9131
AT EXP_XEU 2021 PP_PK_O TOTAL THS_T 2.0562
AT EXP_XEU 2021 PP_O TOTAL THS_T 0.1682
AT EXP_XEU 2021 GLT_CLT TOTAL THS_M3
AT EXP_XEU 2021 GLT TOTAL THS_M3
AT EXP_XEU 2021 CLT TOTAL THS_M3
AT EXP_XEU 2021 I_BEAMS TOTAL THS_T
AT EXP_XEU 2021 RW TOTAL THS_NAC 2184.52
AT EXP_XEU 2021 RW_FW TOTAL THS_NAC 39.555
AT EXP_XEU 2021 RW_FW CONIF THS_NAC 0
AT EXP_XEU 2021 RW_FW NCONIF THS_NAC 39.555
AT EXP_XEU 2021 RW_IN TOTAL THS_NAC 2144.965
AT EXP_XEU 2021 RW_IN CONIF THS_NAC 644.638
AT EXP_XEU 2021 RW_IN NCONIF THS_NAC 1500.327
AT EXP_XEU 2021 RW_IN NC_TRO THS_NAC 0
AT EXP_XEU 2021 CHA TOTAL THS_NAC 172.486
AT EXP_XEU 2021 CHP_RES TOTAL THS_NAC 1067.87 4
AT EXP_XEU 2021 CHP TOTAL THS_NAC 500.093
AT EXP_XEU 2021 RES TOTAL THS_NAC 567.777 4
AT EXP_XEU 2021 RES_SWD TOTAL THS_NAC
AT EXP_XEU 2021 RCW TOTAL THS_NAC
AT EXP_XEU 2021 PEL_AGG TOTAL THS_NAC 5008.155
AT EXP_XEU 2021 PEL TOTAL THS_NAC 4963.346
AT EXP_XEU 2021 AGG TOTAL THS_NAC 44.809
AT EXP_XEU 2021 SN TOTAL THS_NAC 421685.341
AT EXP_XEU 2021 SN CONIF THS_NAC 393758.219
AT EXP_XEU 2021 SN NCONIF THS_NAC 27927.122
AT EXP_XEU 2021 SN NC_TRO THS_NAC 187.773
AT EXP_XEU 2021 PN_VN TOTAL THS_NAC 14171.12
AT EXP_XEU 2021 PN_VN CONIF THS_NAC 1459.935
AT EXP_XEU 2021 PN_VN NCONIF THS_NAC 12711.185
AT EXP_XEU 2021 PN_VN NC_TRO THS_NAC 541.48
AT EXP_XEU 2021 PN TOTAL THS_NAC 375331.708
AT EXP_XEU 2021 PN_PY TOTAL THS_NAC 91278.952
AT EXP_XEU 2021 PN_PY CONIF THS_NAC
AT EXP_XEU 2021 PN_PY NCONIF THS_NAC
AT EXP_XEU 2021 PN_PY NC_TRO THS_NAC 402.24
AT EXP_XEU 2021 PN_PY_LVL TOTAL THS_NAC
AT EXP_XEU 2021 PN_PY_LVL CONIF THS_NAC
AT EXP_XEU 2021 PN_PY_LVL NCONIF THS_NAC
AT EXP_XEU 2021 PN_PY_LVL NC_TRO THS_NAC
AT EXP_XEU 2021 PN_PB TOTAL THS_NAC 148895.353
AT EXP_XEU 2021 PN_PB_OSB TOTAL THS_NAC 550.323
AT EXP_XEU 2021 PN_FB TOTAL THS_NAC 135157.403
AT EXP_XEU 2021 PN_FB_HB TOTAL THS_NAC 3241.801
AT EXP_XEU 2021 PN_FB_MDF TOTAL THS_NAC 131854.122
AT EXP_XEU 2021 PN_FB_O TOTAL THS_NAC 61.48
AT EXP_XEU 2021 PL TOTAL THS_NAC 12097.602
AT EXP_XEU 2021 PL_MC_SCH TOTAL THS_NAC 10.186
AT EXP_XEU 2021 PL_CH TOTAL THS_NAC 9814.979
AT EXP_XEU 2021 PL_CH_SA TOTAL THS_NAC 9772.385
AT EXP_XEU 2021 PL_CH_SAB TOTAL THS_NAC 6684.887
AT EXP_XEU 2021 PL_CH_SI TOTAL THS_NAC 42.594
AT EXP_XEU 2021 PL_DS TOTAL THS_NAC 2272.437
AT EXP_XEU 2021 PLO TOTAL THS_NAC 288.296
AT EXP_XEU 2021 PLO_NW TOTAL THS_NAC 83.202
AT EXP_XEU 2021 PLO_RC TOTAL THS_NAC 205.094
AT EXP_XEU 2021 RCP TOTAL THS_NAC 240.829
AT EXP_XEU 2021 PP TOTAL THS_NAC 472302.65
AT EXP_XEU 2021 PP_GR TOTAL THS_NAC 340932.696
AT EXP_XEU 2021 PP_GR_NP TOTAL THS_NAC 20825.809
AT EXP_XEU 2021 PP_GR_MC TOTAL THS_NAC 9688.151
AT EXP_XEU 2021 PP_GR_NW TOTAL THS_NAC 106955.803
AT EXP_XEU 2021 PP_GR_CO TOTAL THS_NAC 203462.933
AT EXP_XEU 2021 PP_HS TOTAL THS_NAC 48.83
AT EXP_XEU 2021 PP_PK TOTAL THS_NAC 129499.004
AT EXP_XEU 2021 PP_PK_CS TOTAL THS_NAC 40998.964
AT EXP_XEU 2021 PP_PK_CB TOTAL THS_NAC 50407.09
AT EXP_XEU 2021 PP_PK_WR TOTAL THS_NAC 36527.768
AT EXP_XEU 2021 PP_PK_O TOTAL THS_NAC 1565.182
AT EXP_XEU 2021 PP_O TOTAL THS_NAC 1822.12
AT EXP_XEU 2021 GLT_CLT TOTAL THS_NAC
AT EXP_XEU 2021 GLT TOTAL THS_NAC
AT EXP_XEU 2021 CLT TOTAL THS_NAC
AT EXP_XEU 2021 I_BEAMS TOTAL THS_NAC
AT EXP_XEU 2022 RW TOTAL THS_M3 11.025 7
AT EXP_XEU 2022 RW_FW TOTAL THS_M3 0.105 7
AT EXP_XEU 2022 RW_FW CONIF THS_M3 7
AT EXP_XEU 2022 RW_FW NCONIF THS_M3 0.105 7
AT EXP_XEU 2022 RW_IN TOTAL THS_M3 10.919 7
AT EXP_XEU 2022 RW_IN CONIF THS_M3 5.809 7
AT EXP_XEU 2022 RW_IN NCONIF THS_M3 5.11 7
AT EXP_XEU 2022 RW_IN NC_TRO THS_M3 0 7
AT EXP_XEU 2022 CHA TOTAL THS_T 0.943 7
AT EXP_XEU 2022 CHP_RES TOTAL THS_M3 17.141 4
AT EXP_XEU 2022 CHP TOTAL THS_M3 8.197 7
AT EXP_XEU 2022 RES TOTAL THS_M3 8.944 4
AT EXP_XEU 2022 RES_SWD TOTAL THS_M3 6.2 7
AT EXP_XEU 2022 RCW TOTAL THS_T
AT EXP_XEU 2022 PEL_AGG TOTAL THS_T 39.789 7
AT EXP_XEU 2022 PEL TOTAL THS_T 39.734 7
AT EXP_XEU 2022 AGG TOTAL THS_T 0.055 7
AT EXP_XEU 2022 SN TOTAL THS_M3 1050.766 7
AT EXP_XEU 2022 SN CONIF THS_M3 986.551 7
AT EXP_XEU 2022 SN NCONIF THS_M3 42.774 7
AT EXP_XEU 2022 SN NC_TRO THS_M3 0.084 7
AT EXP_XEU 2022 PN_VN TOTAL THS_M3 4.653 7
AT EXP_XEU 2022 PN_VN CONIF THS_M3 0.373 7
AT EXP_XEU 2022 PN_VN NCONIF THS_M3 4.28 7
AT EXP_XEU 2022 PN_VN NC_TRO THS_M3 0.47 7
AT EXP_XEU 2022 PN TOTAL THS_M3 509.345 7
AT EXP_XEU 2022 PN_PY TOTAL THS_M3 92.401 7
AT EXP_XEU 2022 PN_PY CONIF THS_M3 87.088 7
AT EXP_XEU 2022 PN_PY NCONIF THS_M3 5.165 7
AT EXP_XEU 2022 PN_PY NC_TRO THS_M3 0.148 7
AT EXP_XEU 2022 PN_PY_LVL TOTAL THS_M3 0.062 7
AT EXP_XEU 2022 PN_PY_LVL CONIF THS_M3 0 7
AT EXP_XEU 2022 PN_PY_LVL NCONIF THS_M3 0.051 7
AT EXP_XEU 2022 PN_PY_LVL NC_TRO THS_M3 0.011 7
AT EXP_XEU 2022 PN_PB TOTAL THS_M3 302.309 7
AT EXP_XEU 2022 PN_PB_OSB TOTAL THS_M3 1.675 7
AT EXP_XEU 2022 PN_FB TOTAL THS_M3 114.635 7
AT EXP_XEU 2022 PN_FB_HB TOTAL THS_M3 5.543 7
AT EXP_XEU 2022 PN_FB_MDF TOTAL THS_M3 108.795 7
AT EXP_XEU 2022 PN_FB_O TOTAL THS_M3 0.297 7
AT EXP_XEU 2022 PL TOTAL THS_T 28.998851 7
AT EXP_XEU 2022 PL_MC_SCH TOTAL THS_T 0.019415 7
AT EXP_XEU 2022 PL_CH TOTAL THS_T 25.222095 7
AT EXP_XEU 2022 PL_CH_SA TOTAL THS_T 24.437168 7
AT EXP_XEU 2022 PL_CH_SAB TOTAL THS_T 13.371568 7
AT EXP_XEU 2022 PL_CH_SI TOTAL THS_T 0.784927 7
AT EXP_XEU 2022 PL_DS TOTAL THS_T 3.757341 7
AT EXP_XEU 2022 PLO TOTAL THS_T 0.322551 7
AT EXP_XEU 2022 PLO_NW TOTAL THS_T 0.022189 7
AT EXP_XEU 2022 PLO_RC TOTAL THS_T 0.300362 7
AT EXP_XEU 2022 RCP TOTAL THS_T 5.037 7
AT EXP_XEU 2022 PP TOTAL THS_T 512.838 7
AT EXP_XEU 2022 PP_GR TOTAL THS_T 378.363 7
AT EXP_XEU 2022 PP_GR_NP TOTAL THS_T 52.685 7
AT EXP_XEU 2022 PP_GR_MC TOTAL THS_T 4.136 7
AT EXP_XEU 2022 PP_GR_NW TOTAL THS_T 75.249 7
AT EXP_XEU 2022 PP_GR_CO TOTAL THS_T 246.293 7
AT EXP_XEU 2022 PP_HS TOTAL THS_T 0.037 7
AT EXP_XEU 2022 PP_PK TOTAL THS_T 134.193 7
AT EXP_XEU 2022 PP_PK_CS TOTAL THS_T 63.938 7
AT EXP_XEU 2022 PP_PK_CB TOTAL THS_T 25.788 7
AT EXP_XEU 2022 PP_PK_WR TOTAL THS_T 42.413 7
AT EXP_XEU 2022 PP_PK_O TOTAL THS_T 2.054 7
AT EXP_XEU 2022 PP_O TOTAL THS_T 0.245 7
AT EXP_XEU 2022 GLT_CLT TOTAL THS_M3 300.92 7
AT EXP_XEU 2022 GLT TOTAL THS_M3 232.58 7
AT EXP_XEU 2022 CLT TOTAL THS_M3 68.34 7
AT EXP_XEU 2022 I_BEAMS TOTAL THS_T 0.0001 7
AT EXP_XEU 2022 RW TOTAL THS_NAC 3565.683 7
AT EXP_XEU 2022 RW_FW TOTAL THS_NAC 47.967 7
AT EXP_XEU 2022 RW_FW CONIF THS_NAC 7
AT EXP_XEU 2022 RW_FW NCONIF THS_NAC 47.967 7
AT EXP_XEU 2022 RW_IN TOTAL THS_NAC 3517.716 7
AT EXP_XEU 2022 RW_IN CONIF THS_NAC 839.027 7
AT EXP_XEU 2022 RW_IN NCONIF THS_NAC 2678.689 7
AT EXP_XEU 2022 RW_IN NC_TRO THS_NAC 0 7
AT EXP_XEU 2022 CHA TOTAL THS_NAC 495.212 7
AT EXP_XEU 2022 CHP_RES TOTAL THS_NAC 1429.413 4
AT EXP_XEU 2022 CHP TOTAL THS_NAC 818.386 7
AT EXP_XEU 2022 RES TOTAL THS_NAC 611.027 4
AT EXP_XEU 2022 RES_SWD TOTAL THS_NAC 535.828 7
AT EXP_XEU 2022 RCW TOTAL THS_NAC
AT EXP_XEU 2022 PEL_AGG TOTAL THS_NAC 15349.542 7
AT EXP_XEU 2022 PEL TOTAL THS_NAC 15319.593 7
AT EXP_XEU 2022 AGG TOTAL THS_NAC 29.949 7
AT EXP_XEU 2022 SN TOTAL THS_NAC 453823.308 7
AT EXP_XEU 2022 SN CONIF THS_NAC 422009.168 7
AT EXP_XEU 2022 SN NCONIF THS_NAC 31814.14 7
AT EXP_XEU 2022 SN NC_TRO THS_NAC 145.641 7
AT EXP_XEU 2022 PN_VN TOTAL THS_NAC 15925.124 7
AT EXP_XEU 2022 PN_VN CONIF THS_NAC 1359.063 7
AT EXP_XEU 2022 PN_VN NCONIF THS_NAC 14566.061 7
AT EXP_XEU 2022 PN_VN NC_TRO THS_NAC 508.694 7
AT EXP_XEU 2022 PN TOTAL THS_NAC 380580.16 7
AT EXP_XEU 2022 PN_PY TOTAL THS_NAC 95514.131 7
AT EXP_XEU 2022 PN_PY CONIF THS_NAC 81762.709 7
AT EXP_XEU 2022 PN_PY NCONIF THS_NAC 12913 7
AT EXP_XEU 2022 PN_PY NC_TRO THS_NAC 838.122 7
AT EXP_XEU 2022 PN_PY_LVL TOTAL THS_NAC 112.108 7
AT EXP_XEU 2022 PN_PY_LVL CONIF THS_NAC 0 7
AT EXP_XEU 2022 PN_PY_LVL NCONIF THS_NAC 112 7
AT EXP_XEU 2022 PN_PY_LVL NC_TRO THS_NAC 112 7
AT EXP_XEU 2022 PN_PB TOTAL THS_NAC 163899.029 7
AT EXP_XEU 2022 PN_PB_OSB TOTAL THS_NAC 852.223 7
AT EXP_XEU 2022 PN_FB TOTAL THS_NAC 121167 7
AT EXP_XEU 2022 PN_FB_HB TOTAL THS_NAC 3128.449 7
AT EXP_XEU 2022 PN_FB_MDF TOTAL THS_NAC 117897.358 7
AT EXP_XEU 2022 PN_FB_O TOTAL THS_NAC 140.346 7
AT EXP_XEU 2022 PL TOTAL THS_NAC 23428.451 7
AT EXP_XEU 2022 PL_MC_SCH TOTAL THS_NAC 6.349 7
AT EXP_XEU 2022 PL_CH TOTAL THS_NAC 20017.829 7
AT EXP_XEU 2022 PL_CH_SA TOTAL THS_NAC 19250.365 7
AT EXP_XEU 2022 PL_CH_SAB TOTAL THS_NAC 11664.728 7
AT EXP_XEU 2022 PL_CH_SI TOTAL THS_NAC 767.464 7
AT EXP_XEU 2022 PL_DS TOTAL THS_NAC 3404.273 7
AT EXP_XEU 2022 PLO TOTAL THS_NAC 418.786 7
AT EXP_XEU 2022 PLO_NW TOTAL THS_NAC 155.352 7
AT EXP_XEU 2022 PLO_RC TOTAL THS_NAC 263.434 7
AT EXP_XEU 2022 RCP TOTAL THS_NAC 986.733 7
AT EXP_XEU 2022 PP TOTAL THS_NAC 605175.904 7
AT EXP_XEU 2022 PP_GR TOTAL THS_NAC 444185.148 7
AT EXP_XEU 2022 PP_GR_NP TOTAL THS_NAC 39589.141 7
AT EXP_XEU 2022 PP_GR_MC TOTAL THS_NAC 3873.153 7
AT EXP_XEU 2022 PP_GR_NW TOTAL THS_NAC 132464.636 7
AT EXP_XEU 2022 PP_GR_CO TOTAL THS_NAC 268258.218 7
AT EXP_XEU 2022 PP_HS TOTAL THS_NAC 149.243 7
AT EXP_XEU 2022 PP_PK TOTAL THS_NAC 158554.429 7
AT EXP_XEU 2022 PP_PK_CS TOTAL THS_NAC 47511.042 7
AT EXP_XEU 2022 PP_PK_CB TOTAL THS_NAC 56009.381 7
AT EXP_XEU 2022 PP_PK_WR TOTAL THS_NAC 52864.637 7
AT EXP_XEU 2022 PP_PK_O TOTAL THS_NAC 2169.369 7
AT EXP_XEU 2022 PP_O TOTAL THS_NAC 2287.084 7
AT EXP_XEU 2022 GLT_CLT TOTAL THS_NAC 227065.153 7
AT EXP_XEU 2022 GLT TOTAL THS_NAC 167215.859 7
AT EXP_XEU 2022 CLT TOTAL THS_NAC 59849.294 7
AT EXP_XEU 2022 I_BEAMS TOTAL THS_NAC 0.873 7
AT IMP 2021 SW TOTAL THS_NAC 2124453.761
AT IMP 2021 SW_SN TOTAL THS_NAC 114220.664
AT IMP 2021 SW_SN CONIF THS_NAC 85551.615
AT IMP 2021 SW_SN NCONIF THS_NAC 28669.049
AT IMP 2021 SW_SN NC_TRO THS_NAC 1412.087
AT IMP 2021 SW_WR TOTAL THS_NAC 187864.428
AT IMP 2021 SW_DM TOTAL THS_NAC 42768.477
AT IMP 2021 SW_JN TOTAL THS_NAC 356146.624
AT IMP 2021 SW_FU TOTAL THS_NAC 1263095.169
AT IMP 2021 SW_BL_W TOTAL THS_NAC 31305.051
AT IMP 2021 SW_O TOTAL THS_NAC 129053.348
AT IMP 2021 SP TOTAL THS_NAC 1059809.2
AT IMP 2021 SP_CM TOTAL THS_NAC 11165.749
AT IMP 2021 SP_SCO TOTAL THS_NAC 164323.138
AT IMP 2021 SP_HS TOTAL THS_NAC 217798.251
AT IMP 2021 SP_PK TOTAL THS_NAC 394384.648
AT IMP 2021 SP_O TOTAL THS_NAC 272137.414
AT IMP 2021 SP_O_PR TOTAL THS_NAC 5637.838
AT IMP 2021 SP_O_AR TOTAL THS_NAC 16223.446
AT IMP 2021 SP_O_FL TOTAL THS_NAC 23528.346
AT IMP 2022 SW TOTAL THS_NAC 2286128 7
AT IMP 2022 SW_SN TOTAL THS_NAC 107867.53 7
AT IMP 2022 SW_SN CONIF THS_NAC 79439.533 7
AT IMP 2022 SW_SN NCONIF THS_NAC 28427.997 7
AT IMP 2022 SW_SN NC_TRO THS_NAC 2337.977 7
AT IMP 2022 SW_WR TOTAL THS_NAC 256196.296 7
AT IMP 2022 SW_DM TOTAL THS_NAC 44840.896 7
AT IMP 2022 SW_JN TOTAL THS_NAC 337874.9 7
AT IMP 2022 SW_FU TOTAL THS_NAC 1339512.31 7
AT IMP 2022 SW_BL_W TOTAL THS_NAC 46447.461 7
AT IMP 2022 SW_O TOTAL THS_NAC 153388.352 7
AT IMP 2022 SP TOTAL THS_NAC 1242828.47 7
AT IMP 2022 SP_CM TOTAL THS_NAC 13283.425 7
AT IMP 2022 SP_SCO TOTAL THS_NAC 188904.706 7
AT IMP 2022 SP_HS TOTAL THS_NAC 306832.627 7
AT IMP 2022 SP_PK TOTAL THS_NAC 468293.169 7
AT IMP 2022 SP_O TOTAL THS_NAC 265514.542 7
AT IMP 2022 SP_O_PR TOTAL THS_NAC 7253.393 7
AT IMP 2022 SP_O_AR TOTAL THS_NAC 17409.815 7
AT IMP 2022 SP_O_FL TOTAL THS_NAC 23234.355 7
AT EXP 2021 SW TOTAL THS_NAC 2666947.743
AT EXP 2021 SW_SN TOTAL THS_NAC 135567.676
AT EXP 2021 SW_SN CONIF THS_NAC 105680.377
AT EXP 2021 SW_SN NCONIF THS_NAC 29887.299
AT EXP 2021 SW_SN NC_TRO THS_NAC 483.081
AT EXP 2021 SW_WR TOTAL THS_NAC 87006.612
AT EXP 2021 SW_DM TOTAL THS_NAC 11817.777
AT EXP 2021 SW_JN TOTAL THS_NAC 1756523.897
AT EXP 2021 SW_FU TOTAL THS_NAC 572922.681
AT EXP 2021 SW_BL_W TOTAL THS_NAC 48618.649
AT EXP 2021 SW_O TOTAL THS_NAC 54490.451
AT EXP 2021 SP TOTAL THS_NAC 1207039.512
AT EXP 2021 SP_CM TOTAL THS_NAC 392.55
AT EXP 2021 SP_SCO TOTAL THS_NAC 93834.593
AT EXP 2021 SP_HS TOTAL THS_NAC 146381.592
AT EXP 2021 SP_PK TOTAL THS_NAC 781761.234
AT EXP 2021 SP_O TOTAL THS_NAC 184669.543
AT EXP 2021 SP_O_PR TOTAL THS_NAC 3355.899
AT EXP 2021 SP_O_AR TOTAL THS_NAC 2938.542
AT EXP 2021 SP_O_FL TOTAL THS_NAC 5840.864
AT EXP 2022 SW TOTAL THS_NAC 1801380.51 7
AT EXP 2022 SW_SN TOTAL THS_NAC 147611.962 7
AT EXP 2022 SW_SN CONIF THS_NAC 116978.656 7
AT EXP 2022 SW_SN NCONIF THS_NAC 30633.306 7
AT EXP 2022 SW_SN NC_TRO THS_NAC 764.692 7
AT EXP 2022 SW_WR TOTAL THS_NAC 124804.304 7
AT EXP 2022 SW_DM TOTAL THS_NAC 13394.893 7
AT EXP 2022 SW_JN TOTAL THS_NAC 745413.87 7
AT EXP 2022 SW_FU TOTAL THS_NAC 632016.607 7
AT EXP 2022 SW_BL_W TOTAL THS_NAC 69303.757 7
AT EXP 2022 SW_O TOTAL THS_NAC 68835.112 7
AT EXP 2022 SP TOTAL THS_NAC 1396362.95 7
AT EXP 2022 SP_CM TOTAL THS_NAC 343.24 7
AT EXP 2022 SP_SCO TOTAL THS_NAC 111442.968 7
AT EXP 2022 SP_HS TOTAL THS_NAC 192916.283 7
AT EXP 2022 SP_PK TOTAL THS_NAC 891718.299 7
AT EXP 2022 SP_O TOTAL THS_NAC 199942.155 7
AT EXP 2022 SP_O_PR TOTAL THS_NAC 3512.436 7
AT EXP 2022 SP_O_AR TOTAL THS_NAC 6101.051 7
AT EXP 2022 SP_O_FL TOTAL THS_NAC 8537.882 7
AT IMP 2021 ST_1_2 CONIF THS_M3 10017.644
AT IMP 2021 ST_1_2 C_PIN THS_M3 628.423
AT IMP 2021 ST_1_2_1 C_PIN THS_M3 298.946
AT IMP 2021 ST_1_2_2 C_PIN THS_M3 329.477
AT IMP 2021 ST_1_2 C_FIR THS_M3 8634.032
AT IMP 2021 ST_1_2_1 C_FIR THS_M3 7190.744
AT IMP 2021 ST_1_2_2 C_FIR THS_M3 1443.288
AT IMP 2021 ST_1_2 NCONIF THS_M3 885.392
AT IMP 2021 ST_1_2 NC_OAK THS_M3 57.844
AT IMP 2021 ST_1_2 NC_BEE THS_M3 702.534
AT IMP 2021 ST_1_2 NC_BIR THS_M3 5.099
AT IMP 2021 ST_1_2_1 NC_BIR THS_M3 0.376
AT IMP 2021 ST_1_2_2 NC_BIR THS_M3 4.723
AT IMP 2021 ST_1_2 NC_POP THS_M3 10.291
AT IMP 2021 ST_1_2 NC_EUC THS_M3 0.0005
AT IMP 2021 ST_6 CONIF THS_M3 1911.235
AT IMP 2021 ST_6 C_PIN THS_M3 70.746
AT IMP 2021 ST_6 C_FIR THS_M3 1634.831
AT IMP 2021 ST_6 NCONIF THS_M3 176.890229
AT IMP 2021 ST_6 NC_OAK THS_M3 105.695229
AT IMP 2021 ST_6 NC_BEE THS_M3 15.966
AT IMP 2021 ST_6 NC_MAP THS_M3 1.514
AT IMP 2021 ST_6 NC_CHE THS_M3 0.64
AT IMP 2021 ST_6 NC_ASH THS_M3 6.953
AT IMP 2021 ST_6 NC_BIR THS_M3 2.578
AT IMP 2021 ST_6 NC_POP THS_M3 0.99
AT IMP 2021 ST_1_2 CONIF THS_NAC 736655.091
AT IMP 2021 ST_1_2 C_PIN THS_NAC 32329.197
AT IMP 2021 ST_1_2_1 C_PIN THS_NAC 17842.816
AT IMP 2021 ST_1_2_2 C_PIN THS_NAC 14486.381
AT IMP 2021 ST_1_2 C_FIR THS_NAC 641042.451
AT IMP 2021 ST_1_2_1 C_FIR THS_NAC 577795.661
AT IMP 2021 ST_1_2_2 C_FIR THS_NAC 63246.79
AT IMP 2021 ST_1_2 NCONIF THS_NAC 76622.175
AT IMP 2021 ST_1_2 NC_OAK THS_NAC 19580.758
AT IMP 2021 ST_1_2 NC_BEE THS_NAC 44480.815
AT IMP 2021 ST_1_2 NC_BIR THS_NAC 414.17
AT IMP 2021 ST_1_2_1 NC_BIR THS_NAC 126.012
AT IMP 2021 ST_1_2_2 NC_BIR THS_NAC 288.158
AT IMP 2021 ST_1_2 NC_POP THS_NAC 502.682
AT IMP 2021 ST_1_2 NC_EUC THS_NAC 3.529
AT IMP 2021 ST_6 CONIF THS_NAC 567134.475
AT IMP 2021 ST_6 C_PIN THS_NAC 20140.503
AT IMP 2021 ST_6 C_FIR THS_NAC 462206.308
AT IMP 2021 ST_6 NCONIF THS_NAC 130813.928
AT IMP 2021 ST_6 NC_OAK THS_NAC 84117.74
AT IMP 2021 ST_6 NC_BEE THS_NAC 7249.112
AT IMP 2021 ST_6 NC_MAP THS_NAC 1288.034
AT IMP 2021 ST_6 NC_CHE THS_NAC 519.966
AT IMP 2021 ST_6 NC_ASH THS_NAC 4526.401
AT IMP 2021 ST_6 NC_BIR THS_NAC 1142.228
AT IMP 2021 ST_6 NC_POP THS_NAC 670.176
AT IMP 2022 ST_1_2 CONIF THS_M3 7975.906 7
AT IMP 2022 ST_1_2 C_PIN THS_M3 625.888 7
AT IMP 2022 ST_1_2_1 C_PIN THS_M3 194.043 7
AT IMP 2022 ST_1_2_2 C_PIN THS_M3 34.737 7
AT IMP 2022 ST_1_2 C_FIR THS_M3 6826.536 7
AT IMP 2022 ST_1_2_1 C_FIR THS_M3 6012.71 7
AT IMP 2022 ST_1_2_2 C_FIR THS_M3 813.826 7
AT IMP 2022 ST_1_2 NCONIF THS_M3 543.003 7
AT IMP 2022 ST_1_2 NC_OAK THS_M3 74.526 7
AT IMP 2022 ST_1_2 NC_BEE THS_M3 386.9 7
AT IMP 2022 ST_1_2 NC_BIR THS_M3 4.449 7
AT IMP 2022 ST_1_2_1 NC_BIR THS_M3 1.278 7
AT IMP 2022 ST_1_2_2 NC_BIR THS_M3 3.171 7
AT IMP 2022 ST_1_2 NC_POP THS_M3 16.869 7
AT IMP 2022 ST_1_2 NC_EUC THS_M3 0 7
AT IMP 2022 ST_6 CONIF THS_M3 1785.572 7
AT IMP 2022 ST_6 C_PIN THS_M3 203.339 7
AT IMP 2022 ST_6 C_FIR THS_M3 1442.308 7
AT IMP 2022 ST_6 NCONIF THS_M3 214.696 7
AT IMP 2022 ST_6 NC_OAK THS_M3 130.285 7
AT IMP 2022 ST_6 NC_BEE THS_M3 19.261 7
AT IMP 2022 ST_6 NC_MAP THS_M3 1.768 7
AT IMP 2022 ST_6 NC_CHE THS_M3 1.004 7
AT IMP 2022 ST_6 NC_ASH THS_M3 8.861 7
AT IMP 2022 ST_6 NC_BIR THS_M3 3.183 7
AT IMP 2022 ST_6 NC_POP THS_M3 1.075 7
AT IMP 2022 ST_1_2 CONIF THS_NAC 743290.23 7
AT IMP 2022 ST_1_2 C_PIN THS_NAC 40805.951 7
AT IMP 2022 ST_1_2_1 C_PIN THS_NAC 19980.168 7
AT IMP 2022 ST_1_2_2 C_PIN THS_NAC 1562 7
AT IMP 2022 ST_1_2 C_FIR THS_NAC 644490.088 7
AT IMP 2022 ST_1_2_1 C_FIR THS_NAC 594719.38 7
AT IMP 2022 ST_1_2_2 C_FIR THS_NAC 49770.708 7
AT IMP 2022 ST_1_2 NCONIF THS_NAC 72758.551 7
AT IMP 2022 ST_1_2 NC_OAK THS_NAC 33441.255 7
AT IMP 2022 ST_1_2 NC_BEE THS_NAC 29627.371 7
AT IMP 2022 ST_1_2 NC_BIR THS_NAC 301.194 7
AT IMP 2022 ST_1_2_1 NC_BIR THS_NAC 102.429 7
AT IMP 2022 ST_1_2_2 NC_BIR THS_NAC 198.765 7
AT IMP 2022 ST_1_2 NC_POP THS_NAC 699.791 7
AT IMP 2022 ST_1_2 NC_EUC THS_NAC 0 7
AT IMP 2022 ST_6 CONIF THS_NAC 552085.779 7
AT IMP 2022 ST_6 C_PIN THS_NAC 35252.426 7
AT IMP 2022 ST_6 C_FIR THS_NAC 442688.823 7
AT IMP 2022 ST_6 NCONIF THS_NAC 196440.374 7
AT IMP 2022 ST_6 NC_OAK THS_NAC 128898.823 7
AT IMP 2022 ST_6 NC_BEE THS_NAC 8634.28 7
AT IMP 2022 ST_6 NC_MAP THS_NAC 2146.041 7
AT IMP 2022 ST_6 NC_CHE THS_NAC 798.764 7
AT IMP 2022 ST_6 NC_ASH THS_NAC 6592.176 7
AT IMP 2022 ST_6 NC_BIR THS_NAC 2015.277 7
AT IMP 2022 ST_6 NC_POP THS_NAC 1354.952 7
AT EXP 2021 ST_1_2 CONIF THS_M3 954.007
AT EXP 2021 ST_1_2 C_PIN THS_M3 108.191
AT EXP 2021 ST_1_2_1 C_PIN THS_M3 91.183
AT EXP 2021 ST_1_2_2 C_PIN THS_M3 17.008
AT EXP 2021 ST_1_2 C_FIR THS_M3 737.844
AT EXP 2021 ST_1_2_1 C_FIR THS_M3 409.278
AT EXP 2021 ST_1_2_2 C_FIR THS_M3 328.566
AT EXP 2021 ST_1_2 NCONIF THS_M3 138.822
AT EXP 2021 ST_1_2 NC_OAK THS_M3 41.31
AT EXP 2021 ST_1_2 NC_BEE THS_M3 33.847
AT EXP 2021 ST_1_2 NC_BIR THS_M3 0.329
AT EXP 2021 ST_1_2_1 NC_BIR THS_M3 0.002
AT EXP 2021 ST_1_2_2 NC_BIR THS_M3 0.327
AT EXP 2021 ST_1_2 NC_POP THS_M3 17.072
AT EXP 2021 ST_1_2 NC_EUC THS_M3 0
AT EXP 2021 ST_6 CONIF THS_M3 5946.608
AT EXP 2021 ST_6 C_PIN THS_M3 154.494
AT EXP 2021 ST_6 C_FIR THS_M3 5458.563
AT EXP 2021 ST_6 NCONIF THS_M3 172.966148
AT EXP 2021 ST_6 NC_OAK THS_M3 54.081148
AT EXP 2021 ST_6 NC_BEE THS_M3 55.373
AT EXP 2021 ST_6 NC_MAP THS_M3 1.662
AT EXP 2021 ST_6 NC_CHE THS_M3 0.434
AT EXP 2021 ST_6 NC_ASH THS_M3 14.12
AT EXP 2021 ST_6 NC_BIR THS_M3 1.142
AT EXP 2021 ST_6 NC_POP THS_M3 0.507
AT EXP 2021 ST_1_2 CONIF THS_NAC 77676.779
AT EXP 2021 ST_1_2 C_PIN THS_NAC 8284.854
AT EXP 2021 ST_1_2_1 C_PIN THS_NAC 6977.939
AT EXP 2021 ST_1_2_2 C_PIN THS_NAC 1306.915
AT EXP 2021 ST_1_2 C_FIR THS_NAC 60103.725
AT EXP 2021 ST_1_2_1 C_FIR THS_NAC 33744.427
AT EXP 2021 ST_1_2_2 C_FIR THS_NAC 26359.298
AT EXP 2021 ST_1_2 NCONIF THS_NAC 19552.272
AT EXP 2021 ST_1_2 NC_OAK THS_NAC 9375.45
AT EXP 2021 ST_1_2 NC_BEE THS_NAC 2841.754
AT EXP 2021 ST_1_2 NC_BIR THS_NAC 152.788
AT EXP 2021 ST_1_2_1 NC_BIR THS_NAC 0.469
AT EXP 2021 ST_1_2_2 NC_BIR THS_NAC 152.319
AT EXP 2021 ST_1_2 NC_POP THS_NAC 1404.349
AT EXP 2021 ST_1_2 NC_EUC THS_NAC 0
AT EXP 2021 ST_6 CONIF THS_NAC 1870911.483
AT EXP 2021 ST_6 C_PIN THS_NAC 41115.102
AT EXP 2021 ST_6 C_FIR THS_NAC 1689486.885
AT EXP 2021 ST_6 NCONIF THS_NAC 114871.576
AT EXP 2021 ST_6 NC_OAK THS_NAC 55749.894
AT EXP 2021 ST_6 NC_BEE THS_NAC 23204.147
AT EXP 2021 ST_6 NC_MAP THS_NAC 998.966
AT EXP 2021 ST_6 NC_CHE THS_NAC 431.167
AT EXP 2021 ST_6 NC_ASH THS_NAC 9205.586
AT EXP 2021 ST_6 NC_BIR THS_NAC 307.339
AT EXP 2021 ST_6 NC_POP THS_NAC 633.017
AT EXP 2022 ST_1_2 CONIF THS_M3 1151.168 7
AT EXP 2022 ST_1_2 C_PIN THS_M3 228.78 7
AT EXP 2022 ST_1_2_1 C_PIN THS_M3 194.043 7
AT EXP 2022 ST_1_2_2 C_PIN THS_M3 34.737 7
AT EXP 2022 ST_1_2 C_FIR THS_M3 818.579 7
AT EXP 2022 ST_1_2_1 C_FIR THS_M3 660.249 7
AT EXP 2022 ST_1_2_2 C_FIR THS_M3 158.33 7
AT EXP 2022 ST_1_2 NCONIF THS_M3 155.538 7
AT EXP 2022 ST_1_2 NC_OAK THS_M3 37.988 7
AT EXP 2022 ST_1_2 NC_BEE THS_M3 48.665 7
AT EXP 2022 ST_1_2 NC_BIR THS_M3 0.542 7
AT EXP 2022 ST_1_2_1 NC_BIR THS_M3 0 7
AT EXP 2022 ST_1_2_2 NC_BIR THS_M3 0.542 7
AT EXP 2022 ST_1_2 NC_POP THS_M3 31.001 7
AT EXP 2022 ST_1_2 NC_EUC THS_M3 0 7
AT EXP 2022 ST_6 CONIF THS_M3 5730.805 7
AT EXP 2022 ST_6 C_PIN THS_M3 215.48 7
AT EXP 2022 ST_6 C_FIR THS_M3 5251.969 7
AT EXP 2022 ST_6 NCONIF THS_M3 145.138 7
AT EXP 2022 ST_6 NC_OAK THS_M3 50.318 7
AT EXP 2022 ST_6 NC_BEE THS_M3 49.399 7
AT EXP 2022 ST_6 NC_MAP THS_M3 1.337 7
AT EXP 2022 ST_6 NC_CHE THS_M3 0.496 7
AT EXP 2022 ST_6 NC_ASH THS_M3 16.38 7
AT EXP 2022 ST_6 NC_BIR THS_M3 0.768 7
AT EXP 2022 ST_6 NC_POP THS_M3 0.717 7
AT EXP 2022 ST_1_2 CONIF THS_NAC 114972.276 7
AT EXP 2022 ST_1_2 C_PIN THS_NAC 21542.45 7
AT EXP 2022 ST_1_2_1 C_PIN THS_NAC 19980.168 7
AT EXP 2022 ST_1_2_2 C_PIN THS_NAC 1562 7
AT EXP 2022 ST_1_2 C_FIR THS_NAC 82679.638 7
AT EXP 2022 ST_1_2_1 C_FIR THS_NAC 68722.611 7
AT EXP 2022 ST_1_2_2 C_FIR THS_NAC 13957 7
AT EXP 2022 ST_1_2 NCONIF THS_NAC 28467.726 7
AT EXP 2022 ST_1_2 NC_OAK THS_NAC 12939.068 7
AT EXP 2022 ST_1_2 NC_BEE THS_NAC 5102 7
AT EXP 2022 ST_1_2 NC_BIR THS_NAC 35.379 7
AT EXP 2022 ST_1_2_1 NC_BIR THS_NAC 0.207 7
AT EXP 2022 ST_1_2_2 NC_BIR THS_NAC 35.172 7
AT EXP 2022 ST_1_2 NC_POP THS_NAC 3194.816 7
AT EXP 2022 ST_1_2 NC_EUC THS_NAC 0 7
AT EXP 2022 ST_6 CONIF THS_NAC 1895011.47 7
AT EXP 2022 ST_6 C_PIN THS_NAC 66789.845 7
AT EXP 2022 ST_6 C_FIR THS_NAC 1686686.09 7
AT EXP 2022 ST_6 NCONIF THS_NAC 131460.702 7
AT EXP 2022 ST_6 NC_OAK THS_NAC 76609.608 7
AT EXP 2022 ST_6 NC_BEE THS_NAC 22592.468 7
AT EXP 2022 ST_6 NC_MAP THS_NAC 1064.456 7
AT EXP 2022 ST_6 NC_CHE THS_NAC 455.322 7
AT EXP 2022 ST_6 NC_ASH THS_NAC 11132.397 7
AT EXP 2022 ST_6 NC_BIR THS_NAC 529.046 7
AT EXP 2022 ST_6 NC_POP THS_NAC 339.588 7
AT PRD 2021 EU2_1 TOTAL THS_M3 18420.265
AT PRD 2021 EU2_1 CONIF THS_M3 15663.416
AT PRD 2021 EU2_1 NCONIF THS_M3 2756.849
AT PRD 2021 EU2_1_1 TOTAL THS_M3 1836.812
AT PRD 2021 EU2_1_1 CONIF THS_M3 1583.238
AT PRD 2021 EU2_1_1 NCONIF THS_M3 253.574
AT PRD 2021 EU2_1_2 TOTAL THS_M3
AT PRD 2021 EU2_1_2 CONIF THS_M3
AT PRD 2021 EU2_1_2 NCONIF THS_M3
AT PRD 2021 EU2_1_3 TOTAL THS_M3 16583.453 4
AT PRD 2021 EU2_1_3 CONIF THS_M3 14080.178 4
AT PRD 2021 EU2_1_3 NCONIF THS_M3 2503.275 4
AT PRD 2022 EU2_1 TOTAL THS_M3 19357.935
AT PRD 2022 EU2_1 CONIF THS_M3 16205.144
AT PRD 2022 EU2_1 NCONIF THS_M3 3152.791
AT PRD 2022 EU2_1_1 TOTAL THS_M3 1981.003
AT PRD 2022 EU2_1_1 CONIF THS_M3 1630.582
AT PRD 2022 EU2_1_1 NCONIF THS_M3 350.421
AT PRD 2022 EU2_1_2 TOTAL THS_M3
AT PRD 2022 EU2_1_2 CONIF THS_M3
AT PRD 2022 EU2_1_2 NCONIF THS_M3
AT PRD 2022 EU2_1_3 TOTAL THS_M3 17376.932 4
AT PRD 2022 EU2_1_3 CONIF THS_M3 14574.562 4
AT PRD 2022 EU2_1_3 NCONIF THS_M3 2802.37 4

ACCC/C/2019/163_Austria

Languages and translations
English

Association Justice and Environment, z.s.

European Network of Environmental Law Organizations

Justice and Environment – European Network of Environmental Law Organizations Udolni 33, 602 00 Brno, Czech Republic

[email protected] ■ www.justiceandenvironment.org ■ IČO: 75141892

Statement of Observer Justice and Environment concerning

Communication ACCC/C/2019/163 (Austria)

7 September, 2023

1. Justice and Environment, a network composed of 15 European NGOs, submits the present

statement for the Committee´s consideration in advance of the hearing to discuss the substance of

communication ACCC/C/2019/163 (Austria) (C163).

2. The communication concerns the construction of underground transportation infrastructure in the

city of Feldkirch, located in the province of Voralberg (Stadttunnel Feldkirch, the Project).1 The

Project falls under point 9(h) of annex 1 to the Austrian EIA Act2 and thus is a “column 3” project for

which an EIA in the “simplified form” was required.3 It is accordingly not in dispute that article 6 of

the Convention is engaged.

3. It is not clear from reading Austria´s response whether or not it acknowledges that the

communicant is a member of the public concerned. We submit at any event that it would be

difficult to deny the communicant this status inter alia because of the fact that the communicant is

composed of individuals residing in municipalities that are located directly adjacent to the

municipality where the Project is to be located, and Austria could not exclude potential negative

impacts and thus undertook a transboundary assessment.4 Austria appears rather to rely on three

arguments in support of its position that it has not violated article 3(9) in conjunction with article 6,

and 9(2) of the Convention.

4. First, Austria submits it could not violate the rights of the public concerned from Liechtenstein as

that country is not a Party to the Convention.5 Second, Austria claims it provides sufficient rights for

the public concerned through its provisions under the Austrian EIA Act concerning the rights of

individually affected persons, such as neighbors, and NGOs, both of which can be foreign.6 Third,

Austria makes a number of statements regarding citizen initiatives as an institution, its place within

national, EU, and international frameworks, yet submits that there is no mechanism by which to

verify that the foreign public concerned has formed such an association.7 Throughout, Austria

1 Communication, p. 1, Party´s response, p. 1. 2 Annex 5 to the communication, p. 1. Point 9(h) of annex 1 to the EIA Act reads: “Expansion measures of other types on

expressways, new construction of other roads or their sections with a continuous length of at least 500 m, in each case if an area

worthy of protection of category B or D is touched and an annual average daily traffic volume (JDTV) of at least 2,000 motor

vehicles in one forecast period of five years is to be expected.” Protection categories B and D are listed in annex 2 of the Austrian

EIA Act and correspond to protected alpine areas and those areas affected by air pollution, respectively. 3 See communication, para. 7, and Party´s response, p. 9. Simplified EIA procedures differ from normal EIA procedures in that

simplified procedures do not involve the creation of an environmental assessment report pursuant to article 12 of the Austrian EIA

Act, but only a summary of the environmental impacts under article 12(a) of that Act. Simplified procedures furthermore historically

involve limitations on public participation rights and the ability to bring a legal appeal under article 19(2) of the Austrian EIA Act,

which is discussed below. 4 Communication, paras. 5 and 11, Parties response, pp. 7-8. 5 Party´s response, p. 2. 6 Party´s response, pp. 4-7 7 Party´s statement on admissibility, pp. 1-2, Parties response, pp. 3-5, and 10.

Association Justice and Environment, z.s.

European Network of Environmental Law Organizations

Justice and Environment – European Network of Environmental Law Organizations Udolni 33, 602 00 Brno, Czech Republic

[email protected] ■ www.justiceandenvironment.org ■ IČO: 75141892

suggests it discharged its duties to the public concerned in the present case, including through the

transboundary procedure under the Espoo Convention. 8 We address these points below.

I. Obligations to the public (concerned) in a non-Party to the Convention

5. Contrary to Austria´s contention, the obligations Austria assumed as a Party to the Convention

towards the public (concerned) are not dependent on obligations stemming from other

international instruments, including the Espoo Convention, a point which the Committee has made

clear in its findings on communication ACCC/C/2012/71 (Czechia) (C71). Moreover, even where a

Party of origin and affected Party share joint responsibility for ensuring public participation in the

territory of the affected Party (as under the Espoo Convention), or even where an affected Party

has sole responsibility for this, the obligation to ensure that the requirements of article 6 always

rests with the Party of origin. 9

6. Moreover, as the Committee clarified in its findings on communication ACCC/C/2013/91 (UK), the

definitions of the public and public concerned in article 2(4) and (5), respectively, “must be seen in

the context of the requirements set out in article 3, paragraph 9, of the Convention, which requires

that the public shall have access to information, have the possibility to participate in decision-

making, and have access to justice in environmental matters without discrimination as to

citizenship, nationality or domicile […] the scope of obligations related to public participation in

decision-making with respect to proposed activities subject to article 6 of the Aarhus Convention is

not limited to the public only in the Party concerned…[In] cases where the area potentially affected

by a proposed activity crosses an international border, members of the public in the neighbouring

country will be members of the “public concerned” for the purposes of article 6.” 10

7. Crucial to the present case is the fact that, Parties “to the Convention have obligations under article

2(5) and article 6 of the Convention to ensure the effective participation of the public `affected or

likely to be affected by, or having an interest in, the environmental decision-making,´ irrespective

of whether those persons reside in an Aarhus signatory state or not […] article 1 of the Convention

expressly convey the rights of the Convention to every person, not every citizen of a party to the

Convention. Likewise, article 3(9) of the Convention makes clear that the public has the right to

participate in decision-making without discrimination as to citizenship, nationality or domicile.

Moreover, the right to participate applies to the public concerned from affected countries that are

not Party to either the Aarhus Convention or Espoo Convention is explicitly stated in paragraph 23

of the Maastricht Recommendations on Promoting Effective Public Participation in Decision-making

in Environmental Matters.”11

8 Party´s response, pp. 7-8. 99 ECE/MP/PP/C.1/2017/3, para. 67. 10 ECE/MP/PP/C.1/2017/14, paras. 68-69

11 Committee´s first progress review concerning decision VI/8k (UK), para. 114. See also Committee´s report concerning decision

VI/8k (UK), ECE/MP/2021/60, para. 48.

Association Justice and Environment, z.s.

European Network of Environmental Law Organizations

Justice and Environment – European Network of Environmental Law Organizations Udolni 33, 602 00 Brno, Czech Republic

[email protected] ■ www.justiceandenvironment.org ■ IČO: 75141892

8. In light of the above, Austria´s argument that it owes no duties to the public (concerned) in

Liechtenstein due to the fact that the latter is not a Party to the Convention must fail. The

communicant is a member of the public affected or likely to be affected, whose members reside

directly across the border between Austria and Liechtenstein in an area where negative impacts

can occur. Accordingly, it must be asked whether the means by which Austria ensures rights to the

public (concerned) in Liechtenstein are adequate, and the communicant was afforded its rights.

II. The rights granted to foreign persons and organizations

9. To be clear at the outset we do not agree with Austria´s suggestion that, because it affords rights to

foreign persons and foreign organizations, this means that it fulfilled its obligations to the

communicant and members of the public (concerned) like it.12 Even were Austria to perfectly fufill

its obligations with respect to foreign persons and foreign organizations – a point we dispute – this

would satisfy the requirements concerning but two subsets, and not the entire scope of, the public

(concerned).

10. However, for the sake of completeness and to address any questions as to why the communicant

could not avail itself of either of the two ways in which Austria claims to provide rights to the

foreign public (concerned), or could not do so adequately, we provide the below. We stress,

however, that we are not seeking to expand the scope of the communication. Rather, our aim is to

provide background information that may assist the Committee in its deliberations.

a. Foreign persons

11. It is correct that article 19(1) of the Austrian EIA Act provides party standing in EIA procedures.

Neighbors are specifically:

“People who are endangered or bothered by the construction, operation or existence of

the project, or whose rights in rem could be endangered at home or abroad, as well as the

owners of facilities in which regularly stop persons temporarily, with regard to the

protection of these persons; Neighbors are not people who are temporarily in the vicinity of

the project and who do not have rights in rem; with regard to neighbors abroad, the

principle of reciprocity applies to states that are not contracting parties to the Agreement

on the European Economic Area.”

12. This is similar to many provisions concerning the rights of individuals in other jurisdictions that, like

Austria, follow a strict impairment of rights legal regime. From this flow two significant points.

13. First, an individual seeking to participate in an EIA procedure and bring any legal challenge

thereafter must prove that the project would impair their subjective rights. To fail to do so means

12 Party´s response, p. 7.

Association Justice and Environment, z.s.

European Network of Environmental Law Organizations

Justice and Environment – European Network of Environmental Law Organizations Udolni 33, 602 00 Brno, Czech Republic

[email protected] ■ www.justiceandenvironment.org ■ IČO: 75141892

that individual would lack standing in the public participation procedure and before a court. As the

communicant is composed of residents located in an area directly adjacent to the project,13 we

presume they could show they are people who would be endangered or bothered by the

construction, operation or existence of the project, or whose rights in rem could be endangered.

The main standing hurdle in article 19(1) of the EIA Act is generally the “temporarily” criterion,

about which the Committee voiced some concerns in its findings on communication

ACCC/C/2010/48 (Austria).14 However, according to jurisprudence, this criterion is examined

regardless of the legal grounds upon which the person is situated there.15 Thus tenants can attain

standing16 provided that the stay is “not simply temporary“.17 Whilst there may be compliance

issues with these provisions, the communicant, being residents, would presumably not have

difficulties with the “temporarily criterion”. Nonetheless, they would have to actively prove they

satisfy the criteria of being a neighbor.

14. The second issue would, by contrast, pose a significant problem in the present case, in that the

scope of an individual´s rights, and thus the scope of arguments it can put forth, are limited to

subjective rights.18 This means for example that an owner of a property bordering a project can

intervene in an EIA permitting procedure and bring a legal appeal due to potential noise impacts on

this piece of property, but cannot intervene or appeal on the basis of potential impacts on regional

flora or fauna, or environmental interests in general, which is an objective right that individuals do

not possess. These scope restrictions for individuals were alleged to fall short of the Convention´s

requirements in communication ACCC/C/2010/48 (Austria). In its findings, the Committee

considered those allegations to not be sufficiently substantiated, by way of jurisprudence, for

example, but expressed concerns that the scope might not allow for challenges as to procedural

and substantive legality.19 We are very much of the view that these scope restrictions fall short of

what the Convention requires. We are not attacking this, however, as we view the communication

does not raise this issue as such. Nonetheless, we highlight that this was a major factor driving why

status as a citizen initiative was beneficial, and thus was sought, and why the Committee should

bear this in mind.

15. By contrast, citizen initiatives do not have to prove their standing by alleging an infringement of

their subjective rights. Rather, their affectedness is presumed as a matter of law provided that they

13 See the illustrative map on p. 2 of the communication.

14 ECE/MP/PP/C.1/2012/4, paras. 60-66.

15 VwGH 20.10.1999, Zl 99/04/0016.

16 VwGH Slg 4007A, 5154A.

17 US 16. 02. 2009, 3B/2005/19-72 NÖ 380 kV-Leitung Etzersdorf-Theiß II

18 Wendl, in Stolzlechner/Wendl/Bergthaler (editors), Die gewerblice Betriebsanlage3 (2008), recital 249

19 ECE/MP/PP/C.1/2012/4, paras. 60-66.

Association Justice and Environment, z.s.

European Network of Environmental Law Organizations

Justice and Environment – European Network of Environmental Law Organizations Udolni 33, 602 00 Brno, Czech Republic

[email protected] ■ www.justiceandenvironment.org ■ IČO: 75141892

fulfill the criteria in article 19(4) of the Austrian EIA Act.20 And crucially, citizen initiatives in Austria

have the right to enforce all environmental provisions, and thus the scope of their rights, and

arguments they can put forth, is considerably broader.21 This is a huge advantage over standing as

an individual under article 19(1) of the Austrian EIA Act and must be seen on top other many

factors, such as costs, capacity, procedural economy, safety, which are discussed in detail below.

b. Foreign NGOs

16. As regards foreign NGOs, Austria correctly points out article 19(11) of the EIA Act. We consider,

however, that Austria´s description of that provision and thus its scope, is incomplete.22 This

provision reads in full:

“An environmental organization from another State can exercise the rights under

paragraph 1023 if a notification of another State pursuant to section 10, para, 1, point 1 has

occurred24 and the environmental organization from another State could participate in the

procedures for the EIA and permitting, if the project would be realized in that State.”

17. There are multiple points to unpack from in provision. We note first it is clear that the Austrian

system makes the rights of foreign NGOs dependent on Espoo procedures and the willingness of

Austria to notify potential affected States. In light of the arguments in paras. 5-8 above, and the

Committee´s jurisprudence cited therein, we submit this restriction is incompatible with the

Convention. Second, it makes such rights conditional, limited to those NGOs in such affected States

which meet their own domestic requirements, and there is no guarantee, obviously, that those

requirements are sufficiently broad to satisfy the Convention.

18. In this regard, we would like to point out that the Liechtenstein EIA Law, specifically its article 5(c)

translates “the public“ as one or more natural or legal persons or their associations, organizations

or groups. In this regard it repeats virtually verbatim article 2(4) of the Aarhus Convention, merely

omitting “in accordance with national legislation or practice”. Its article 17 governs public

participation, and specifically article 17(h) gives “every person” the right to provide comments on

the environmental report within an appropriate period of time. Moreover, other provisions

concerning participation25 use the term “the public” without any further restriction, implying this

20 Communication, para. 12.

21 Ennöckl, Daniel/Raschauer Nicolas (2006): Umweltverträglichkeitsprüfungsgesetz, Kommentar, 2. Auflage Springer

Wien New York

22 Party´s response, p. 6. 23 This paragraph accords environmental organizations party standing in the article 6 permitting procedures and the ability to bring

legal challenges. 24 Section 10 of the Austrian EIA Act is Austria´s implementation of article 7 of the EIA Directive, relating essentially to the Espoo

Conventions and duties in the transboundary context. 25 Such as those concerning notification, consideration of the concerns and opinions submitted during the public participation

procedure, etc.

Association Justice and Environment, z.s.

European Network of Environmental Law Organizations

Justice and Environment – European Network of Environmental Law Organizations Udolni 33, 602 00 Brno, Czech Republic

[email protected] ■ www.justiceandenvironment.org ■ IČO: 75141892

corresponds directly to what is contained in article 5(c) of the Act. Moreover, unlike in Austria,

there does not appear to be a specific provision concerning party standing in the article 6 context in

the Liechtenstein EIA Act. Given this, it seems clear NGOs would be able to submit comments and

enjoy other participatory rights, but in doing so would have no special privileges beyond those

accorded to other members of the public. Accordingly, it seems an absurd proposition to expect

from members of the public such as the communicant that it organize itself as an NGO in

Liechtenstein for the purpose a project such as the one at issue, were it to be planned on

Liechtenstein´s territory. It is doubtful that the communicant could achieve this in the time allotted

for comments, and there would be no advantage in being an NGO.

19. Similarly, there would be no reason for the communicant to organize itself in Liechtenstein as an

NGO if the Project were to be realized in Liechtenstein for purposes of bringing a legal challenge

within the meaning of article 9(2) of the Convention. Pursuant to article 32(1)(c) of the

Liechtenstein EIA Act, among other requirements, only NGOs that have existed for five years prior

to the EIA procedure be entitled to go to court, and have had that entitlement independent of the

procedure in question. At the same time, article 32(1)(d) “Persons which are affected or likely to be

affected by, or have an interest in, the EIA procedure” are also entitled to go to court, and can

apply for this right easily, submitting a short statement as to their reasons, and do so at different

times in the procedure. Thus again, there is no reason to set up an NGO where the article 9(2)

standing rights are so broad in Liechtenstein for members of the public concerned. Accordingly, it is

unreasonable, if not impossible, to have expected the communicant to found an NGO in

Liechtenstein so that, presuming all requirements were met, it could exercise its Aarhus rights using

article 19(11) of the EIA Act.

20. For the sake of completeness we note that, whilst theoretically a foreign NGO operating within the

territory of Austria could under some circumstances qualify for recognition directly under article

19(7) of the Austrian EIA Act, as Austria suggests,26 this avenue would be entirely be blocked for the

communicant due to the criterion that the NGO in question must have been in existence for three

years, an impossible hurdle for an ad hoc group like the communicant needing to timely intervene

in an article 6 procedure. This defies the wording and very purpose of article 6.27

21. The role and status of citizen initiatives

22. Citizen initiatives have a long history in Austria and were already regulated and given full party

rights for all procedures in the original Austrian EIA Act dating back to 1993, that is, prior to

Austria´s accession to the EU and prior to the Convention´s adoption.28 In the course of the

26 Party´s response, p. 7.

27 Jendroska, J., ‘Access to Justice in the Aarhus Convention – Genesis, Legislative History and Overview of the Main

Interpretation Dilemmas’, Journal for European Environmental & Planning Law, 2020 (17).

28 Communication, annex 4, p. 3.

Association Justice and Environment, z.s.

European Network of Environmental Law Organizations

Justice and Environment – European Network of Environmental Law Organizations Udolni 33, 602 00 Brno, Czech Republic

[email protected] ■ www.justiceandenvironment.org ■ IČO: 75141892

comprehensive amendment of the EIA Act in 2000 a distinction between normal and simplified EIA

procedures (see para. 2 above) was introduced, and the rights of citizen initiatives were reduced.

From then on, citizen initiatives only had party standing as to normal procedures. As to simplified

procedures, they were only accorded the status of “participants.” Participants only have the right

to inspect the administrative file.29 They do not have the same rights to submit proper comments

(Einwendungen) as parties to the procedure do, and those limited comments they can provide are

given less weight. They have, moreover, no right to challenge the decision-making in court. As the

first instance authority for the Project observed, the national legislator thus granted citizen´s

initiatives a special procedural status that differs from that of “the public concerned” as

implemented and regulated in the Austrian legal system. 30

23. Yet, as the authority and the Austrian Supreme Administrative Court confirmed in case Ro

201510610008-7,31 both normal and simplified procedures are “environmental decision-making”

which must fulfill the requirements of the EIA Directive (and article 6 and 9(2) of the Convention).32

Moreover, citizen initiatives are members of the public, specifically “groups” within the meaning of

the second clause of article 2(4) of the Convention. By virtue of the fact that they are a collective

group of individuals who reside in the siting municipalities or those directly neighboring, meaning

that a close geographical relationship is established and affectedness or likely affectedness by the

project´s permit is to be affirmed, they are also members of the public concerned. 33 Accordingly, a

“properly formed” citizen´s initiative must be accorded full party rights in the article 6 procedure,

and concomittant article 9(2) rights. To fail to do so would, as the authority suggested, be an

“incomplete implementation of the Convention.” 34 In other words, it would fail to comply with

article 6 and 9(2) of the Convention.

24. In light of the above, we find Austria´s observation that “the institution of citizen groups is neither

mentioned in the Aarhus Convention nor in the Espoo Convention nor at the European level,”

misplaced. Yes, it is true that this particular institution is a national construct, but if this is intended

to indicate that to reduce the rights of citizen initiatives or even abolish this institution entirely

would not run afoul of EU or international law is dangerously mistaken (and contrary to what the

Supreme Court said in case Ro 201510610008-7). Failing to accord standing to ad-hoc groups of

individuals coming together to share their concerns about an article 6 procedure and, where

needed, bring a challenge as to both procedure and substance, falls short of the Convention´s

29 Comunicant´s update of 14.11.2018, annex, p. 9, referring to the then relevant provision of the Austrian EIA Act, which has since

been removed following the Supreme Administrative Court´s ruling.

30 Communication, annex 4, p. 3.

31 Communicant´s update of 14.11.2018, annex.

32 Communication, annex 4, p. 6, communicant´s update of 14.11.2018, annex, pp.13-14.

33 Communication, annex 4, pp. 5-6, communicant´s update of 14.11.2018, annex, pp.15-16.

34 Communication, annex 4, p. 3.

Association Justice and Environment, z.s.

European Network of Environmental Law Organizations

Justice and Environment – European Network of Environmental Law Organizations Udolni 33, 602 00 Brno, Czech Republic

[email protected] ■ www.justiceandenvironment.org ■ IČO: 75141892

requirements. Thus, “citizen groups” may be the modality Austria has chosen to (partially)35 fulfill

its obligations towards such ad-hoc groups, but the fact that EU legislation and international

instruments fail to use this specific term in no way changes the ultimate nature of these

obligations.

25. As Austria itself observes, citizen groups help build a common platform for individuals to argue

their interests in relation to a specific project approval […] bundling similar interests of individuals

concerned by a project in order to allow the local population to submit their comments in an

aggregated way to the competent authority. Especially with respect to major projects or projects of

large scale their participation may well ensure the acceptance of project approvals.36 It is thus a

special institution in the interest of procedural economy. 37 All of this is true, and other advantages

can be added to this list. Individual members of citizen initiatives can pool their financial and other

resources in order to make more effective interventions, they can act more safely, with diminished

fear of reprisals for their engagement in what can often be controversial projects, and they can

ensure that environmental laws are properly enforced when, for reasons of a lack of capacity, or

undue political pressure, established NGOs fail to act.

26. Austria is in no way unique. Many groups in other countries, be they citizen initiatives in

Germany,38 partnerships in Romania,39 unregistered environmental associations in Italy,40 or

unincorporated environmental NGOs representing residents in Ireland41 come together as ad hoc

groups to exercise article 6 and 9(2) rights. They do so for the very reasons sketched out in the

paragraph above. Crucially, all Parties to the Convention must find appropriate ways to fulfil the

same obligations, despite the fact that they come from a vast range of jurisdictions, each with their

own legal histories and specificities.

35 The author is not of the opinion that article 19(4) of the Austrian EIA Act is adequate for a number of reasons, but these are not

discussed in detail as they are outside the scope of the present communication.

36 Party´s Response, pp. 3-4

37 Party´s Response, p. 4.

38 Such as the Aarhus Konvention Initiative, which is very active in environmental cases at the national level and a communicant in

cases ACCC/C/2012/71 (Czechia), ACCC/C/2016/143 (Czechia), and ACCC/C/2020/178 (Germany).

39 See the Opinion of AG Medina in case C-252/22

40 ACCC/C/2023/200 (Italy)

41 See Dublins 8 residents association, which is currently on appeal to the CJEU: https://eur-lex.europa.eu/legal-

content/EN/TXT/?uri=CELEX%3A62022CN0613

Association Justice and Environment, z.s.

European Network of Environmental Law Organizations

Justice and Environment – European Network of Environmental Law Organizations Udolni 33, 602 00 Brno, Czech Republic

[email protected] ■ www.justiceandenvironment.org ■ IČO: 75141892

27. Nor is the Committee alone in having to grapple with the rights of such organizations. The CJEU has

been asked to weigh in about such rights, and certainly more questions will come.42 The Committee

will surely have to confront more questions concerning the rights of adhoc groups as well, and we

invite the Committee to take a forward-looking approach that does not unduly close off options

due to the narrow scope of the present communication.

Application in the present case

28. The core issue in the present communication is this: Did Austria violate the communicant´s rights

under article 6 and 9(2) of the Convention, either as stand-alone provisions, and/or in conjunction

with its article 3(9). We submit the answer is “yes.”

29. Following the Committee´s approach in case C7143 we first turn to the article 6 and 9(2)

allegations,44 since, without assessing the extent to which the communicant in Liechtenstein had

the possibility to effectively participate in the decision-making and have access to justice, it is not

possible to properly assess whether discrimination has occurred or not.

Article 2(5)

30. As noted in para. 3, it is not clear that Austria disputes that the communicant is a member of the

public (concerned). The first instance authority notably did consider that the communicant could be

affected by the environmentally relevant decision-making procedure for the Project and did grant

the communicant full party rights accordingly.45 Both court instances did not truly address the

issue. The communicant would appear to be a member of the public, namely a group in accordance

with national legislation and practice, presuming the voting requirement, the one criterion the

communicant was unable to fulfill by virtue of being located in Liechtenstein, should be stricken. At

any event, considering the description of the Project´s scale, and the map provided,46 it is hard to

imagine that the communicant, which is all composed of local residents, would not be affected, or

likely to be affected, by the Project and thus, like its Austrian citizen initiative counterpart, is a

member of the public concerned. This affectedness was never in dispute.47

Article 6

42 Sandymount and residents association, available here:. https://www.courts.ie/acc/alfresco/4bb24962-9d63-492b-

a588-a37cf1915b71/2013_IEHC_542_1.pdf/pdf#view=fitH; and the Dublin case: https://eur-lex.europa.eu/legal-

content/EN/TXT/?uri=CELEX%3A62022CN0613

43 See para. 61.

44 Following the Committee´s practice, we are not independently examining article 2(4) and (5) as violations as such, but rather as a

threshold issue to establish whether or not the communicant was entitled to article 6 and 9 rights. The article 3(1) allegations are

briefly addressed below.

45 Communication, annex 4, pp. 8-9.

46 Communication, pp. 1-2.

47 Communication, para. 15.

Association Justice and Environment, z.s.

European Network of Environmental Law Organizations

Justice and Environment – European Network of Environmental Law Organizations Udolni 33, 602 00 Brno, Czech Republic

[email protected] ■ www.justiceandenvironment.org ■ IČO: 75141892

31. It bears repeating that the authority in the first instance thought that the status of a participant in

Austria fell below what article 6 requires in that it insufficiently guaranteed the rights of the public

concerned, and the Supreme Administrative Court agreed insofar as domestic members of the

public concerned form as Austrian citizen initiatives are concerned (see para. 23 above). Yet what

happened in the satellite litigation concerning the communicant´s status is that it was stripped of

all rights entirely. It was no longer even a participant. Rather, it was rendered essentially a non-

entity for purposes of the ongoing and re-opened EIA procedure48 because the courts determined

that, having failed to evidence signatures of those with voting rights in the Austrian municipality in

which the Project was to be located or in an adjacent Austrian municipality, no citizen´s initiative

was formed at all. 49 This means that the communicant could not exercise any article 6 rights in the

ongoing EIA procedure, nor were any further means to obtain these rights in court.50 The EIA

procedure meanwhile concluded in 2019 and, indeed, in light of the judicial rulings at issue in the

present communication, the communicant was denied critical article 6 rights, a situation which

stands in direct contrast to its Austrian counterpart.

32. For the sake of completeness we would also like to clarify that it is no answer to the complaints

alleged in this communication, that an Austrian citizen initiative submitted comments that were

similar, or the same to those submitted by the communicant. For the reasons elaborated above and

in particular as to article 6(7) in paras. 36-47 below, this is not the same as submitting comments

that will be effective within an article 6 procedure in Austria. Austria also mentions the fact that

Liechtenstein NGOs took part in the EIA procedure. This, too, is irrelevant. That a subset of the

public concerned took part in the procedure has no bearing whatever on the fact that the

communicant, also a member of the public concerned, was denied its rights to participate and

enjoy concomitant rights to appeal.

Article 6(4)

33. As the Committee has emphasized, the obligation to ensure opportunities for the public to

participate effectively is the fundamental standard against which all aspects of a public

participation procedure under the Convention should be measured.51

34. We submit that this fundamental standard has been violated in the present case. Whilst the

communicant specifically alleged violations of this provision, together with article 6(7) of the

Convention, the cross-cutting standard of article 6(4) of the Convention cannot be ignored.

48 Party´s response, p. 10.

49 Party´s response, p.

50 Communication, para. 27.

51 ACCC/A/2020/2 (Kazakhstan).

Association Justice and Environment, z.s.

European Network of Environmental Law Organizations

Justice and Environment – European Network of Environmental Law Organizations Udolni 33, 602 00 Brno, Czech Republic

[email protected] ■ www.justiceandenvironment.org ■ IČO: 75141892

35. The Party concerned submits that the communicant has been afforded its article 6 rights. We

disagree. Austria´s support for this assertion is vague and unclear, based primarily on the bare

statement that “all comments by the public presented in the oral hearing, also comments by the

citizens group “mobil ohnr Stadttunnel”, were taken into account by the authorities in its EIA

decision. Also the concerns raised by the Communicant were similar to those raised by the Austrian

citizens group established according to the EIA Act and named “statt Tunnel.”52

Article 6(7)

36. The Austrian courts´ ruling that the communicant had failed to properly constitute a citizen´s

initiative in accordance with article 19(4) of the Austrian EIA Act meant the communicant could not

submit comments in a manner that would satisfy article 6(7).

37. It is true that the communicant submitted some comments (a Stellungnahme) attached to the list

of signatures of residents in Liechtenstein with voting rights in adjacent, affected municipalities.53 It

did so because, unlike for forming citizen initiatives in Liechtenstein, this is a requirement for the

proper formation of a citizen initiative in accordance with Austrian law, specifically article 19(4) of

its EIA Act. However, these “comments” are broad, and within the Austrian legal system merely

serve the purpose to demonstrate to the authorities that a group of people have chosen to come

together due to certain common concerns and achieve a status in the article 6 procedure. They are

not the same as proper comments submitted within the course of the EIA procedure

(Einwendungen), within the meaning of article 6(7) of the Convention. Indeed, even if a legitimate

citizen´s initiative is formed and Einwendungen are not provided within the deadline for comments,

the status obtained through the formation of the citizen´s initiative is lost.54

38. Bearing in mind the above, what happened in the present case is the following:

39. First, the public authority could not accept and consider the comments (Stellungnahme) the

communicant submitted to form a citizen´s initiative as a matter of law in the ongoing (and re-

opened) EIA procedure, which subsequently concluded in 2019. Second, the communicant was

barred from submitting further comments entirely, and specifically those which would not only be

aimed at attaining status in the EIA procedure, but also elaborated comments within the meaning

of article 6(7). Following the judicial rulings, in particular that of the Supreme Administrative Court,

the communicant, as a non-entity could submit no comments, including at hearings. The Party

concerned´s assertion that „all comments by the public presented in the oral hearing, also the

coments by [the] communicant, were taken into account by the authority in its EIA decision,“55 is

accordingly misleading. This ignores the fact that the courts later not only voided the

52 Party´s response, p. 7.

53 Communication, annex 2, Party´s response, p. 8.

54 ÖKOBÜRO: „Voraussetzungen für die Parteistellung von Bürgerinitiativen im UVP-Verfahren“, pp. 6-7.

55 Party´s response, p. 7.

Association Justice and Environment, z.s.

European Network of Environmental Law Organizations

Justice and Environment – European Network of Environmental Law Organizations Udolni 33, 602 00 Brno, Czech Republic

[email protected] ■ www.justiceandenvironment.org ■ IČO: 75141892

communicant´s party status, but the communicant as an entity at all. This meant that no comments

previously submitted by the communicant could be considered by authorities; nor could any future

comments be submitted or considered, in clear violation of article 6(7) of the Convention.

40. As a final remark we acknowledge that the communicant specifically invokes article 6(7) of the

Convention, yet fails to mention article 6(8) in its communication. We consider that this omission is

attributable to the communicant´s seeing through the lens of the particular legal system in Austria,

which couples the right to make comments with the duty for these to be properly considered. We

invite the Committee to, in accordance with its long-standing practice, not be bound by the specific

pleadings by communicants, but rather examine the issues raised within the scope of the

communication itself so that it can address the heart of the matter.

41. Thus, in the present case, and in all cases involving Austria´s compliance, restrictions on who can

submit comments directly entail restrictions on if and to what extent such comments are taken into

account, and in particular whether they “weigh more” than other comments. Here the Committee

has emphasized that “a system whereby only the comments of certain members of the public are

duly taken into account, while others are disregarded or considered to ´count less´by the decision-

making authorities, would not be consistent with the Convention.“56 We submit that the present

case indeed exemplifies precisely the system the Committee has already identified as

noncompliant.

Article 9(2)

42. By the court decisions in the present case and specifically the Supreme Administrative Court´s

ruling, the communicant was denied standing to challenge either the substantive or procedural

legality of the decision to permit the Project, which is article 6 decision-making. This is not

disputed. As described above, the communicant is a member of the public concerned, and no other

failure to meet the requirements of article 9(2) have been put forth, other than that the

communicant failed to constitute a citizen´s initiative under Austrian law by virtue of the fact that

its members, affected residents in adjacent municipalities, do not have voting rights in Austria. This

is not disputed.

43. We submit this constitutes a clear violation of article 9(2) of the Convention.

Article 3(9)

44. We consider the above already entails violations of article 6 and 9(2), even without reference to

article 3(9) of the Convention. That being said, the present case exemplifies the problems that

discriminatory, arbitrary and absurd formalities can cause. Specifically we note that the rights of

the Austrian citizen initiative was acknowledged and confirmed, which includes the rights to:

56 C-96, para. 97, and references cited therein. For example C, 76 Bulgaria, Czech report….

Association Justice and Environment, z.s.

European Network of Environmental Law Organizations

Justice and Environment – European Network of Environmental Law Organizations Udolni 33, 602 00 Brno, Czech Republic

[email protected] ■ www.justiceandenvironment.org ■ IČO: 75141892

• Enjoy effective participation within the meaning of article 6(4)

• Make comments (Einwendungen) in article 6 procedures, that would furthermore be considered, or

in other terms: accorded “weight” in the procedure, in accordance with article 6(7)

• Bring a legal appeal as to substantive or procedural failings with respect to the article 6 permitting,

in accordance with article 9(2).

45. By contrast precisely these rights were denied to the communicant. This is arbitrary and absurd,

and fails to respect the clear and obvious fact that the communicant is a member of the affected,

or likely to be affected, public concerned and as such, should enjoy precisely the same rights as its

Austrian counterparts.

III. Conclusion and remarks relevant to recommendations

46. We consider the above has established that Austria, by failing to accord full article 6 participatory

rights and the right to appeal article 6 decision-making to foreign members of the public

concerned, fails to comply with its obligations under article 6 and 9(2) of the Convention, in

conjunction with araticle 3(9). Specifcally:

a. We submit that the Party concerned fails to comply with the article 6(4) in conjunction with

article 3(9) of the Convention by denying the exercise of effective public participation of

the foreign public (concerned);

b. We submit further that the Party concerned fails to comply with article 6(7) in conjunction

with article 3(9) of the Convention by denying the opportunity for the foreign public

(concerned) to properly submit comments;

c. We also submit that the Party concerned fails to comply with article 9(2) in conjunction

with article 3(9) of the Convention by denying the standing of foreign members of the

public concerned to appeal decisions affecting them as to procedure or substance.

47. We underscore that the Committee´s findings, and thus its recommendations, must crucially not

be understood merely through the lens of Austrian law. It would be a grave miscarriage of justice

and waste years of litigation, were the Committee to base any findings of noncompliance due to

the sheer fact that Liechtenstein members of the public concerned were treated differently than

the domestic (Austrian) public concerned. The simple fact is: The communicant is a member of the

public concerned, despite borders. Was it discriminated in ways that impinged upon its rights under

the Convention? Yes. But so were any number of other domestic members of the public.

48. As the law (article 19(4) of the Austrian EIA Act) stands, it discriminates not only against foreign

members of the public concerned, but also domestic members of the public concerned. In Vienna

alone, approximately one third of the public who reside there and are registered there, are not

entitled to vote and thus entirely shut out of any rights under this provision. Despite this it should

be beyond all dispute that these people living in Vienna, despite their voting privileges or lack

thereof, qualify as the public (concerned) as regards certain projects which could affect them.

Association Justice and Environment, z.s.

European Network of Environmental Law Organizations

Justice and Environment – European Network of Environmental Law Organizations Udolni 33, 602 00 Brno, Czech Republic

[email protected] ■ www.justiceandenvironment.org ■ IČO: 75141892

49. We consider moreover the limitation in article 19(4) that only those (with voting rights) in

municipalities where the project is to be realized, or in an adjacent municipality is problematic

under the Convention. At any event we vigorously dispute Austria´s suggestion that to “check“ with

foreign authorities would constitute an undue burden.57 Indeed in the present case the

Liechtenstein authority also provided evidence that, in accordance with law and practice in

Liechtenstein, the communicant qualified as a member of the public concerned and would be

accorded full rights, including the right to bring a legal challenge within the meaning of article 9(2)

of the Convention. It is common practice throughout the region that people, regardless of their

citizenship, register in the areas in which they live. It is also common practice that countries share

this information amongst one another. It is accordingly a non-starter to suggest that it is in some

way difficult or untenable to inquire or otherwise acquire such information. The present case, in

which the Lichtenstein authorities were most helpful in clarifying to their Austrian counterparts

that the communicant would enjoy both article 6 and 9(2) rights, merely confirms this.

50. Finally, in light of the above we wish to repeat that, were Austria to “solve” its problem

discriminating against foreign citizen initiatives by abolishing this institution entirely, this would be

a grave breach of Austrian, EU, and international law. There is no “solution“ there and any litigation

surrounding this would be a waste of time. Austria fails to adequately provide article 6 and 9(2)

rights to the public concerned which chooses to come together as ad hoc groups. Full stop. The

foreign public concerned is merely a part of this. By reducing the rights of the public concerned, be

they foreign or domestic, Austria only moves further away from complying with the Convention;

here in particular article 6 and 9(2) of the Convention.

51. A meaningful step towards implementing such recommendations would be to amend article 19(4)

of the Austrian EIA Act as follows:

• (4)Eine Stellungnahme gemäß § 9 Abs. 5 kann durch Eintragung in eine Unterschriftenliste

unterstützt werden, wobei Name, Anschrift und Geburtsdatum anzugeben und die datierte

Unterschrift beizufügen ist. Die Unterschriftenliste ist gleichzeitig mit der Stellungnahme

einzubringen. Wurde eine Stellungnahme von mindestens 200 Personen, die zum Zeitpunkt

der Unterstützung in der Standortgemeinde oder in einer an diese unmittelbar

angrenzenden Gemeinde für Gemeinderatswahlen wahlberechtigt waren in dem

beftroffenen Gebiet oder in einem Gebiet wo mögliche negative Einwirkungen möglich

sind, ihren Wohnsitz haben, oder nicht bloß vorübergehend in dem betffenen Gebiet sind,

unterstützt, dann nimmt diese Personengruppe (Bürgerinitiative) am Verfahren zur

Erteilung der Genehmigung für das Vorhaben und nach § 20 als Partei teil.

• 4) A statement in accordance with Section 9 Paragraph 5 can be supported by entry in a

signature list, whereby the name, address and date of birth must be stated and the dated

57 Party´s response, pp. 3-4.

Association Justice and Environment, z.s.

European Network of Environmental Law Organizations

Justice and Environment – European Network of Environmental Law Organizations Udolni 33, 602 00 Brno, Czech Republic

[email protected] ■ www.justiceandenvironment.org ■ IČO: 75141892

signature must be attached. The list of signatures must be submitted at the same time as

the statement. Was there a statement from at least 200 people who, at the time of

support, were eligible to vote for local council elections in the location municipality or in a

municipality immediately adjacent to it, had their registered residence in the affected area

or in an area where possible negative impacts are possible, or not just are temporarily in

the affected area, then this group of people (citizens' initiative) takes part in the procedure

for granting approval for the project and in accordance with Section 20 as a party.

Spatial SDC experiments and evaluations – multiple countries comparison, Statistics Austria

standardized dataset, disclosure risk, spatial SDC methods, kernel density smoothing, comparison across countries

Languages and translations
English

UNITED NATIONS ECONOMIC COMMISSION FOR EUROPE

CONFERENCE OF EUROPEAN STATISTICIANS

Expert meeting on Statistical Data Confidentiality

26–28 September 2023, Wiesbaden

Spatial SDC experiments and evaluations with multiple countries comparison Johannes Gussenbauer (Statistics Austria), Julien Jamme (Insee), Edwin de Jonge (CBS), Peter-Paul de Wolf (CBS), Martin Möhler (Destatis)

[email protected], [email protected], [email protected], [email protected], [email protected]

Abstract This study utilizes a standardized "census-like" dataset that is structured uniformly across all participating countries to assess disclosure risk based on grid data. We begin by evaluating and comparing the risk using this approach. Next, we apply spatial SDC methods from the R package sdcSpatial, including kernel density smoothing and quad tree aggregation. We re-evaluate the disclosure risk using these methods and analyze the resulting utility loss. Our analysis will be conducted across multiple countries, allowing for a comprehensive comparison of the utility loss between them.

1 Introduction

Population grids are by now well-established products of National Statistical Institutes. They map the distribution of population units (persons, families, households, or similar) in geographic space, using as domain a set of regular, small-scale squares, the grid cells. For our purposes it will be useful to view the gridded map as akin to a two-dimensional histogram and each cell as a bin. One advantage over irregular spatial references, like administrative areas, is then that spatial patterns can, in principle, be observed in a comparable manner over multiple countries. A disadvantage is that grid cells, as small areas, raise the potential for disclosing information on population units, as we may find many cells with only a few inhabitants. To address this problem, methods of Statistical Disclosure Control (SDC) for grid maps have been suggested by Behnisch et al. (2013) and de Jonge and de Wolf (2016), among others. Several such methods have been implemented in the R package sdcSpatial by de Jonge and de Wolf (2022), which we employ here. Our contribution in this paper is two-fold: For once we present the results of experiments with SDC methods for grid data, conducted over multiple contributing countries. We utilize "census-like" population grids from Austria (Statistics Austria), France (Insee), Germany (Destatis) and the Netherlands (CBS). Risk measures will be computed before and after SDC. Secondly, we test and compare two metrics for the utility loss resulting from SDC: the Hellinger distance and Kantorovich-Wasserstein distance. The paper proceeds as follows: In section 2 we outline methods for disclosure control applicable to grid data. In section 3 we consider metrics for measuring the utility loss in protected grids. Section 4 describes the setup and results of our multiple-country analysis. We finish in section 5 with some lessons learned and an outlook on areas that may deserve further investigation.

2 SDC Methods

Geographical grid data can be viewed as table cells, so such data could, in theory, be published as a large table. However most often grid data is plotted on a cartographic map, to show spatial patterns and to make more explicitly use of the geo-referencing character of the data. Because of this dual character of publishing grid data, different SDC methods are available. Some of these methods can be categorized as tabular approaches, where grid data is first represented as table cells, and then the resulting secure table is plotted on the map. One example of such a method is cell-suppression. However, tabular methods often neglect the geographical nature of the grid data, failing to use the spatial neighborhood of a unsafe cell to solve the SDC problem. Spatial statistical disclosure methods try to preserve the geographical utility of grid data. Examples of such methods are the quad tree and smoothing methods. Spatial sdc methods can be applied on a spatial population distribution, variable distribution, probability distribution or mean variable distribution. The experiments in this paper are restricted to the spatial population distribution. In this section we will describe the three methods that can be used to protect the grid data that will be used in our experiments.

2.1 Cell removal

Whenever cells are unsafe to publish (for definition of the risk we used in the experiments, see section 3), the cell is not published. Essentially this is a method that is applied to a tabular representation of the grid data, it suppresses the sensitive cell and its value. When plotted on a map, it means that an unsafe cell does not get a colour corresponding to its value. It is suggested to use a specific colour for ‘not available’ (NA), to distinguish between cells without any observation and cells that are not published.

2

2.2 Quad tree

The quad tree method implemented in the R package sdcSpatial generalizes the method as described by Suñé et al. (2017). The method reduces sensitivity by aggregating sensitive cells with its three neighbours, and does this recursively until no sensitive cells are left or when the specified maximum zoom level has been reached. Given the origin of the raster, grid cells are defined for each level of detail a priori. Each grid cell at a certain level is constructed by combining four grid cells of one level down (more detailed). See figure 1 for an example of a priori defined grid cells at three levels of detail.

1

3

2

4

5

7

6

8

9

11

10

12

13

15

14

16

17

19

18

20

21

23

22

24

25

27

26

28

29

31

30

32

33

35

34

36

37

39

38

40

41

43

42

44

45

47

46

48

49

51

50

52

53

55

54

56

57

59

58

60

61

63

62

64

𝐴3

𝐴1

𝐴4

𝐴2

𝐵3

𝐵1

𝐵4

𝐵2

𝐶3

𝐶1

𝐶4

𝐶2

𝐷3

𝐷1

𝐷4

𝐷2

A B

C D

Figure 1. Example of three levels of grid cells

Assume that grid cell number 24 at the most detailed level is unsafe (the grayed cell in figure 1). The quad tree method then looks one level up to find a less detailed grid cell that contains the problematic lower level grid cell. In this case it would find grid cell 𝐴4 that consists of the four grid cells 21, . . . , 24 at the more detailed level. In case cell 𝐴4 is still unsafe, the method again goes one level up and finds grid cell A that consists of grid cells 𝐴1, . . . , 𝐴4 of the previous level of detail. This process continues until either a safe grid cell is found or the highest level of the a priori defined grid cells is reached. The most detailed level cells belonging to a safe less detailed cell will share the same adjusted value, which aggregates to the sum of the original cell values. Note that the aggregation process thus depends on the a priori chosen grid cells at the different levels.

2.3 Smoothing

Spatial smoothing uses the spatial structure of grid data so that the values of neighboring cells help to protect sensitive values. In the examples of this paper we are interested in the population density as function of the location. We will denote this density as 𝑓 (𝑥, 𝑦), where (𝑥, 𝑦) is a location, i.e., a point in an area A ⊂ R2. The population in region A can then be seen as a sample from that population distribution, resulting in 𝑁 observations (𝑥𝑖 , 𝑦𝑖) ∈ R2 for 𝑖 = 1, . . . , 𝑁 . Each observation is then the location of an individual. A non-parametric estimator of the population density can be obtained using kernel smoothing (see e.g., Wand and Jones, 1994). The approach used in this paper follows the kernel density smoothing implementation of sdcSpatial. That is, the mass of the observed population is spread out over a neighbouring region by means of a Gaussian kernel. The estimate of the population density at point (𝑥, 𝑦) is then the sum of the spread out mass at that location:

𝑓ℎ (𝑥, 𝑦) = 1 ℎ2

𝑁∑︁ 𝑖=1

𝐾

(𝑥 − 𝑥𝑖 ℎ

, 𝑦 − 𝑦𝑖 ℎ

) (1)

where 𝐾 (𝑥, 𝑦) = (1/2𝜋) exp ( −(𝑥2 + 𝑦2)/2

) is the bivariate Gaussian kernel. The bandwidth ℎ determines the

size of the region over which the mass is smoothed out. 3

Note that in the current implementation in sdcSpatial the bandwidth is a constant value for all locations, and that the same bandwidth is used in both dimensions resulting in a symmetrically scaled kernel.

3 Risk and Utility measures

3.1 Risk assessment

Denote the area of interest by A ⊂ R 2 (for example the national territory or a subsection thereof). We

consider 𝑁 population units, geographically identified by their planar coordinates (𝑥𝑖 , 𝑦𝑖) ∈ A, 𝑖 = 1, . . . , 𝑁 . The geographic grid constitutes a tiling of A into very small subareas of grid cells, which we denote by C𝑗 , 𝑗 = 1, . . . , 𝑀 . The cell-level count is the number of population units located in a given cell, i.e.

𝑟 𝑗 =

𝑁∑︁ 𝑖=1 1 [ (𝑥𝑖 , 𝑦𝑖) ∈ C𝑗

] ∀ 𝑗 = 1, . . . , 𝑀

where 1[·] is the indicator function. We consider here a straightforward minimum count criterion, by which a cell is considered at risk, if it contains fewer than 𝑘 ∈ N+ units (cf. de Wolf and de Jonge, 2017). The risk indicator for a cell is 𝑅 𝑗 (𝑘) = 1

[ &#x1d45f; &#x1d457; < &#x1d458;

] ∀ &#x1d457; = 1, . . . , &#x1d440; . Two global risk measures can then be defined as the

share of cells at risk &#x1d445; (C) and the share of population at risk &#x1d445; (&#x1d441; ) for which we have:

&#x1d445; (C) (&#x1d458;) := 1 &#x1d440;

&#x1d440;∑︁ &#x1d457;=1

&#x1d445; &#x1d457; (&#x1d458;) and &#x1d445; (&#x1d441; ) (&#x1d458;) := 1 &#x1d441;

&#x1d440;∑︁ &#x1d457;=1

&#x1d445; &#x1d457; (&#x1d458;) · &#x1d45f; &#x1d457; (2)

3.2 Utility assessment

3.2.1 A map seen as a table. To assess the loss of information due to a protection process, we have to compare the original map with the protected one. In a first approximation, a map can be seen as a table where the cells are described by the polygons and filled in with the count (population or households for instance) displayed in the map. Then, each utility metric relevant for frequency tables is relevant for maps. We choose the Hellinger distance for this purpose (See Shlomo (2007) for instance). A small distance implies small distortion and is therefore generally desirable. Denote the original (unprotected) raster by R and the protected version by R′, each having the same &#x1d440; cells with values &#x1d45f; &#x1d457; and &#x1d45f; ′

&#x1d457; , &#x1d457; = 1, . . . , &#x1d440; respectively. The Hellinger distance on the interval [0 , 1] is:

&#x1d43b;&#x1d437; (R,R′) = 1 √

2

√√√√√ &#x1d440;∑︁ &#x1d457;=1

©­« √√

&#x1d45f; ′ &#x1d457;∑&#x1d440;

&#x1d457;=1 &#x1d45f; ′ &#x1d457;

− √︄

&#x1d45f; &#x1d457;∑&#x1d440; &#x1d457;=1 &#x1d45f; &#x1d457;

ª®¬ 2

(3)

3.2.2 How to assess the distortion of spatial patterns? A metric such as the Hellinger distance does not take into account the spatial distribution of the units. And, while releasing perturbed maps, to ensure that we haven’t perturbed too much the spatial distribution is at least as important as to ensure a good preservation of the values cell by cell. When the original phenomenon displayed on the map is characterized by a spatial dependency, we’d like to ensure that this dependency is not broken by the protection process. For this purpose, M. Buron & M. Fontaine suggest to compare the Moran’s I for the two maps (See Buron and Fontaine (2018)). The Moran’s I measures the intensity of the spatial autocorrelation of the phenomenon. Then, the more the coefficient is distorted, the more the spatial information of the phenomenon is lost. With some protection process, the spatial autocorrelation will be automatically reduced (noise injection) and with other ones it will be automatically reinforced (smoothing).

4

It is less unpredictable for other ones (cell suppression for instance). We, then, tend to prefer SDC methods that preserve this coefficient as well as possible. In the same perspective to focus on the main spatial patterns of the map, de Wolf and de Jonge (2017) suggest a utility metric able to monitor the distortion of cold and hot spots due to the protection process. Actually, three utility measures are suggested, one related to the location of the spots, one related to their shape and the last one related to their size. For this paper, we suggest to use the Kantorovic-Wasserstein Distance (KWD) as it is implemented in the SpatialKWD R package. This distance, also called Earth Mover Distance, comes from the transportation problem: What is the minimal cost to transport a mass from one distribution to another? Whereas the Hellinger distance, as many other ones, could be considered as a "bin-by-bin" distance, the KWD can be viewed as a "cross-bin" distance: each bin (our grid cells) is put in relation with all other ones (Ricciato (2023)). Formally, KWD is defined as the solution to an optimization problem: We shift around distribution mass of Δ&#x1d45f; &#x1d457;&#x1d458; between the &#x1d457; th and &#x1d458;th grid cell, until R′ is transformed into R (or the other way around).1 Each such shift is evaluated with costs equivalent to the distance covered, denoted by &#x1d451; &#x1d457;&#x1d458; . Our implementation uses the Euclidean distance between cell centroids, measured in multiples of the cell width. We need to solve:

&#x1d43e;&#x1d44a;&#x1d437; (R,R′) = min Δ&#x1d45f; &#x1d457;&#x1d458;

1∑&#x1d440; &#x1d457;=1 &#x1d45f; &#x1d457;

&#x1d440;∑︁ &#x1d457;=1

&#x1d440;∑︁ &#x1d458;=1

Δ&#x1d45f; &#x1d457;&#x1d458;&#x1d451; &#x1d457;&#x1d458;

s.t. &#x1d440;∑︁ &#x1d458;=1

Δ&#x1d45f; &#x1d457;&#x1d458; = &#x1d45f; &#x1d457; ∀ &#x1d457; = 1, . . . , &#x1d440;

&#x1d440;∑︁ &#x1d457;=1

Δ&#x1d45f; &#x1d457;&#x1d458; = &#x1d45f; ′&#x1d458; ∀&#x1d458; = 1, . . . , &#x1d440;

Δ&#x1d45f; &#x1d457;&#x1d458; ≥ 0 ∀ &#x1d457; , &#x1d458; = 1, . . . , &#x1d440;

(4)

The following example gives an intuition on how KWD takes the spatial distribution of error into account. Consider a 4 × 4 grid, symbolized by A, which maps the ground truth.

A =

0 1 0 0 1 1 1 0 0 1 0 0 0 0 0 0

B1, . . . ,B4 are different alterations, loosely corresponding to protection mechanisms. For instance, B1 and B2 are aggregations, whereas B3 and B4 are randomly shifting some cell values.

B1 =

0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0

, B2 =

0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0

, B3 =

0 0 1 0 1 1 1 0 1 0 0 0 0 0 0 0

, B4 =

0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1

Intuitively, we will tend to prefer B1 over B2, since while both come with the same level of aggregation, the former preserves the original’s center of gravity, while the latter does not. Similarly, considerations of utility would lead us to prefer, in most cases, B3 over B4: while both shift two cell values, the first shifts each of them only to direct neighbors, the other relocates to the edges of the map. It is easy to verify, however, that bin-by-bin utility measures, such as the Hellinger distance, do not cover this rationale as we get &#x1d43b;&#x1d437; (A,B1) = &#x1d43b;&#x1d437; (A,B2) and &#x1d43b;&#x1d437; (A,B3) = &#x1d43b;&#x1d437; (A,B4). They are ignorant of geographic considerations. The Kantorovic-Wasserstein distance, on the other hand, gives for the above cases the desired &#x1d43e;&#x1d44a;&#x1d437; (A,B1) < &#x1d43e;&#x1d44a;&#x1d437; (A,B2) as well as &#x1d43e;&#x1d44a;&#x1d437; (A,B3) < &#x1d43e;&#x1d44a;&#x1d437; (A,B4).

1Being a proper distance, we have &#x1d43e;&#x1d44a;&#x1d437; (R,R′) = &#x1d43e;&#x1d44a;&#x1d437; (R′,R). 5

Our choice of the KWD was in part inspired by Ricciato and Coluccia (2023). The SpatialKWD package provides an implementation of such a distance to compare two maps, a map being seen as a 2D-distribution. As its exact computation is very time-demanding, the package implements a "very tight approximation", following the work of Bassetti et al. (2020). Several considerations have to be made before using this tool in an effective and consistent way.

• Which distance to use for assessing the cost of transporting a value from point &#x1d434; to point &#x1d435;? The Euclidean distance is the default, but actually the choice depends on the physical interpretation of this transportation. For instance, if we were comparing a map of residential locations with a map of working locations, the physical interpretation of the transportation problem is related to commuting and a travel time distance could be more appropriate. In the case of an SDC protection process, the physical interpretation is not so obvious. Since we consider the use case of a thematic map, we choose, as a first approximation, to interpret transportation analogous to eye movement of an observer, for which the Euclidean distance seems a sensible pick.

• Geographical areas are not always convex. In that case, the Euclidean distance could be replaced by the least internal path to join two points of the area. Here, we choose to keep the Euclidean distance even in non-convex areas.

• The KWD is fitted to compare two maps displaying the same total mass. Some protection methods (suppression for instance) modify the total mass displayed. One way to deal with this is to set a fixed per-unit mass penalty cost as the maximum distance between two points in the map for the remaining or lacking mass. Another is to virtually re-insert missing mass before computing KWD at one or more sensible proxy-locations.

3.3 Focus areas

The spatial patterns to compare depend on the extent of the map. The larger the map the more complex the spatial patterns. Furthermore, a user will rarely view the whole map, but rather show interest in some subsection, for instance their home region. It therefore makes sense to base utility measures not (only) on large-scale maps, but to consider a selection of smaller maps. We call any subarea A&#x1d456; ⊆ A a focus area. When assessing risk and utility metrics for one such focus area, we consider only the corresponding part of the population grid, i.e. the set of cells

{ &#x1d457; = 1, . . . , &#x1d440; :

( &#x1d465; &#x1d457; , &#x1d466; &#x1d457;

) ∈ A&#x1d456;

} , where

( &#x1d465; &#x1d457; , &#x1d466; &#x1d457;

) are the planar coordinates of the center point

of the &#x1d457; th grid cell. For simplicity, we employ here only square focus areas that are at the same grid resolution as the overall area. The R package lets us choose to compute the Kantorovic-Wasserstein distance only on some A&#x1d456; , while taking into account the whole A. Hence, the transportation of masses is computed only within the focus area, but, if needed, some masses can be transported from inside to outside and vice versa.

4 Experiments

The aim of the experiment is to protect a map of the number of persons or households per grid cell. The grid is based on the INSPIRE (2014) standard ETRS89-LAEA for geographic grid systems. This is done for different countries. The protection will be applied using the R package sdcSpatial and results are compared across countries using risk and utility measures.

4.1 Datasets

We start from a microdata set containing persons or households as well as X and Y coordinates and raster cells which follow the INSPIRE (2014) standard. Depending on the country the grid cells are either 500m × 500m or smaller. Table 1 shows example data from the Austrian use case. For reasons suggested above, we focus our

6

analysis on selected regions with specific characteristics regarding terrain and population distribution. Table 2 gives an overview of the focus areas used for each contributing country. Below we give a short overview of the characteristics of each contributing microdata set by source country.

Table 1. Example of microdata from Austrian use case

PID L000500 Y X 00000001 500mN28215E46275 2821500 4627500 00000002 500mN28085E47890 2808500 4789000 00000003 500mN28025E47925 2802500 4792500 00000004 500mN28120E47985 2812000 4798500 00000005 500mN27605E47900 2760500 4790000 00000006 500mN28040E47940 2804000 4794000

4.1.1 CBS. For the CBS application the population register for 2020 was used, which was extracted from the social statistical system of Statistics Netherlands (CBS). The dataset includes amongst other variables age, sex and educational attainment on a 100m × 100m geographic raster. Each registered inhabitant is assigned to a raster cell. To facilitate analysis the raster was coarsened to a grid of 500m × 500m. Spatial distributions for urbanized and rural areas are very different and often take different tuning parameters. To indicate how the statistical disclosure methods differs between different regions, four different regions within the Netherlands were selected. First, the capital city Amsterdam, which is a densely populated and urbanized area. Second, the medium sized and young city of Almere where many inhabitants are commuters to different cities. Urbanized, but enclosed by nature and rural areas. Third the rural area of Drenthe, which is sparsely populated and last the region Parkstad, which contains cities and rurals area near the Aachen region in Germany.

4.1.2 Destatis. For the German application Census 2011 results for persons were used. Demographic variables like age, sex or religion are collected on a fine-grained 100m × 100m geographic raster. Household addresses are used for the assignment. Subsequently, each person is located at the centroid of its assigned raster cell. The cells are coarsened to the 500m × 500m resolution for analysis. Focus areas are chosen to reflect a range of spatial structures. The first is the Ruhr valley area, composed of a cluster of multiple, integrated cities and homogeneously high population density. The second are the twin cities of Mainz and Wiesbaden with their corresponding surroundings. They form a diverse collection of urban, rural, forest and river parts. The third focus area is centered between the town of Stralsund and the island of Rügen at the Baltic Sea coast; it is characterised by an intricate mix of settlements and uninhabitable water areas. Finally, a map section close to the Alps in the historical region of Allgäu is chosen, in which farming and small settlements create an overall homogeneous, low population density.

4.1.3 INSEE. For the French use case, we used the 2017 tax data from the so-called Filosofi system. The data are available on the website of Insee2. Socio-demographic information are displayed on a 200m × 200m squares grid. We focused our analysis on the department of La Réunion. We chose to focus our attention on 4 areas, three dense areas picked along the coast of the island (Saint-Denis, Saint-Gilles and Saint-Pierre) and one sparse area picked in its center (La Plaine) (See figure 2). Saint-Denis in the north-east of the island is the most dense area with nearly 700 inhabitants per &#x1d458;&#x1d45a;2 whereas the density of the area called La Plaine, in the rural and steeper center of the island, is less than 40 inhabitants per &#x1d458;&#x1d45a;2. The areas of Saint-Gilles (north-east) and Saint-Pierre (south-east) have been chosen so as to include a large conurbation of cities around a populated center. Hence, both are quite larger than the two others and mix urban centers and some rural areas connected to them.

2https://www.insee.fr/fr/statistiques/6215138?sommaire=6215217

7

Table 2. Focus areas

country focus area size size initial risk (cells) (km2) % cells % pop.

AT

Vienna & Suburbs 85 × 85 1806.25 10.09 0.03 Bregenz 39 × 39 380.25 9.57 0.08 Alps in Tyrol 73 × 73 1332.25 17.10 0.59 Krems an der Donau 41 × 41 420.25 12.38 0.28

DE

Ruhr valley 55 × 55 756.25 3.9 0.02 Mainz & Wiesbaden 41 × 41 420.25 9.2 0.04 Strelasund region 75 × 75 1406.25 22.2 0.64 German Allgäu 55 × 55 756.25 24.4 1.06

FR

Saint-Denis 45 × 45 81.00 31.4 2.43 Saint-Pierre 109 × 109 475.24 49.1 8.63 La Plaine 41 × 41 67.24 72.2 31.63 Saint-Gilles 71 × 71 201.64 51.0 10.31

NL

Amsterdam 59 × 46 678.50 12.1 0.04 Almere 47 × 42 493.50 13.9 0.07 Drenthe 89 × 111 2469.75 21.7 0.64 Parkstad 31 × 44 341.50 11.1 0.09

Figure 2. Number of Households by 200 × 200 meters grid squares in La Réunion. Red squares are the focus areas

8

4.1.4 Statistics Austria. For the use case at Statistics Austria we used the Austrian Rich-Frame. This internally compiled data set contains the reference frame for persons and households and is used as the sampling frame to draw a number of surveys. The data set is compiled from various administrative data sources and holds information for each person from the Central Population Register (such as age, gender, citizenship), the Building and Housing register as well as income-, tax-, education- or employment related information. Furthermore, it contains regional information at a very detailed geographical level. The data set is pseudo-anonymized which means that no direct identifying variables or coordinates are contained in the data set. The frame is updated quarterly and it takes around 6 weeks after a quarter change until the data set for the reference quarter has been finalized. For our use case we chose 4 focus areas. The first is the capital Vienna including the surrounding suburbs. The second is Bregenz including bordering municipalities containing the country border and the border to the Bodensee. Thrid and furth are regions with lower population density, namely part of the Alps in Tyrol and rural area in lower Austria including Krems an der Donau and surrounding municipalities.

4.2 Application

For applying the protection methods we mainly used the R package sdcSpatial. Example code can be found on https://github.com/sdcTools/sdcSpatialExperiment. Our cases applied the following protection methods:

• Cell removal ∼ sdcSpatial:::remove_sensitive • Quad tree protection ∼ sdcSpatial:::protect_quadtree • Kernel density smoothing ∼ sdcSpatial:::protect_smooth

There are slight differences in the use cases of the different countries: • CBS For the Dutch (NL) focus regions, a minimum of 5 contributors in a grid cell was used to test for

sensitivity. Four protection methods have been applied – Suppression of sensitive cells (‘removal’) – Quadtree with zoom levels 2 (‘quad tree I’) and 3 (‘quad tree II’) – Spatial smoothing with a Gaussian kernel and a bandwidth of 500m (‘smoothing’)

• Destatis Risk was assessed by the minimum count criterion, where a cell is considered sensitive if it contains fewer than 5 persons. Four protection methods were considered for the German data set: – Suppression of the sensitive cells (‘removal’); – Quadtree with a maximum zoom of 2 (‘quad tree I’) and 3 (‘quad tree II’); – Spatial smoothing with a Gaussian kernel and a bandwidth of 500m (‘smoothing’).

• INSEE For the French case (FR), four protection methods have been considered: – Suppression of the sensitive cells (‘removal’); – Quadtree with two different maximum of zoom of 3 (‘quad tree I’) and 4 (‘quad tree II’); – Spatial smoothing with a Gaussian kernel and a bandwidth of 200m (‘smoothing’).

• Statistics Austria Grid cells with a cell count below 5 were considered sensitive. For the use case at Statistics Austria the following protection methods were considered: – Suppression of the sensitive cells (‘removal’); – Quadtree with two different maximum of zoom of 2 (‘quad tree I’) and 3 (‘quad tree II’); – Spatial smoothing with a Gaussian kernel and a bandwidth of 500m (‘smoothing’).

4.3 Results

The initial risk assessment for focus areas is included in table 2 in the two rightmost columns. Tables 3 to 6 show risk and utility measures after applying SDC methods. Columns ’% cells’ and ’% pop.’ also include grid cells which were not populated in the original data set. Notably, while computation times for the Hellinger Distance were negligible, calculating the Kantarovich- Wasserstein Distance for a large number of grid cells will typically be more time-consuming. Other than with

9

Table 3. Results for the Dutch data set by focus area

focus area (NL) method residual risk utility % cells % pop. HD KWD

Amsterdam

removal 0 0 .01 .004 quad tree I 8.1 0.01 .08 .015 quad tree II 0.8 < .01 .13 .054 smoothing 1.1 < .01 .22 .257

Almere

removal 0 0 .02 .009 quad tree I 15.9 0.03 .09 .018 quad tree II 1.8 < .01 .13 .054 smoothing 1.3 < .01 .25 .316

Drenthe

removal 0 0 .06 .080 quad tree I 13.2 .13 .16 .062 quad tree II 0.3 < .01 .23 .164 smoothing 0.6 < .01 .31 .407

Parkstad

removal 0 0 .02 .007 quad tree I 6.6 0.01 .13 .039 quad tree II 0 0 .20 .124 smoothing 0 < .01 .27 .352

Table 4. Results for the German data set by focus area

focus area (DE) method residual risk utility % cells % pop. HD KWD

Ruhr valley

removal 0 0 .009 .004 quad tree I 0.7 < .001 .079 .015 quad tree II 0 0 .095 .025 smoothing 0 0 .280 .381

Mainz & Wiesbaden

removal 0 0 .014 .006 quad tree I 9.5 .012 .124 .034 quad tree II 0.3 < .001 .227 .162 smoothing 0 0 .365 .493

Strelasund region

removal 0 0 .057 .176 quad tree I 21.1 .207 .165 .064 quad tree II 2.2 .003 .222 .136 smoothing 0 0 .451 .627

German Allgäu

removal 0 0 .073 .229 quad tree I 10.6 .161 .188 .083 quad tree II 0 0 .239 .161 smoothing 0 0 .415 .625

bin-by-bin measures, it takes longer to calculate a large KWD than a short one. The approximation we used guarantees a result within 1.29% of the true value as per Gualandi (2022).

10

Table 5. Results for the French data set by focus area

focus area (FR) method residual risk utility % cells % pop. HD KWD

St-Denis

removal 0 0 0.111 0.284 quad tree I 3.48 0.01 0.242 0.196 quad tree II 0 0 0.244 0.201 smoothing 0 0 0.237 0.273

St-Pierre

removal 0 0 0.210 1.340 quad tree I 5.64 0.06 0.310 0.338 quad tree II 0 0 0.334 0.451 smoothing 0 0 0.248 0.267

La Plaine

removal 0 0 0.416 1.547 quad tree I 11.98 0.36 0.429 0.616 quad tree II 0 0 0.456 0.851 smoothing 0 0 0.304 0.311

St-Gilles

removal 0 0 0.230 1.167 quad tree I 10.54 0.1 0.359 0.467 quad tree II 0 0 0.394 0.655 smoothing 0 0 0.286 0.340

Table 6. Results for the Austrian data set by focus area

focus area (AT) method residual risk utility % cells % pop. HD KWD

Vienna & Suburbs

removal 0 0 0.014 0.008 quad tree I 0.030 < .001 0.086 0.022 quad tree II 0.002 < .001 0.125 0.062 smoothing < .001 < .001 0.273 0.351

Bregenz

removal 0 0 0.042 0.009 quad tree I 0.032 < .001 0.097 0.050 quad tree II 0.002 < .001 0.154 0.178 smoothing 0 0 0.304 0.419

Alps in Tyrol

removal 0 0 0.056 0.053 quad tree I 0.042 < .001 0.151 0.061 quad tree II 0.004 < .001 0.210 0.147 smoothing 0.001 < .001 0.381 0.577

Krems an der Donau

removal 0 0 0.042 0.029 quad tree I 0.037 < .001 0.174 0.078 quad tree II 0.002 < .001 0.261 0.213 smoothing 0 0 0.471 0.664

11

4.4 Discussion

We notice that KWD and HD yield the same rank-ordering of SDC methods and parameterizations between quad tree and smoothing, but judge removal quite differently. Indeed, KWD seems to penalize more the removal method than the quad tree or the smoothing, whereas HD penalizes more the quad tree and the smoothing than the removal. To understand the different behavior of the two utility measures, consider moving distribution mass of amount Δ&#x1d45f; between cells. The KWD associated with this change is proportional to the minimum-cost way of reversing it, ’costing’ &#x1d451;Δ&#x1d45f; . On the other hand, HD and other bin-by-bin measures scale only with Δ&#x1d45f; , independent of distance. If SDC methods cause changes with wide variations in &#x1d451;, we expect no clear connection between the two types of measures. If, however, &#x1d451; is within predictable bounds, which is always the case when an SDC mechanism acts locally, i.e. shifts mass exclusively (or preferably) within geographic neighborhood, we will see a close association. Consider, for instance, a single aggregation step of the quad tree method, described in 2.2. It consists of redistributing mass between cells of a four-cell square. The KWD associated with reversing such a step is proportional to &#x1d451;Δ&#x1d45f; , where &#x1d451; ∈ [1 ,

√ 2] is tightly bounded. Such a small variation of &#x1d451; can basically be treated

as noise, compared to the amount of mass shifted Δ&#x1d45f; . A similar intuition applies for the smoothing approach: Distribution mass is ’smeared’ out locally, so that shifting it back can be viewed as a localized transport problem, where the weighted distance &#x1d451; is again closely bounded. The bound depends on the kernel bandwidth and tail of the kernel function. Typically we find that for both protection mechanisms (quad tree and smoothing) KWD scales mostly with Δ&#x1d45f; . Judging them via bin-by-bin utility measures versus the cross-bin KWD metric therefore yields overall similar rankings of SDC methods. With cell removal, on the other hand, distribution mass is deleted at various points of the map. The KWD depends on how this missing mass is treated. Applying a constant cost &#x1d450; per removed unit of mass implies total KWD of &#x1d450;Δ&#x1d45f; , which again would scale up with Δ&#x1d45f; . The ranking of cell removal in comparison to other SDC method depends then entirely on how we set &#x1d450;, i.e. how we judge the information loss from removing mass compared to shifting it. If we consider instead virtually re-inserting the missing mass, KWD depends on the distances of the virtual bin to the points of the map where mass was deleted. In that case, &#x1d451; can vary widely and we do not expect to see a correlation of bin-by-bin measures and KWD. For instance, in the results for Germany (table 4), KWD preferred cell removal for the two more densely populated focus areas (Ruhr valley, Mainz & Wiesbaden), but judged it second-worst for the two sparsely populated focus areas. In comparison, HD favored removal throughout. Hence, we get a divergence between what difference utility metrics recommend. Throughout, we find that KWD after smoothing is highest. This does not necessarily disqualify the smoothing approach, however. To see why, consider the setting shown below. Let C be the ground truth; D1 is a situation as would result from the quad tree method, D2 might result from smoothing.

C =

0 0 0 0 0 50 0 0 0 0 50 0 0 0 0 0

, D1 =

0 0 0 0 0 25 25 0 0 25 25 0 0 0 0 0

, D2 =

4 4 4 0 4 25 5 4 4 5 25 4 0 4 4 4

Upon visual inspection, we can claim that D2 preserves some qualitative properties of C better: The statement ’distribution mass is centered along the main diagonal’, for instance, is easily learned from D2, but hidden in D1. The small masses in the former would easily be filtered out visually in a heat map, but they do influence utility metrics. Specifically, for the given example we will find that &#x1d43e;&#x1d44a;&#x1d437; (C,D1) < &#x1d43e;&#x1d44a;&#x1d437; (C,D2). Generally speaking, the more tail-heavy the kernel and the broader the bandwidth, the higher the measured utility loss from smoothing as compared to, for instance, the quad tree method. Generally speaking, we do not find that our utility metrics cover such qualitative aspects well. Finally, some practical issues relating to spatial SDC can be learned from Fig.3, which maps a small part of the German data set after protection by three different methods. Overlayed in grey are zones that count as generally uninhabited: rivers and lakes as well as some forms of vegetation (forests, swamps, marshes). We

12

Figure 3. Raster maps of a subset of German data after SDC methods have been applied; shaded sections indicate forest and river areas.

can see that quad tree aggregation may intrude into these zones, populating previously unpopulated locations. It can, for instance, aggregate cells from different sides of a river, creating artificial crossings, or make forest areas seem more inhabited than they are. Smoothing, similarly, will often assign positive distribution mass to these implausible locations. Whether this constitutes a problem of consistency for users will depend on the planned application. A more serious question from the point of view of disclosure protection is, in how far knowledge of implausible locations can be used to attack and partially reverse protection methods. In Fig.3 we have used shape files of uninhabited areas, but the opposite is also feasible: many states offer Open Data terrain models that explicitly demarcate settlement areas. Outside of these areas, valid person addresses may often be implausible. Overlaying protected raster maps with such auxiliary geographic data could be used to revert some of the changes made. These risks should be further investigated.

5 Conclusion

The experiment we carried out enabled us to test and compare several methods implemented in the sdcSpatial package for protecting geo-referenced grid data against the risk of disclosure. The risk we measure here is essentially a re-identification risk, considering a cell to be sensitive as soon as it doesn’t reach a certain population threshold. The finer the geographical level of distribution, the more serious the risk. Other types of risk could be investigated in the future. For example, the distribution of several maps on different categories of the population could generate problems of disclosure of group attributes. Another very realistic risk is the risk of differentiation with other maps displaying the same information on different zonings, such as administrative zonings. As these are not, in general, an exact sum of tiles, differentiation cannot be reduced to a problem of nested hierarchies. Costemalle (2019) provides an elegant way of detecting such problems. Future work could involve integrating the suggested analysis of differentiation problems into risk measurement. The three protection methods suggested by the sdcSpatial package (cell suppression, quad tree and smoothing) all have advantages and disadvantages, as summarized in table 7. A suppressive method seems reasonable when the number of sensitive cells is low, particularly in densely populated areas. The quad tree and smoothing methods protect sensitive information by diluting it in the neighborhood. Despite the creation of implausible locations that they both generate, if the zoom factor for the quad tree or the smoothing radius are not too large, the usefulness of the outputs, qualitatively speaking, remains interesting. In addition, smoothing generates less

13

Table 7. Advantages and disadvantages of SDC methods

SDC method advantages disadvantages Cell removal straightforward and irreversible, hot

spots kept intact by design, no artifi- cially inhabited cells

loses mass, low-density regions are deleted from the map

Quadtree resulting cells assure &#x1d458;-anonymity, small measured distance metrics

overly blocky structure, can artificially enlarge hot spots, can result in implau- sible locations

Smoothing secondary utility as a visualization aid, diminishes spatial noise

may lose mass at edges, can result in implausible locations, potential of re- versal attacks

noisy maps that are easier to read. It is not so obvious for quad tree. In the future, we could also explore the possibility of combining the different protection methods to increase the usefulness of the outputs. The sdcSpatial::protect_smooth function displays a smoothing with a Gaussian kernel which doesn’t take into account the borders or the presence of natural barriers. This could be implemented as in the btb package which uses a quadratic kernel, which takes into account only points within the bandwidth. In addition, an edge-correction (a Diggle correction) is implemented in the btb::btb_smooth function, to deal with edge- effects (see Sémécurbe et al. (2018)). The method is then more conservative than the one implemented in the sdcSpatial package and could lead to improve the utility of the resulting map. In a future work, we could also try other SDC methods, beginning with some classical ones as swapping or the cell key method for instance. Note that swapping and the cell key method could both be considered as ‘pre-map’ methods: they are applied to get safe data before using a method to plot the data on a map. The Quadtree and Smoothing methods act on the unprotected data directly and supply protection when plotting the data on a map. Moreover, swapping and the cell key method in their basic forms do not take the spatial characteristics into account. Any method of protection generates a loss of utility. It is therefore a question of choosing the method which, while protecting sufficiently, will be able to preserve the most original information. However, geo-referenced data cannot be assimilated to simple tables because the spatial distribution of the data is information as important as the data themselves. In this work, we thus used two metrics, one appropriate for comparing tables (the Hellinger distance), the other more suitable for comparing maps (the Kantorovic-Wasserstein distance). It was the first opportunity for us to use the, latter which requires a pronounced attention to certain details such as the mass-mismatching or the convexity of the zonings. We could think about other utility metrics, especially from the ones that can grasp the spatial patterns information, as the Moran’s I (Buron and Fontaine (2018)) or as the characteristics of cold and hot spots (de Wolf and de Jonge (2017)). An additional problem that should be addressed in future work is the relation between risk and utility measures and the resolution of the map in question. The resolution of a map in some sense determines the level to which a user could zoom in on the map. Obviously, the more zoomed-in a user is looking at the map, the more detailed locations could be determined. Thus the identification risk becomes higher. Future work should include recommendations on how to deal with this feature of being able to zoom in on the map, in relation to the disclosure risk and the utility. See for some discussion in this direction e.g., de Wolf and de Jonge (2018).

14

References

Bassetti, F., S. Gualandi, and M. Veneroni (2020). On the computation of Kantorovich–Wasserstein distances between two-dimensional histograms by uncapacitated minimum cost flows. SIAM Journal on Optimiza- tion 30(3), 2441–2469.

Behnisch, M., G. Meinel, S. Tramsen, and M. Diesselmann (2013). Using quadtree representation in building stock visualization and analysis. Erdkunde 67(2), 151–166.

Buron, M. and M. Fontaine (2018, Oct). Confidentiality of spatial data (Insee Methodes ed.)., Chapter 14, pp. 349–373. Paris.

Costemalle, V. (2019, Dec). Detecting geographical differencing problems in the context of spatial data dissemination. Statistical Journal of the IAOS 35(4), 559–568.

de Jonge, E. and P.-P. de Wolf (2016). Spatial smoothing and statistical disclosure control. In J. Domingo-Ferrer and M. Pejić-Bach (Eds.), Privacy in Statistical Databases. UNESCO Chair in Data Privacy International Conference, PSD ’16, Dubrovnic, Croatia, September 14-16, Proceedings, Springer Lecture Notes in Com- puter Science, LNCS 9867, pp. 107–117.

de Jonge, E. and P.-P. de Wolf (2022). sdcSpatial: Statistical Disclosure Control for Spatial Data. R package version 0.5.2.

de Wolf, P.-P. and E. de Jonge (2017). Location related risk and utility. In UNECE - Expert Meeting on Statistical Data Confidentiality.

de Wolf, P.-P. and E. de Jonge (2018). Safely plotting continuous variables on a map. In J. Domingo-Ferrer and F. Montes (Eds.), Privacy in Statistical Databases. UNESCO Chair in Data Privacy International Conference, PSD ’18, Valencia, Spain, September 26-28, Proceedings, Springer Lecture Notes in Computer Science, LNCS 11126, pp. 347–359.

Gualandi, S. (2022). SpatialKWD: Spatial KWD for Large Spatial Maps. R package version 0.4.1. INSPIRE (2014). Thematic Working Group Coordinate Reference Systems & Geographical Grid Systems,

D2.8.I.2 Data Specification on Geographical Grid Systems - Technical Guidelines. European Commission Joint Research Centre.

Ricciato, F. (2023, Mar). Kantorovich-Wasserstein distances for spatial statistics: The Spatial-KWD library. Presentation at the NTTS 2023 conference.

Ricciato, F. and A. Coluccia (2023). On the estimation of spatial density from mobile network operator data. IEEE Transactions on Mobile Computing 22(6), 3541–3557.

Sémécurbe, F., L. Genebes, and A. Renaud (2018, Oct). Spatial Smoothing (Insee Methodes ed.)., Chapter 8, pp. 205–229. Paris.

Shlomo, N. (2007, Aug). Statistical disclosure control methods for census frequency tables. International Statistical Review 75(2), 199–217.

Suñé, E., C. Rovira, D. Ibáñez, and M. Farré (2017). Statistical disclosure control on visualising geocoded population data using a structure in quadtrees. NTTS 2017.

Wand, M. and M. C. Jones (1994). Kernel smoothing. CRC Press.

15

  • 1. Introduction
  • 2. SDC Methods
    • 2.1. Cell removal
    • 2.2. Quad tree
    • 2.3. Smoothing
  • 3. Risk and Utility measures
    • 3.1. Risk assessment
    • 3.2. Utility assessment
    • 3.3. Focus areas
  • 4. Experiments
    • 4.1. Datasets
    • 4.2. Application
    • 4.3. Results
    • 4.4. Discussion
  • 5. Conclusion
  • References

Spatial SDC experiments and evaluations with multiple countries comparison Johannes Gussenbauer (STAT), Julien Jamme (INSEE), Edwin de Jonge (CBS),

Peter-Paul de Wolf (CBS), Martin Möhler (Destatis)

UNECE Expert meeting on Statistical Data Confidentiality 2023 26.09.2023-28.09.2023 Weisbaden, Germany

This work is part of the Centre of Excellence on SDC (CoE on SDC) and is co-funded by the European Commission by means of grant agreement number 899218, 2019-BG-Methodology.

Overview

• Experiment Setup

• Risk and Utility Measures

• Results and Discussion

Experiment Setup

• ‘Census-like’ datasets from 4 countries – Austria, France, Germany, Netherlands

• Tabular data on person level with coordinates of residence and grid cells – INSPIRE2014 standard ETRS89-LAEA

• Aim: test and compare several methods for protecting grid data

‘Census-like’ dataset and map

Person ID Grid cell ID Ys Xs … 00000001 500mN28215E

46275 2821500 4627500 …

00000002 500mN28085E 47890

2808500 4789000 …

00000003 500mN28025E 47925

2802500 4792500 …

00000004 500mN28120E 47985

2812000 4798500 …

… … … … …

Experiment Setup

1. Build table on count data (~number of people) by grid cells (L000500)

2. Calculate risk measures

3. Apply SDC methods using the R-Package sdcSpatial

4. Re-evaluate risk measures and calculate information loss

Protection Methods

• Cell removal: suppresses the sensitive cell

Original map

Protection Methods

• Cell removal: suppresses the sensitive cell

Protected map

Protection Methods

• Quad tree: aggregate sensitive cells with its three neighbours

• Can zoom-out multiple times

Original map

Protection Methods

• Quad tree: aggregate sensitive cells with its three neighbours

• Can zoom-out multiple times

Protected map

Protection Methods

• Kernel density smoothing: mass of population is spread out over a neighbouring region

&#x1d453;&#x1d453;ℎ &#x1d465;&#x1d465;,&#x1d466;&#x1d466; = 1 ℎ2 � &#x1d456;&#x1d456;=1

&#x1d441;&#x1d441;

&#x1d43e;&#x1d43e; &#x1d465;&#x1d465; − &#x1d465;&#x1d465;&#x1d456;&#x1d456; ℎ

, &#x1d466;&#x1d466; − &#x1d466;&#x1d466;&#x1d456;&#x1d456; ℎ

&#x1d43e;&#x1d43e; &#x1d465;&#x1d465;,&#x1d466;&#x1d466; bivariate Gaussian kernel

Original map

Protection Methods

• Kernel density smoothing: mass of population is spread out over a neighbouring region

&#x1d453;&#x1d453;ℎ &#x1d465;&#x1d465;,&#x1d466;&#x1d466; = 1 ℎ2 � &#x1d456;&#x1d456;=1

&#x1d441;&#x1d441;

&#x1d43e;&#x1d43e; &#x1d465;&#x1d465; − &#x1d465;&#x1d465;&#x1d456;&#x1d456; ℎ

, &#x1d466;&#x1d466; − &#x1d466;&#x1d466;&#x1d456;&#x1d456; ℎ

&#x1d43e;&#x1d43e; &#x1d465;&#x1d465;,&#x1d466;&#x1d466; bivariate Gaussian kernel

Protected map

Risk and Utility Measures

• Grid cell &#x1d49e;&#x1d49e;&#x1d457;&#x1d457; is at risk if it contains fewer than &#x1d458;&#x1d458; people

• Risk measure ~ share of grid cells/population which are at risk

&#x1d445;&#x1d445; &#x1d49e;&#x1d49e; &#x1d458;&#x1d458; : = 1 &#x1d440;&#x1d440; � &#x1d457;&#x1d457;=1

&#x1d440;&#x1d440;

&#x1d445;&#x1d445;&#x1d457;&#x1d457; &#x1d458;&#x1d458; &#x1d445;&#x1d445; &#x1d441;&#x1d441; &#x1d458;&#x1d458; : = 1 &#x1d441;&#x1d441; � &#x1d457;&#x1d457;=1

&#x1d440;&#x1d440;

&#x1d445;&#x1d445;&#x1d457;&#x1d457; &#x1d458;&#x1d458; ⋅ &#x1d45f;&#x1d45f;&#x1d457;&#x1d457;

with &#x1d445;&#x1d445;&#x1d457;&#x1d457; &#x1d458;&#x1d458; = &#x1d540;&#x1d540; &#x1d45f;&#x1d45f;&#x1d457;&#x1d457; < &#x1d458;&#x1d458; ∀&#x1d457;&#x1d457; = 1, … ,&#x1d440;&#x1d440;

&#x1d45f;&#x1d45f;&#x1d457;&#x1d457; = � &#x1d456;&#x1d456;=1

&#x1d441;&#x1d441;

&#x1d540;&#x1d540; &#x1d465;&#x1d465;&#x1d456;&#x1d456; ,&#x1d466;&#x1d466;&#x1d456;&#x1d456; ∈ &#x1d49e;&#x1d49e;&#x1d457;&#x1d457; ∀&#x1d457;&#x1d457; = 1, … ,&#x1d440;&#x1d440;

&#x1d465;&#x1d465;&#x1d456;&#x1d456; ,&#x1d466;&#x1d466;&#x1d456;&#x1d456; coordinates of person &#x1d456;&#x1d456;

Risk and Utility Measures • (normalised) Hellinger's distance between raster &#x1d411;&#x1d411; and &#x1d411;&#x1d411;&#x1d411;

&#x1d43b;&#x1d43b;&#x1d43b;&#x1d43b; &#x1d411;&#x1d411;,&#x1d411;&#x1d411;&#x1d411; = 1

2 � &#x1d457;&#x1d457;=1

&#x1d440;&#x1d440; &#x1d45f;&#x1d45f;&#x1d411;&#x1d457;&#x1d457;

∑&#x1d457;&#x1d457;=1&#x1d440;&#x1d440; &#x1d45f;&#x1d45f; &#x1d411;&#x1d457;&#x1d457; −

&#x1d45f;&#x1d45f;&#x1d457;&#x1d457; ∑&#x1d457;&#x1d457;=1&#x1d440;&#x1d440; &#x1d45f;&#x1d45f;&#x1d457;&#x1d457;

2

• Easy calculation • Applicable to tabular data

• Does not account for spatial distribution

Risk and Utility Measures • Kantorovic-Wasserstein Distance (KWD) or Earth Mover Distance • Minimal cost to transport a mass from one distribution to another

Shift around distribution mass of &#x1d6e5;&#x1d6e5;&#x1d45f;&#x1d45f;&#x1d457;&#x1d457;&#x1d457;&#x1d457; between the &#x1d457;&#x1d457;th and &#x1d458;&#x1d458;th grid cell, until &#x1d411;&#x1d411;&#x1d411; is transformed into &#x1d411;&#x1d411;

• Considers spatial distribution • Intuitive interpretation

• Difficult to compute ~ R-Package SpatialKWD

• Needs methodological choices – How to deal with different mass in &#x1d411;&#x1d411;&#x1d411; and &#x1d411;&#x1d411; – Focus Area – Convex hull true/false

Results • Depending on the country slightly

different setup – CBS, DESTATIS, STAT: 500m × 500m, &#x1d458;&#x1d458; = 5 – INSEE: 200m × 200m, &#x1d458;&#x1d458; = 11

• Each country selected 4 specific focus areas – Protection applied on whole data set

beforehand → focus in on area of interest • Can deal with mass missmatch

– Focus areas contain different population distributions

– Homogeneously populated, hot spots, country borders and uninhabitable terrain. Island of La Réunion, use case INSEE; Red

squares are the focus areas

Results

Conclusions and Discussion

• Cons and Pros of protection methods

Method Pros Cons

Cell removal No artificially inhabitable cells low density regions might be deleted

hot spots kept intact reidentification risk through differencing

Quadtree easy to apply overly blocky structure

utility loss rather small can enlarge hot spots

can populate uninhabitable cells

Smoothing Hot spots are usually kept intact Applied to whole data

can populate uninhabitable cells

Conclusions and Discussion • HD and KWD usually rank methods similar

– Protection was only applied very locally – Some methodological choices needed before applying KWD

• Impact of different specifications needs more investigation – Looking at focus areas instead of whole country more insightful

• Possible additions/improvements to sdcSpatial: – Respect borders or natural barriers during protection

• Further analysis needed for – Differencing attacks – Compare more utility measures (Moran’s I, Spatial K-function, Hotspot preservation, preservation of

population by type of land cover, …) – Compare with more classical methods like record swapping or cell key

Code for running experiment on dummy data on github: https://github.com/sdcTools/sdcSpatialExperiment

  • Spatial SDC experiments and evaluations with multiple countries comparison
  • Overview
  • Experiment Setup
  • ‘Census-like’ dataset and map
  • Experiment Setup
  • Protection Methods
  • Protection Methods
  • Protection Methods
  • Protection Methods
  • Protection Methods
  • Protection Methods
  • Risk and Utility Measures
  • Risk and Utility Measures
  • Risk and Utility Measures
  • Results
  • Results
  • Conclusions and Discussion
  • Conclusions and Discussion

Introduction of Scanner Data into Austrian CPI and HICP – practical implementation experience, with a focus on window length options

Languages and translations
English

1

Introduction of Scanner Data into Austrian CPI and HICP – practical

implementation experience, with a focus on window length options

Adam Tardos

Statistics Austria

Department of Price and Parity

Summary

After several years of preparation and a two-year transition period, scanner data have been introduced

into the Austrian CPI and HICP in January 2022. A significant factor was the amendment of the

Austrian national CPI-Regulation in December 2019, which since then regulates the scanner data

requirements and ensures the weekly scanner data deliveries by most important retailers, initially by

the grocery and drugstore retail trade (NACE classes 47.11 and 47.75).

During the implementation of the project, pragmatic decisions had to be taken on a number of issues

ranging from the way to establish a good relationship with data providers through the method of data

access, to the classification of products, and the choice of the appropriate index calculation and

aggregation method. One small, but not insignificant subset of these decisions, is the time window

length chosen when adopting a multilateral approach, i.e. based on how many consecutive months

of data the index is compiled. Although a two-year transition period in which traditionally collected

price data and scanner data can be compared seems to be comfortably long, it is too short to test the

commonly used window length of 25 months. That is why Statistics Austria introduced scanner data

into production with a 13-month window length.

After an extra year, however, we started to study the benefits of possibly more precise data resulting

from a longer window length at the overall index level and at lower aggregation levels. We also

assessed the additional resource use (computational capacity) that would be required to move from

a 13-month window to a 25-month window. On this basis, we have carried out a cost-benefit analysis

to determine whether it is more reasonable to choose a shorter or longer window length. On the whole

it seems that in most cases the 13-month window length provides similarly good data quality as a 25-

month window and saves plenty of resources, however there are specific conditions (e.g. seasonality)

in which a longer window length has a positive impact on data quality.

Keywords:

CPI, HICP, Scanner data, Multilateral method, GEKS, Windows length, Seasonality

2

Table of Contents Background ..................................................................................................................................... 3

Description of the data .................................................................................................................... 4

Data preparation and verification ................................................................................................ 5

Product classification .................................................................................................................. 5

Index calculation ............................................................................................................................. 5

Temporal basis for the indices .................................................................................................... 6

Content data basis for the indices ............................................................................................... 6

Outlier filtering ........................................................................................................................... 6

Regionality and aggregation level ............................................................................................... 7

Index calculation: method and window length ........................................................................... 7

Linking index chains of the old method with index chains of the new method ......................... 9

Alternative window length: 25-month vs. 13-month windows length ............................................ 9

Impact of 25-month windows length on the overall index ....................................................... 10

Impact of 25-month windows length on CPI food and on food and non-alcoholic beverages . 12

Impact of 25-month windows length in an environment of rising inflation ............................. 13

Impact of 25-month windows and seasonality .......................................................................... 15

Conclusion .................................................................................................................................... 19

3

Background

New technical developments and the continuous diversification in retail in form of considerably

higher assortment ranges and a stronger segmentation of product groups as well as changes in pricing

are essential aspects that currently pose new challenges for the price survey of the consumer price

index. In view of the challenges, the use of scanner data in consumer price statistics represents a

major qualitative advance. The use of sales volume and turnover values as well as the comprehensive

coverage of the reporting periods and the range of goods will further ensure the quality of the CPI in

the future.

Since 2010, Statistics Austria had been working on obtaining scanner data and calculating price

indices from them. Initial negotiations with potential data providers to provide data on a voluntary

basis failed and therefore a legal obligation for mandatory scanner data deliveries had to be

introduced. In December 2019, the Austrian national CPI-Regulation defines the scanner data

requirements and ensures scanner data deliveries by the major retailers, initially by the grocery and

drugstore retail trade. After a two-year test period, scanner data were introduced into the Austrian

CPI and HICP in January 2022, mainly for food and drugstore products.

During the scanner data implementation phase, and particularly during the testing phase, many

decisions have to be taken, and sometimes conflicting methodological and practical considerations

need to be considered. Such decisions include the selection of data providers, the storage of data, the

classification of products, the filtering of data by product or over time and, of course, the choice of

the appropriate index calculation methodology.

It is known that one of the advantages of scanner data is that the time coverage of the data is much

more comprehensive than the spot data from the conventional price surveys in the outlets. Ideally,

scanner data are available for every week of the month. Obviously, from a theoretical point of view,

the more weeks of data we build our index on, the better the representation of the given month.

However, from a practical point of view, given the tight publication deadlines, it is questionable

whether there is enough time to calculate the indices and implement thoroughly all quality control

mechanisms, if one waits until the data of the last calendar week of a given month arrives.

When selecting an index method, a decision has to be made whether to choose between one of the

well-established bilateral methods or a multilateral method that is more suitable for scanner data and

more resistant to chain-drift effects.

Even if a multilateral index is chosen, there are several methods with different advantages and

disadvantages. Once the appropriate method has been selected, the process is still not complete, as

each method can be used under different parameters. It has to be decided which splicing method

should be used each month to link the multilateral index chains, and last but not least, it has to be

decided on how many subsequent months the multilateral index should be based.

This brings us to the focus of the present study, namely the choice of the window length, i.e. the

number of consecutive months on which to base the index. Due to seasonal effects, it seems advisable

to cover a period of at least one year (window = 13) or a multiple of this (2 years, window = 25).

The appropriate window lengths have been tested by several experts. Chessa1 found that the

use of 13-month windows can be sensitive to downward drift, especially in case of seasonal items.

Kevin J. Fox, Peter Levell and Martin O’Connell2 concluded that chain drift bias falls significantly

as the window size increases.

It seems that if methodological considerations alone are taken into account, it is preferable to use a

time-window as long as possible, but at least 25 months. However, it should be considered that even

if a two-year test period precedes the introduction of a new methodology, there may not be sufficient

1 Chessa, A.G. (2021) Extension of multilateral index series over time: Analysis and comparison of methods, Paper

written for the 2021 Meeting of the Group of Experts on Consumer Price Indices 2 Fox, K. J., Levell, P., O’Connell, M. (2022) Multilateral index number methods for Consumer Price Statistics

4

data available. The availability of historical data depends on the willingness of data providers, their

technical capabilities and the regulatory environment. If no historical data is provided, it will take 25

months of scanner data deliveries before testing with 25-month window lengths can begin. In

practice, the length of a test-period before the introduction of scanner data is limited in order to avoid

parallel data collection procedures and to reduce the burden on respondents. Another important factor

is the extent to which the new sector to be covered by the scanner data is characterised by the presence

of seasonal products. According to the literature, primarily indices for seasonal items benefit from

longer window lengths. And it should also be mentioned that longer window lengths require more

computing resources, with a 4-fold difference between 25- and 13-months window length.

For these practical reasons, Statistics Austria has introduced the scanner data into the CPI with a

window length of 13 months. Given the potential advantages and disadvantages of this decision, the

aim of this study is to compare, one year after the introduction of the Scanner data, how the index

would have evolved if a longer, 25-month-window-length had been chosen. Whether there is a

difference, and if so, whether it is significant. The results may provide guidance to other NSIs, who

are still in the early stages of scanner data implementation, on the conditions under which it is

relatively safe to opt for a shorter window length.

All the other decisions along the path of compiling CPIs with scanner data would merit a separate

paper, apparently the window length seems to have the most practical relevance, so after a brief

methodological overview we will look at this topic in more detail.

Description of the data

The Austrian CPI Regulation regulates the periodicity of the delivery of scanner data including shares

of turnover and the survey period. In contrast to the traditional survey, which usually only records

the current prices on a certain day (reference date), the use of scanner data has the character of a data

provision over a certain period of time, for which the achieved turnovers and sold quantities per

article are determined and from all this a so-called unit value (average value) is calculated. In order

to ensure a high degree of homogeneity, the data is required at least on a weekly basis, as well as (for

processing reasons) a prompt transmission of this data. The scope and characteristics of scanner data

require a change of CPI/HICP calculation processes and methods. For this reason, a gradual

introduction of scanner data into the CPI/HICP production process was foreseen, starting with the

scanner data of the enterprises classified in (Ö)NACE classes 47.11 (Retail sale in non-specialised

stores with food, beverages or tobacco predominating) and 47.75 (Retail sale of cosmetic and toiletry

articles in specialised stores), which are selected by cut-off sampling according to the Regulation

(Small and Medium-Sized Enterprises are excluded). The data of the enterprises in these (Ö)NACE

classes were particularly suitable for the introduction of scanner data, as the largest five retailers in

the food and drugstore sectors have a cumulated market share of more than 85% and as the product

groups primarily traded by them have a large weight of approx. 16% in the CPI shopping basket

(including food, beverages, daily consumer goods, drugstore goods).

Table 1 describes the properties and characteristics of scanner data as provided by the obliged

retailers for each item sold per postcode and calendar week. Table 1 - Scanner data variables and values

Variables Example(s)

Article number and EAN/GTIN (if available) 130404 (Art-nr.); 9100000742175 (GTIN)

Article name or description Red Bull 250 ml DS

Content quantity and unit 250 ml

Classification code and name of the article-related product group,

in as much detail as available.

Drinks/alcohol-free drinks/energy drinks

Sales volume 235

Sales value 315 EUR

Date (from - to, or calendar week) 07.11.22-13.11.22; (2022_45)

Postcode to which the local shop relates 1060

5

In 2023, it was decided to extend the scanner data project to include (Ö)NACE classes 47.71

(Retail sale of clothing in specialised stores) and 47.72 (Retail sale of footwear and leather goods in

specialised stores). These markets are more fragmented and therefore traditional data collection in

smaller shops and automated online price collection (web scraping) will continue to be important

alongside scanner data. These areas provide an excellent platform for exploring the potential for

synergy and combination of these three methods. As project in these fields are still in the early

stages, this document focuses on the areas already in production.

Data preparation and verification

The supplied files from the data providers are automatically transmitted, imported and checked.

Reports are created to verify the incoming data. These contain, among other things, the weekly

turnover per data provider, the number of postcodes from which data was delivered during the current

week, the number of product groups sold and the number of new products sold. In the case of

inconsistent data patterns, the data provider is contacted and either the plausibility of the data is

confirmed or the data delivery is repeated.

After the data have undergone all the checking mechanisms, the data are loaded into a DB2 database.

From the article data, an article master data file is created for each supplier. During the weekly data

deliveries from the individual suppliers, it can happen that not only new articles are added, but in

some cases existing article descriptions, product groups, etc. are modified. These changes are

adjusted in the course of the updates/synchronisation.

Product classification

Product classification is one of the most complex tasks of the scanner-data-based method. During

the test period, a blended classification system was developed, based partly on an automated

matching procedure using GTINs and product names, partly on several machine-learning methods

and partly on a manual procedure. At COICOP-5 level, 90-95% of products are classified fully

automated based on three models: Support Vector Machine, Random Forest and Naive Bayes or

more recently on Long Short-Term Memory Neural Network. A disagreement between models

indicates products that are particularly difficult to classify and where a higher probability

misclassification should be expected. Agreement between models, on the other hand, indicates

reliable classification. The COICOP-5 classification of such problematic products, as well as the

classification into finer categories than COICOP-5, is done manually.

Index calculation

There are different approaches - bilateral and multilateral methods - to calculate a price index with

scanner data at the elementary aggregate level.

Bilateral concepts are based on the comparison of two periods (base and comparison period). Such

approaches are based on the standard theory of bilateral price indices. This approach is well

understood, transparent and can be easily explained to users.

However, bilateral indices with scanner data face one or more limitations and drawbacks: limited

product coverage due to decreasing product matches over time because of product discontinuations,

a lack of consideration of item sales in the sample, and also the risk of chain drift in case of updating

the base period or monthly chaining or because of the over-consideration of items with promotional

prices.

These disadvantages of bilateral approaches can be avoided by multilateral methods. In fact, chain

drift is a violation of the multi-period identity test that must be prevented. This test requires that if

6

all prices and quantities in a period T return to their values observed in the base period 0, the index

should show no price change. Multilateral indices satisfy this test3.

During the transition period in 2020 and 2021, we compared a number of bilateral and multilateral

index calculation methods, which allowed us to choose the most suitable solution for us according

to theoretical and practical criteria.

Temporal basis for the indices

An important question is how much data should be used for the index calculation. Since data

providers deliver data on a weekly basis, using data from one, two and three calendar weeks per

month is optional. Four calendar weeks were out of the question, as not every month contains four

full calendar weeks, and the aim was of course to cover the same length of time each month.

Initial test calculations showed that the scanner data indices are somewhat more volatile than

traditional CPI indices. However, the more calendar weeks the index is based on, the more moderate

the fluctuations are. Therefore, it is intended to use as many calendar weeks as possible, i.e. three

calendar weeks per month.

It should also be noted that there is a lead time of several days between the reception and processing

of the data. This may cause practical difficulties in production, especially for meeting publication

deadlines.

To avoid this, the Austrian CPI/HCIP Flash Estimate, which is already published at the end of a

reporting month, is based on scanner data from two calendar weeks of the current month and the

final index is completed with data from the third week.

Content data basis for the indices

Scanner data provides comprehensive data of the entire product range. It may therefore be possible

not to restrict the index calculation to the narrowly defined CPI basket positions (elementary

aggregates), but to compile the index at COICOP-5 level, considering all products belonging to the

respective COICOP category.

It would be attractive to head in this direction, as the indices could then be based on much more

product data, not to mention practical aspects such as the possible simplification of the classification.

However, such a change would also have meant that long time series of elementary aggregate indices

(going back many years) could not be continued, so a transition to COICOP-5-digit level was not

carried out. The index calculation is therefore based on products that correspond to the narrowly

defined CPI basket position descriptions (elementary aggregates). However, the quantity criteria and

other rather narrow product descriptions, that used to help price collectors in shops to select

representative items, are no longer applied. This means for example, that the long grain rice position

does not only consider products in 1 kg packages, but all long grain rice products, regardless of

weight.

Outlier filtering

In addition to the control mechanisms during data entry, an outlier search is carried out among the

calculated unit values to exclude unrealistically high or low unit values before the index calculation.

3 Practical Guide on Multilateral Methods in the HICP Version September 2020, EUROPEAN COMMISSION

EUROSTAT, Directorate C: Macro-economic statistics, Unit C-4: Price statistics. Purchasing Power Parities. Housing

statistics

7

Regionality and aggregation level

The CPI Regulation in Austria defines "survey regions for scanner data deliveries [...] by postcodes

[...] ". The areas which are defined by the 346 postcodes listed in the annex to the CPI Regulation

were selected to ensure representativeness at regional level. This way, the elementary aggregate used

to calculate the index is the unit value of products by retail chain and by region. At this level of

aggregation, nine regional indices are compiled at the federal state level and then aggregated into a

national index. By doing so, the procedure is harmonised with the index calculation methodology of

the other survey types, the calculations of which are still based on a traditional, likewise hierarchical

methodology: cities, regions (federal states) and country. For the regional weights, the same values

are used for all items, regardless of whether it is the traditional or the new methodology.

Figure 1 – Aggregation levels of the CPI/HICP-Index

Index calculation: bilateral vs. multilateral method and window length

Multilateral methods are a special type of index compilation method that can be applied to scanner

data. A price index usually measures the aggregate price change (at CPI basket position or COICOP

5-digit level) of the current period compared to a base period.

In multilateral methods, the aggregate price change between two comparison periods is determined

from prices and quantities observed in several periods, not only in the two comparison periods. This

is the great advantage of multilateral methods: they consider all products that are available in at least

two periods of the observed time interval (time window). Multilateral methods have been used for

many years for geographical price comparisons (e.g. between different countries or regions) of

purchase price parities and have been adapted for temporal comparisons. Scanner data is typically

dynamic. New products are constantly being added to the product range, while obsolete products that

were previously available are removed. Bilateral price index methods compare the prices of products

in the current period with prices in a past base period. However, as time passes, the overlap of

products decreases, making it difficult to calculate price comparisons. One way to increase the

8

overlap of products is to frequently update the base period and chain the resulting bilateral price

indices. However, it has been shown that such an approach can be subject to chain drift, especially

when products are explicitly weighted. Chained indices often lead to systematic distortions and

therefore do not measure a plausible price change over longer periods.

Multilateral methods offer a solution to the problems of bilateral approaches. They take into account

all products that are available in the different periods. They allow the explicit weighting of each

product according to its importance in each period. Finally, they avoid the chain drift problems that

arise with chained bilateral indices. Given these advantages, multilateral methods have been

recommended as appropriate price index compilation methods for transaction data, despite their

additional complexity compared to bilateral methods4.

In order to use multilateral methods in the compilation of price indices, some data requirements must

be met:

• Access to historical data: since multilateral approaches use the data of many months at the

same time (time window), sufficiently long data series from the past are required to test and

implement these methods (therefore the relatively long test period and implementation phase

from December 2019 to December 2021).

• The raw data received must be pre-processed and classified (see check and classification steps

above). As the multilateral methods are essentially based on all transactions, it is not

necessary to select items by means of random sampling or to filter them out due to low

turnover. Each product is included according to its importance. In practice, however, item

records will still be excluded during processing and data control mechanism, if important

information is missing (e.g. the turnover or commodity group code) or if they contain

inconsistent values.

A multilateral index is constructed over a given time window length T consisting of a sequence of

consecutive months. The index formula takes as input the prices (unit values) and quantities or

turnover of the individual products available in the months of the given time window.

The first step in the calculation of all multilateral indices is to determine the length of the time window,

which in practice means how many months of data a particular calculation should take into account.

Given the seasonality of certain products, one of the most commonly used time window length is the

number of months in the year plus 1, i.e. 13. This time window allows products that are only sold in

one month of the year to be linked and thus have an impact on the index. Of course, it is possible to

calculate with a longer time window (e.g. two years + 1 = 25), but this implies a longer data series

and more calculation effort. Our calculations were tested with different time windows, but for the

reasons given in the background chapter (lack of historical data, not sufficiently long transition

period) we considered 13 to be the optimal choice.

We tested the three theoretically well-founded methods recommended by Eurostat4, the Gini, Eltetö

and Köves, and Szulc (GEKS), the Weighted Time Product Dummy (WTPD), and the Geary-Khamis

(GK) index, respectively.

As we found only minor differences between the indices for most items, we have opted for the GEKS

index for practical reasons. Although all multilateral indices are based on a relatively complex

methodological background, the logic of the GEKS index is most similar to that of the traditional

bilateral indices and is therefore the easiest to communicate and to comprehend.

To calculate the GEKS index5, a matrix of bilateral indices at a given time window must be

constructed, and the corresponding bilateral index must be calculated for all possible pairs of

4 Guide on Multilateral Methods in the Harmonised Index of Consumer Prices, 2022 edition, Luxembourg:

Publications Office of the European Union

https://ec.europa.eu/eurostat/web/products-manuals-and-guidelines/-/ks-gq-21-020 5 Whenever a GEKS index is calculated, it is linked to a bilateral index method. This leads to many variants of the

GEKS (e.g. GEKS-Fisher, GEKS-Törnqvist, GEKS-Jevons). The different variants are usually close to each other. It

9

months. This implies 13x13 = 169 index calculations for a time window of 13. If we consider the

symmetry of the matrix and the fact that the diagonals of the matrix are all equally 1, this means in

practice that 78 bilateral indices are calculated. At a window length of 25 months, the number of

bilateral indices to be calculated increases by a factor of almost four (25x25-25)/2 = 300. The value

of the GEKS index for a given time is the geometric mean of the corresponding bilateral indices.

The GEKS index between time periods 0 and t is calculated for a given time window W as follows:

I &#x1d43a;&#x1d438;&#x1d43e;&#x1d446; &#x1d44a; 0,&#x1d461; = ∏ (&#x1d43c;0,&#x1d458;

&#x1d458;∈&#x1d44a; ∗ &#x1d43c;&#x1d458;,&#x1d461; )

1 |&#x1d464;|

Linking index chains of the old method with index chains of the new method

Three approaches are available for linking chain indices based on different calculation methods:

• One-month overlap: where a single month, the last month of the old method, is used as the

overlap

• Annual overlap: where a whole year is used as overlap

• Over the year: where always the equivalent month of the previous year is used as overlap

For annual overlap, the aim is for the change in the linked index over the year to be as similar as

possible to the new index. As the average annual index is an important analytical value for users,

we would have preferred to make the linking based on the annual overlap.

However, given the current European legal framework, monthly overlap is the standard method for

linking the conventional and the new index. Both the traditional surveyed data and the new scanner

data index were calculated simultaneously during the test period and in the last month before the

introduction of the new method into the production, the December index 2021 of the old and new

methods were set equal.

In January 2022, scanner data were successfully introduced into the Austrian CPI along these

parameters. In the following, we will turn to the subject of our analysis, i.e. what happens if one of

the parameters, the window length, is changed.

Alternative window length: 25-month vs. 13-month windows length

For the comparison, the GEKS index was calculated with exactly the same parameters and using

the same data, only the window length was modified from 13 to 25 months. The resulting index

was linked to the old index using exactly the same linking method as the index with 13-month

window lengths. We calculated annual inflation rates from the two indices for each month in 2022

and compared these annual inflation rates and their averages. The differences were compared at

different COICOP levels, starting from 1-digit level (total CPI) up to COICOP 5-igit level. The

comparison has been restricted, as appropriate, to the COICOP groups involved in the introduction

of the scanner data.

was decided to use the GEKS method with the Törnqvist index, accordingly by GEKS we actually mean GEKS-

Törnqvist.

10

Impact of 25-month windows length on the overall index

Table 2 - Number of COICOP categories affected by introduction of scanner data at different COICOP levels

COICOP level Number of categories Average weight of the

scanner data

1 1 16%

2 6 30%

3 7 65%

4 19 99%

5 62 100%

COICOP 1-digit level covers the entire consumer basket. The coverage of the scanner data on this

level is 16%. At 2-digit level, the scanner data covers for instance division 01 (food and non-

alcoholic beverages), and partly division 02 (alcoholic beverages, tobacco), or division 12

(miscellaneous goods and services)

The coverage for food is close to 100%, while for example the coverage for group 12 is 15%. The

average for the 6 groups is 30% as shown in the table. Once again it is important to note that

groups not covered at all by the scanner data (e.g. 07 Transport) are not included in the average.

The lower the COICOP level, the higher the coverage of the groups. At COICOP 5-igit level, the

coverage of the groups concerned is 100%.

Of course, if the indices in a given group are calculated using not only scanner data, this reduces

the impact of the 25-month index calculation, as the sub-indices calculated using the traditional

method are not affected by the method applied to the scanner data. Still, it is very important to see

what impact the 25-month window length would have had on the overall index.

Figure 2 – Difference in average annual inflation by COICOP level: window length 25 vs. 13 (2022)

Ø WL = 25 8,64 5,44 6,84 8,52 9,86

Ø WL = 13 8,63 5,42 6,81 8,45 9,80

∆(25-13) +0,01 +0,02 +0,03 +0,07 +0,06

The box-plot in figure 2 shows the differences in average inflation in 2022 at different COICOP

levels depending on whether a 13- or 22-month window length is used. The grey dots show the

differences between each COICOP category. A positive difference means that inflation calculated

11

with a 25-month window length is bigger, and a negative difference means the opposite. The

horizontal jittering of the points along the symmetry axes of the box plots is for illustrative reasons

purposes only, so that the overlapping points can be seen. The lower the level of COICOP, the

greater the dispersion of differences around 0. The points are spread in both positive and negative

directions around 0, but there are more categories of COICOPs with a positive spread. Of 62

COICOP 5-digit sub-classes, 40 have positive differences and only 22 have negative differences

The table below the plot in figure 2 shows that the average difference at COICOP 5-digit level is

only +0,06 percentage points. Differences at this level range from -1,16 to +0,9 percentage points.

At lower COICOP levels the difference is even smaller: the average annual inflation would have

been 0,01 percentage points higher (8,64% instead of 8,63%) if the longer 25-month window

length had been used at the time of implementation.

Figure 3 – Difference in annual inflation by COICOP level and by month (2022)

COICOP 1 2 3 4 5

January 2022

Ø WL = 25 4,96 2,89 2,65 3,17 3,31

Ø WL = 13 4,95 2,87 2,57 3,10 3,23

∆(25-13) +0,01 +0,02 +0,08 +0,07 +0,08

December 2022

Ø WL = 25 10,40 7,98 10,55 14,03 16,74

Ø WL = 13 10,37 7,95 10,50 13,81 16,62

∆(25-13) +0,03 +0,03 +0,05 +0,22 +0,12

If we express the difference between the two methods in terms of the monthly value of annual

inflation instead of the average annual inflation (see Figure 3), we see that the difference at

COICOP 1 level increases from +0,01 in January to +0,03 percentage points in December. The

magnitude of the average difference increases more significantly at the lower COICOP levels (4 to

5), from 0,07 to 0,08 percentage points to 0,12 to 0,22 percentage points, i.e. annual inflation with a

25-month window length is generally higher than its counterpart with a 13-month window length.

More than the average difference is revealed by the increasing variances in the monthly charts. At

COICIOP 5 level, the differences in January vary between -0,58 and 1,16 percentage points, in

December they range between -2,03 and 2,63.

12

It is important to note that in January, annual inflation in the COICOP 5 categories involved was

only 3,2-3,3 percent, depending on the window-length, while at the end of the year it was 16,6-16,7

percent. In other words, the difference between the two methodologies seems to be related to the

rate of price increases.

Impact of 25-month windows length on CPI food and on food and non-alcoholic beverages

Although it is very important to see how the length of the 25-month window would have affected

the overall index, it is nevertheless a logical step to limit our analysis to the COICOP categories

that were fully covered by scanner data after the methodological change. Since the coverage of

scanner data is complete in Division 01 (food and non-alcoholic beverages), we focus our analysis

on this division.

Table 3 - Number of COICOP categories affected by scanner data at different COICOP levels

COICOP level Number of categories Average weight of the

scanner data

2 1 100%

3 2 100%

4 11 100%

5 50 100%

In Table 3 we see that we have fewer categories in the analysis, but they are all fully covered with

scanner data. In this case, it should be noted that the lowest level of examination is the division, so

in the following figures and tables we will show four COICOP levels instead of the previous five.

Figure 4 – Difference in average annual inflation by COICOP level: window length 25 vs. 13 food only (2022)

Ø WL = 25 11,85 12,11 11,97 11,38

Ø WL = 13 11,79 12,07 11,97 11,33

∆(25-13) +0,06 0,04 0,00 +0,05

The average annual inflation in division 01 (food and non-alcoholic beverages) calculated with 25-

month window lengths is +0,06 percentage points higher than the inflation calculated with 13-

13

month window lengths. At COICOP 5-digit level, we again see relatively larger differences in the

range -1,16 to +0,76 percentage points.

Figure 5 – Difference in annual inflation by COICOP level and by month – food only (2022)

COICOP 2 3 4 5

January 2022

Ø WL = 25 4,83 4,98 4,93 4,01

Ø WL = 13 4,75 4,92 4,87 3,94

∆(25-13) +0,08 +0,02 +0,06 +0,07

December 2022

Ø WL = 25 18,53 17,62 18,26 18,88

Ø WL = 13 18,40 17,58 18,18 18,81

∆(25-13) +0,13 +0,04 +0,08 +0,07

The monthly annual inflation values obtained by the two methods show the same picture as before

for the average annual inflation: the average differences are very close to zero, but the spread

around 0 increases over COICOP levels and time, i.e., as inflation increases over the period we

examine. In December, the difference between the two methods ranges between -2,03 and 1,60

percentage points, while the average difference remains close to zero at +0,07 percentage points.

Below, we examine the relationship between the magnitude of inflation and the magnitude of

differences between method results. Later, we examine which COICOP groups are responsible for

the larger differences. For this purpose, we use December as a base, when we the largest

differences could be observed.

Impact of 25-month windows length in an environment of rising inflation

In the chart below, each point represents a COICOP 5 category for 12 consecutive months (January

to December 2022). The x-axis shows the extent of inflation for the respective month (calculated at

window length 13) for the respective COICOP 5 category, and the y-axis shows the differences

between annual inflation at window length 25 and 13. The relationship is not very obvious visually,

but it is clear that below 5% inflation, the vast majority of points are close to 0, while at high

inflation, above 20%, points close to 0 are relatively less frequent.

14

Figure 6 – The difference according to the level of annual inflation

If the graph is slightly rearranged to take the absolute value of both the x-axis and the y-axis, i.e., to

remove the sign of both the price change and the difference, the relationship between the two

variables becomes somewhat clearer.

Figure 7 – The absolute difference according to the absolute value of annual inflation

The regression line, albeit with a low R2 shows that there is a weak positive relationship between

the magnitude of the price change and the magnitude of the difference between the methods.

This is illustrated in the table below, where price changes are broken down into categories and

differences are evaluated accordingly. If the price change is between 0 and 5 percent, the average

15

difference is 0,23 percentage points, increasing to 0,45 percentage points if the annual price change

is 20 percent or higher.

Table 4 - The absolute difference by absolute value of annual inflation, split by categories

Annual inflation

(absolute value of change)

Absolute value of

difference

0-5 0,23

5-10 0,29

10-20 0,34

20+ 0,45

Impact of 25-month windows and seasonality

The largest positive difference in the December inflation data is for ice cream, where annual

inflation is 1,60 percentage points higher at 25-month window lengths than at shorter window

lengths. The second largest positive difference is for yogurt and the third largest is for preserved

fish. The largest negative difference is for edible oils, where annual inflation is 2,03 percentage

points lower at 25-month window lengths than at the 13-month window lengths. For vegetable oils,

annual inflation was well above average, but this is not true for all COICOP categories shown in

the figure.

Figure 8 – Top and Bottom COICOP Subclasses at 5-digit level according to magnitude of difference of annual

inflation in December 2022

COICOP 5-digit level is not the elementary aggregate where the index calculation is done, so it is

worth looking at the top differences at this lowest elementary level to see the negative and positive

differences. The 50 COICOP 5 categories (see in Table 3) contain a total of 130 elementary

aggregates.

16

Figure 9 – Top and Bottom elementary aggregates according to magnitude of difference of annual inflation in

December 2022

We see that at the elementary aggregate level five of the eleven categories shown are some kind of

fruit, but at the higher COICOP 5-digit level the category fruit (01161) do not appear in the top

places because the positive and negative differences neutralize each other. The most COICOP 5

categories contain only a maximum of 3 elementary aggregates, but fruit is one of the exceptions

with 13 positions, so such a balancing mechanism may rather play a role. Besides fruit, there are

other products such as ice cream and canned peaches that are also seasonal. This is in line with the

literature, which shows that index calculation with long time windows can gain importance,

especially for seasonal products. To avoid balancing mechanisms it is appropriate to continue our

analysis at this more detailed elementary aggregate level.

If we can express seasonality in terms of some quantifiable indicator, we can get a more accurate

picture of the strength of the relationship between seasonality and the deviation of annual inflation

calculated over a 25- and 13-month window. Two indicators have been defined to express

seasonality. One of these is based on the volatility of income data per elementary aggregate over

the 25-month window length. This was defined using the standard deviation of revenues. Since

each elementary aggregate generates different revenue magnitudes, we finally chose as one of the

indicators the coefficient of variation (CV), also known as relative standard deviation (RSD),

defined as the ratio of the standard deviation to the mean. The other indicator measuring

seasonality measures the average number of months per elementary aggregate that products are in

supply over the period defined by the 25-month window length. For seasonal products, this value is

lower because the products are not in supply out of season or are substituted by alternative products

(e.g. imported products for fruit).

The strength of the relationship between these variables was measured using Pearson's correlation.

In addition to seasonality, we have also included in our analysis the magnitude of annual inflation,

which we have already seen is slightly positive related to the magnitude of the difference between

the methods. Our aim is to put this weak relationship in context once again by understanding the

strength of the relationship between seasonality and the difference between the methods. We

express both the difference and annual inflation in absolute terms, as before at Figure 7.

17

Table 5 - Pearson's correlation matrix at elementary aggregate level

data based on 12 Month from January to December

Difference

(abs)

Revenue

(RSD)

Number of

months on sale

Annual Inflation

(abs)

Difference (abs) 1,00 0,55

<,0001 -0,33 <,0001

0,18 <,0001

Revenue relative

standard deviation (RSD)

0,55 <,0001

1,00 -0,50 <,0001

0,02 0,4418

Number of months on sale -0,33 <,0001

-0,50 <,0001

1,00 0,03 0,2014

Annual Inflation (abs) 0,18 <,0001

0,02 0,4418

0,03 0,2014

1,00

The correlation matrix shows the pairwise correlations between each variable. In the first matrix,

all 12 months considered are included.

There is a strong positive linear relationship between the absolute value of the difference

(difference abs) in yearly inflation rates calculated with a 25-month and a 13-month window length

and the relative standard deviation of the revenues of each elementary aggregate. This means that

the higher the monthly volatility of revenues, the larger the difference between the two methods.

There is also a significant linear relationship between our other indicator of seasonality and the

absolute difference, but the direction is negative and the relationship is less strong. The negative

direction is consistent with our expectations, since the fewer months on average a product is on

sale, the more we can assume the seasonal character of the elementary aggregate, which is

associated with a larger absolute difference. Consistent with the above, our two seasonal indicators

are also strongly negatively correlated.

There is also a positive relationship between the magnitude of the annual price change, currently

defined as the absolute value of annual inflation measured by the 13-window-length method, and

the magnitude of the difference between the two methods, but the strength of the relationship is not

robust. This is consistent with Figure 5, which showed that in the first half of the year, when annual

inflation was typically lower, we measured smaller differences between the methods than in the

second half of the year when inflation was higher.

Table 6 - Pearson's correlation matrix at elementary aggregate level

data based on one-month December 2022

Difference

(abs)

Revenue

(RSD)

Number of

months on sale

Annual Inflation

(abs)

Difference (abs) 1,00 0,31

0,0003 -0,17 0,06

0,01 0,9116

Revenue relative

standard deviation (RSD))

0,31 0,0003

1,00 -0,50 <,0001

-0,10 0,2787

Number of months on sale -0,17 0,06

-0,50 <,0001

1,00 0,26 0,0025

Annual Inflation (abs) 0,01 0,9116

-0,10 0,2787

0,26 0,0025

1,00

If only December data are used, the seasonality indicators show a similar relationship with the

difference between the method as for 12 months, but the strength of the relationship is weaker.

However, the magnitude of annual inflation in December is not correlated with the difference in

methods.

Summarising what we have observed so far, the annual inflation rates derived from the 25-month

and 13-month window indices do not differ significantly. There are some small positive and

negative differences, but these almost completely neutralize each other, especially at higher levels

of aggregation. Nevertheless, overall, we have measured higher annual inflation for more

18

categories than lower annual inflation using the 25-month windows. We also found that when an

elementary aggregate is seasonal, the difference between the two methods becomes larger.

However, we are not yet able to conclude whether the difference will be more positive or negative

in the case of seasonality, i.e. whether annual inflation calculated with a 25-month window length

will be higher or lower. Among the Top aggregates on Figure 6, we have seen examples of both the

former and the latter.

To determine whether the difference is positive or negative, we used an additional seasonality

indicator formed from our two previous seasonal variables. This indicator takes into account both

the relative standard deviation of revenues and the number of months in which products are on sale.

Saisonality = σ(revenue)

µ(revenue) X (1 −

µ(number of months on sale)

25 )

We divided the 130 elementary aggregates into 5 quintiles along this new seasonality variable and

evaluated the differences between the methods. To identify the signs, this time we used the original

differences rather than the absolute values.

Figure 10 – Seasonality and difference in annual inflation on elementary aggregate level for food,

December 2022

Apparently, the top 20 percent of elementary aggregates (quintile 5), which according to our

indicator for seasonality can be considered as most likely to be seasonal, show on average a larger

positive difference than the other less seasonal elementary aggregates. This top group includes

strawberries, peaches, oranges, chocolate, veal, melons, or ice cream, among others. Thus, the

analysis shows that while there may be differences between the two methods at the level of certain

elemental aggregates for non-seasonal products, these differences almost completely compensate

each other.

For seasonal products, the overall picture is that the method with 25-month window length,

although dependent on elementary aggregates, tends to measure higher inflation. The average

deviation is +0,34 percentage points for the 25-month window length, while the deviation of

quintiles 1-3 is much closer to 0, ranging from +0,08 to +0,19 percentage points. The fourth

quintile shows a deviation of -0,11 percentage points.

19

Conclusion

• The use of scanner data in consumer price statistics is seen as a major qualitative

improvement. After several years of preparation, scanner data have been introduced into the

Austrian CPI and HICP in January 2022. In this paper we focused on the decision-making

process involved in selecting the appropriate index calculation methodology, specifically the

choice of the window length. For practical reasons, Statistics Austria introduced scanner data

into the CPI with a 13-month window length using the GEKS index methodology. The aim of

this study was to compare, one year after the introduction of the scanner data, how the index

would have evolved if a longer, 25-month window length had been chosen, to provide

guidance to other NSIs in the early stages of implementation.

• We compared two consumer price indices calculated using different window lengths (13

months and 25 months) to see the impact of the window length on the annual inflation rates.

Annual inflation rates were calculated for each month in 2022 and compared at different

COICOP levels, ranging from 1-digit level (total CPI) to 5-digit level. The scanner data

covered only 16% of the consumer basket at COICOP 1-digit level, while the coverage was

100% at 5-digit level within the division 01 for food. We found that the difference between the

two methodologies seems to be slightly related to the rate of price increases, and the impact of

the 25-month window length on the overall index was small. The difference in average annual

inflation was only +0,01 percentage points higher if the longer window length had been used

at the time of implementation. The differences at the COICOP 5-digit level ranged from -1,16

to +0,9 percentage points, with an average difference of only +0,06 percentage points.

• Later we limited our analysis to COICOP categories that are fully covered by scanner data,

and focused on food and non-alcoholic beverages. The average annual inflation in COICOP

division 01 (food and non-alcoholic beverages) calculated with 25-month window lengths was

+0,06 percentage points higher than the inflation calculated with 13-month window lengths.

• As 2022 showed a gradually increasing inflation path each month, the question arose as to

whether the increasing inflation had an impact on the difference in methods. We find that there

is a weak positive relationship between the magnitude of the price change and the magnitude

of the difference between the methods at COICOP 5-digit level, however, this relationship

does not tell us whether the difference is negative or positive.

• When listing the COICOP 5-digit categories with the largest differences, it was found that,

contrary to expectations, the most seasonal category "fruit" was not among the top categories.

This prompted us to continue the analysis at an even finer level, namely at the elementary

aggregate level. Here we have already found that many fruit elementary aggregates have the

largest positive and negative differences between the methods, but at the higher COICOP 5-

digit level the positive and negative differences neutralize each other.

• We used two indicators to express seasonality in relation to the deviation of annual inflation

calculated over a 25- and 13-month window. The indicators were the relative standard

deviation of the revenues and the average number of months per elementary aggregate that

products were in supply. Pearson's correlation was used to measure the strength of the

relationship between these variables. When we studied the differences between the methods in

all 12 months at all food elementary aggregates the correlation matrix showed a strong

positive linear relationship between the absolute value of the differences in yearly inflation

rates and the relative standard deviation of the revenue. There was also a significant linear

relationship between the other indicator of seasonality and the absolute difference, but the

direction was negative and the relationship was less strong. Finally, there was a positive

relationship between the magnitude of the annual price change and the magnitude of the

difference between the two methods, but the strength of the relationship was not robust. Using

only one-month December data, the seasonality indicators showed a similar relationship with

20

the difference between the method as for the 12 months, but the strength of the relationship is

weaker.

• Finally, a correlation between seasonality and the difference in methods was found that

provides also information on the direction of the difference. The elementary aggregates were

grouped into quintiles of five equal groups based on seasonality. For the most seasonal

products (quintile 5), the general picture is that the 25-month window length method, although

dependent on the elementary aggregates, generally measures higher annual inflation. The

average deviation is +0,34 percentage points for the 25-month window length, while the

deviation for quintiles 1-3 is much closer to 0, ranging between +0,08 and +0,19 percentage

points. The fourth quintile shows a deviation of -0,11 percentage points.

• The annual inflation rates derived from the 25-month and 13-month window indices do not

differ significantly. There are some small positive and negative differences, but these almost

completely compensate each other, especially at higher levels of aggregation. Overall,

however, the annual inflation of the lower COICOP level categories is more often higher than

lower for a 25-month window than for a 13-month window. We also found that when an

elementary aggregate is seasonal, the difference between the two methods becomes larger and

mostly the method with longer window length measures higher inflation.

• Overall, the differences that we found between the two methods are small enough to

recommend the introduction of scanner data with 13-month window length for saving time and

resources.

Introduction of Scanner Data into Austrian CPI and HICP: Practical implementation experience

Languages and translations
English

www.statistik.at

Independent statistics for fact-based decisions

Introduction of Scanner Data into

Austrian CPI and HICP:

Practical implementation

experience

Window length 13 vs. 25 month

Adam Tardos

Statistics Austria

Department of Price and Parity

Meeting of the Group of Experts on CPI

07. Juni 2023

Page 2www.statistik.at

Why Window-length?

www.statistik.at Page 3

• Multilateral methods (GEKS, WTPD, GK)

• voluntary data provision is not the reality

• legislation or regulation is required to ensure the regular provision of data

• regulation is not enough, a constructive and cooperative relationship with data providers is needed to ensure the right quality of data

• an appropriate infrastructure is needed to store and process the data

• machine-learning methods

• manuel supervision

Challenges faced when implementing scanner data

Lack of regulation

Counter- interest of

potential data providers

Big data volume

Mass Product Classification

New data source requires

new index calculation methods

P ro

b le

m s

So lu

ti o

n s

www.statistik.at Page 4

Why window-length?

• It has of great practical importance when introducing scanner data, namely how many months of data are needed to be collected in advance.

• While other methodological choices can be made relatively freely, there is a trade-off in choosing the length of the time window: a longer time window is recommended in the literature, but in practice there is often not enough time to collect long data series.

Page 5www.statistik.at

Implementation of Scanner Data

www.statistik.at Page 6

Timeline of Austrian scanner data project

2010

Start of discussions with stakeholders and potential

data providers about voluntary data transmission

Transition period

12.2019

The new CPI regulation enters into force:

the start of regular scanner data delivery

in the food and drugstore sector

01.2022

Introduction of food and drugstore scanner data into the Austrian CPI

and HICP

2012

Data acquisition from AC Nielsen, start of

scanner data analysis

2016

Drafting first regulatory proposals

2013

Start of continuous (unfruitful) negotiations about voluntary

data transmissions (until 2017)

www.statistik.at Page 7

Regulation: a national compromise was reached between all stakeholders. Since December 2019, the CPI Regulation governs data collection by means of scanner data. This is not

the best possible regulation, but it could win the cooperation of the companies.

Austrian regulation defines:

The size of enterprise obliged to provide data: cut-off sampling excluding Small and Medium Enterprises.

The periodicity of the delivery of scanner data: weekly

The survey regions for the scanner data deliveries: 346 postcodes were selected in such a way as to ensure representativeness at regional level. Around 43% of the Austrian population live in the selected areas

Each country will have to negotiate a compromise with stakeholders that is acceptable to all.

www.statistik.at Page 8

Selected sectors: food, beverages, and cosmetic and toiletry articles

These sectors are highly concentrated in Austria, where the top 5 players have a market share of 80-90%, it is an ideal choice for the introduction of scanner data.

Relatively few data providers need to be involved, while these commodity groups have 15% weight in the CPI index basket.

There is a significant saving of resources, as in these areas regional price collection was carried out, involving a significant number of price collectors.

www.statistik.at Page 9

• Secure servers

• Stroarge privacy

• Data protection

Data processing

Automated data transfer

Weekly tasks:

• Check for completeness

• Search for anomaly

• Outlier check

Data Import, Review, Quality control

• verified data is loaded in database

Database upload,

syn- chronisation

Monthly task:

• automated matching procedure

• machine-learning methods

• manual procedure

Classification

www.statistik.at Page 10

Index-method Methodology

Bilateral Multilateral

Static annual weight

Dynamic monthly weight

GEKSWTPD GK

The two-year transition period did not allow us to experiment with the longer 25-month window, but we did not want to wait another year to introduce scanner data.

Country level Regional level

Windows length: 25 month

Windows length: 13 month

Page 11www.statistik.at

Alternative Window Length:

25-month vs. 13-month Windows

Length

www.statistik.at Page 12

Average annual inflation would have been only 0,01 percentage points higher with a longer time-window

Ø WL = 25 8,64 5,44 6,84 8,52 9,86

Ø WL = 13 8,63 5,42 6,81 8,45 9,80

∆(25-13) +0,01 +0,02 +0,03 +0,07 +0,06

The lower the level of COICOP groups we look at, the greater the dispersion of differences around 0.

The average difference at COICOP level 5 is only +0,06 percentage points.

Of the 62 COICOP 5 categories, 40 have positive differences and only 22 have negative differences.

Difference in average annual inflation by COICOP level: window length 25 vs. 13 (2022)

www.statistik.at Page 13

Monthly annual inflation shows increasing differences, with inflation rising as the year progresses.

1 2 3 4 5 January 2022

Ø WL = 25 4,96 2,89 2,65 3,17 3,31 Ø WL = 13 4,95 2,87 2,57 3,10 3,23 ∆(25-13) +0,01 +0,02 +0,08 +0,07 +0,08

December 2022

Ø WL = 25 10,40 7,98 10,55 14,03 16,74 Ø WL = 13 10,37 7,95 10,50 13,81 16,62 ∆(25-13) +0,03 +0,03 +0,05 +0,22 +0,12

The monthly annual inflation data indicate a larger difference compared to the annual average inflation.

At COICIOP 5 level, the differences in January vary between -0,58 and 1,16 percentage points, in December they range between -2,03 and 2,63.

The annual inflation in the COICOP 5 categories involved was only 3,2 percent in January, while at the end of the year it was 16,6 percent.

The extent of the difference between the two methods is somewhat influenced by the rate of inflation, but at COICOP 1 level, even with high inflation in December, the difference is not large, only +0,03 percentage points.

www.statistik.at Page 14

Average annual inflation by food would have been 0,06 percentage points higher with a longer time-window

Ø WL = 25 11,85 12,11 11,97 11,38

Ø WL = 13 11,79 12,07 11,97 11,33

∆(25-13) +0,06 0,04 0,00 +0,05

This chart represents fewer categories, but they are all fully covered with scanner data.

At COICOP Level 5, the average difference between the results of the methods is +0,05 percentage points, but again the results for each category show a relatively larger difference of between -1,16 and +0,76 percentage points.

Difference in average annual inflation by COICOP

level: window length 25 vs. 13 food only (2022)

www.statistik.at Page 15

There is only a weak positive relationship between the level of inflation and the size of the difference between the methods.

Annual inflation (absolute value of change)

Absolute value of difference

0-5 0,23

5-10 0,29

10-20 0,34

20+ 0,45

The regression line, albeit with a low R2 shows that there is a weak positive relationship between the magnitude of the price change and the magnitude of the difference between the methods.

In the table the price changes are broken down into categories and differences are evaluated accordingly. If the price change is between 0 and 5 percent, the average difference is 0,23 percentage points, increasing to 0,45 percentage points if the annual price change is 20 percent or higher.

Absolute difference according to the absolute value of annual inflation

www.statistik.at Page 16

Contrary to our expectations, there are no classic seasonal products at COICOP 5 level in the categories with the greatest differences.

The largest positive difference in the December inflation data is for ice cream, where annual inflation is 1,60 percentage points higher at 25-month window lengths than at shorter window lengths. The second largest positive difference is for yogurt and the third largest is for preserved fish.

The largest negative difference is for edible oils, where annual inflation is 2,03 percentage points lower at 25- month window lengths than at the 13-month window lengths. For vegetable oils, annual inflation was well above average, but this is not true for all COICOP categories shown in the figure.

COICOP level 5 is not the elementary aggregate where the index calculation is done, so it is worth looking at the top differences at this lowest elementary. It is conceivable that the positive and negative differences cancel each other out in the COICOP 5 groups covering several seasonal elementary aggregates.

Top and bottom COICOP subclasses at level 5 according to the size of the difference in annual inflation in December 2022

www.statistik.at Page 17

As expected, at the level of elementary aggregates, seasonal products dominate the categories with the largest differences.

At the elementary aggregate level five of the eleven categories shown are some kind of fruit, but at the higher COICOP 5-digit level the category fruit (01161) do not appear in the top places because the positive and negative differences neutralize each other.

Besides fruit, there are other products such as ice cream and canned peaches that are also seasonal.

The frequent appearance of seasonal elementary aggregates is in line with the literature which shows that index calculation with long time windows can become more important, especially for seasonal products.

Top and bottom elementary aggregates by size of annual inflation differential in December 2022

www.statistik.at Page 18

In the case of the most seasonal elementary aggregates, the window lengths chosen make a difference.

Seasonality was expressed in terms of some quantifiable indicator: This indicator takes into account both the relative standard deviation of revenues and the number of months in which products are on sale in the window.

130 elementary aggregates calculated based on scanner data were devided into 5 quintiles along this new seasonality variable.

Apparently, the top 20 percent of elementary aggregates (quintile 5), which according to the indicator for seasonality can be considered as most likely to be seasonal, show on average a larger positive difference than the other less seasonal elementary aggregates. This top group includes strawberries, peaches, oranges, chocolate, veal, melons, or ice cream, among others.

www.statistik.at Page 19

Conclusion

• The annual inflation rates derived from the 25-month and 13-month window indices do not

differ significantly. There are some small positive and negative differences, but these almost

completely compensate each other, especially at higher levels of aggregation.

• However, the annual inflation of the lower COICOP level categories is more often higher

than lower for a 25-month window than for a 13-month window.

• We also found that when an elementary aggregate is seasonal, the difference between the

two methods becomes larger and mostly the method with longer window length measures

higher inflation.

• Overall, the differences that we found between the two methods are small enough to

recommend the introduction of scanner data with 13-month window length for saving time

and resources.

www.statistik.at

Independent statistics for fact-based decisions

Questions and Discussion

Adam Tardos

Statistics Austria, Team Price

Contact: [email protected]

Introduction of Scanner Data into Austrian CPI and HICP: Practical implementation experience

Languages and translations
English

www.statistik.at

Independent statistics for fact-based decisions

Introduction of Scanner Data into Austrian CPI and HICP: Practical implementation experience

Window length 13 vs. 25 month

Adam Tardos Statistics Austria

Department of Price and Parity

Meeting of the Group of Experts on CPI 07. Juni 2023

Page 2www.statistik.at

Why Window-length?

www.statistik.at Page 3

• Multilateral methods (GEKS, WTPD, GK)

• voluntary data provision is not the reality

• legislation or regulation is required to ensure the regular provision of data

• regulation is not enough, a constructive and cooperative relationship with data providers is needed to ensure the right quality of data

• an appropriate infrastructure is needed to store and process the data

• machine-learning methods

• manuel supervision

Challenges faced when implementing scanner data Lack of

regulation Counter-

interest of potential data

providers

Big data volume

Mass Product Classification

New data source requires

new index calculation methods

Pr ob

le m

s So

lu tio

ns

www.statistik.at Page 4

Why window-length?

ĞẼȈẼ İ ḠḤĞI İ ḠḤĞǦỊ ḠḤĜḪẼȈḠI Ḥ

Î GẼḤḤǦĬ

ĞḠĜĜǦĬǦḤGǦ

ḪǦḤĢȈĠ

GI ḠGI IJḪǦḮǦḪ

ẼḤḤÏ ẼḪ

ĤǦȈĠI ĞÎ IJĬI ĞÏ GȈÎ

ĀǺÄĤI ḤȈĠ

ĞḠĜĜǦĬǦḤGǦÎ IJĬḠGǦ

ȈḠĤǦĤI ḤȈĠÎ

ḠḤĞḠGǦÎ

IJI ḠḤȈÎ ĤǦȈĠI Ğ

ǦḪǦĤǦḤȈẼĬÌ

ẼḮ ǦĬẼĢǦ

ĬǦḪẼȈḠI ḤÎ ĠḠIJ

IJǦĬGǦḤȈẼĢǦ

IJǦĬḠI ĞGẼḪGÏ ḪẼȈǦĞ

GIJḠ

ĠḠĢĠǦĬ IJI Î ḠȈḠḮǦ

GẼȈǦĢI ĬḠǦÎ

ĤI ḤȈĠ ĤÏ ḪȈḠḪẼȈǦĬẼḪ

IJĬI ĞÏ GȈ

Î ǦẼÎ I ḤẼḪḠȈÌ ÏÎǦĞ

ẼĢĢĬǦĢẼȈǦ

FẼÎǦĞ

GẼḪGÏḪẼȈḠIḤ

ĞǦGǦĤFǦĬ

bilateral

13-month

deviation

number

seasonal

change

food

magnitude

negative

different

figure

• It has of great practical importance when introducing scanner data, namely how many months of data are needed to be collected in advance.

• While other methodological choices can be made relatively freely, there is a trade-off in choosing the length of the time window: a longer time window is recommended in the literature, but in practice there is often not enough time to collect long data series.

Page 5www.statistik.at

Implementation of Scanner Data

www.statistik.at Page 6

Timeline of Austrian scanner data project

2010

Start of discussions with stakeholders and potential

data providers about voluntary data transmission

Transition period

12.2019

The new CPI regulation enters into force:

the start of regular scanner data delivery

in the food and drugstore sector

01.2022

Introduction of food and drugstore scanner data into the Austrian CPI

and HICP

2012

Data acquisition from AC Nielsen, start of

scanner data analysis

2016

Drafting first regulatory proposals

2013

Start of continuous (unfruitful) negotiations about voluntary

data transmissions (until 2017)

www.statistik.at Page 7

Regulation: a national compromise was reached between all stakeholders. Since December 2019, the CPI Regulation governs data collection by means of scanner data. This is not the best possible regulation, but it could win the cooperation of the companies. Austrian regulation defines:

The size of enterprise obliged to provide data: cut-off sampling excluding Small and Medium Enterprises.

The periodicity of the delivery of scanner data: weekly

The survey regions for the scanner data deliveries: 346 postcodes were selected in such a way as to ensure representativeness at regional level. Around 43% of the Austrian population live in the selected areas

Each country will have to negotiate a compromise with stakeholders that is acceptable to all.

www.statistik.at Page 8

Selected sectors: food, beverages, and cosmetic and toiletry articles

These sectors are highly concentrated in Austria, where the top 5 players have a market share of 80-90%, it is an ideal choice for the introduction of scanner data.

Relatively few data providers need to be involved, while these commodity groups have 15% weight in the CPI index basket.

There is a significant saving of resources, as in these areas regional price collection was carried out, involving a significant number of price collectors.

www.statistik.at Page 9

• Secure servers

• Stroarge privacy

• Data protection

Data processing

Automated data transfer

Weekly tasks:

• Check for completeness

• Search for anomaly

• Outlier check

Data Import, Review, Quality control

• verified data is loaded in database

Database upload,

syn- chronisation

Monthly task:

• automated matching procedure

• machine-learning methods

• manual procedure

Classification

www.statistik.at Page 10

Index-method Methodology

Bilateral Multilateral

Static annual weight

Dynamic monthly weight GEKSWTPD GK

The two-year transition period did not allow us to experiment with the longer 25-month window, but we did not want to wait another year to introduce scanner data.

Country level Regional level

Windows length: 25 month

Windows length: 13 month

Page 11www.statistik.at

Alternative Window Length: 25-month vs. 13-month Windows Length

www.statistik.at Page 12

Average annual inflation would have been only 0,01 percentage points higher with a longer time-window

-1.0

-0.5

0.0

0.5

1.0

1 Total-CPI 2 Division 3 Group 4 Class 5 Subclass COICOP Level

D iff

er en

ce in

A nn

ua l I

nf la

tio n:

W in

do w

s le

ng th

2 5

- 1 3

Ø WL = 25 8,64 5,44 6,84 8,52 9,86

Ø WL = 13 8,63 5,42 6,81 8,45 9,80

∆(25-13) +0,01 +0,02 +0,03 +0,07 +0,06

The lower the level of COICOP groups we look at, the greater the dispersion of differences around 0.

The average difference at COICOP level 5 is only +0,06 percentage points.

Of the 62 COICOP 5 categories, 40 have positive differences and only 22 have negative differences.

Difference in average annual inflation by COICOP level: window length 25 vs. 13 (2022)

www.statistik.at Page 13

Monthly annual inflation shows increasing differences, with inflation rising as the year progresses.

1 2 3 4 5 January 2022

Ø WL = 25 4,96 2,89 2,65 3,17 3,31 Ø WL = 13 4,95 2,87 2,57 3,10 3,23

∆(25-13) +0,01 +0,02 +0,08 +0,07 +0,08 December 2022

Ø WL = 25 10,40 7,98 10,55 14,03 16,74 Ø WL = 13 10,37 7,95 10,50 13,81 16,62

∆(25-13) +0,03 +0,03 +0,05 +0,22 +0,12

The monthly annual inflation data indicate a larger difference compared to the annual average inflation.

At COICIOP 5 level, the differences in January vary between -0,58 and 1,16 percentage points, in December they range between -2,03 and 2,63.

The annual inflation in the COICOP 5 categories involved was only 3,2 percent in January, while at the end of the year it was 16,6 percent.

09 10 11 12

05 06 07 08

01 02 03 04

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

COICOP Level

D iff

er en

ce in

A nn

ua l I

nf la

tio n:

W in

do w

s le

ng th

2 5

- 1 3

The extent of the difference between the two methods is somewhat influenced by the rate of inflation, but at COICOP 1 level, even with high inflation in December, the difference is not large, only +0,03 percentage points.

www.statistik.at Page 14

Average annual inflation by food would have been 0,06 percentage points higher with a longer time-window

Ø WL = 25 11,85 12,11 11,97 11,38

Ø WL = 13 11,79 12,07 11,97 11,33

∆(25-13) +0,06 0,04 0,00 +0,05

This chart represents fewer categories, but they are all fully covered with scanner data.

At COICOP Level 5, the average difference between the results of the methods is +0,05 percentage points, but again the results for each category show a relatively larger difference of between -1,16 and +0,76 percentage points.-1.0

-0.5

0.0

0.5

1.0

2 Division 3 Group 4 Class 5 Subclass COICOP Level

D iff

er en

ce in

A nn

ua l I

nf la

tio n:

W in

do w

s le

ng th

2 5

- 1 3 Difference in average annual inflation by COICOP

level: window length 25 vs. 13 food only (2022)

www.statistik.at Page 15

There is only a weak positive relationship between the level of inflation and the size of the difference between the methods.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0 10.0 20.0 30.0 40.0 50.0 Annual Inflation - absolute value (window length 13)

Ab so

lu te

va lu

e of

d iff

er en

ce in

A nn

ua l I

nf la

tio n Annual inflation

(absolute value of change) Absolute value of

difference 0-5 0,23

5-10 0,29

10-20 0,34

20+ 0,45

The regression line, albeit with a low R2 shows that there is a weak positive relationship between the magnitude of the price change and the magnitude of the difference between the methods.

In the table the price changes are broken down into categories and differences are evaluated accordingly. If the price change is between 0 and 5 percent, the average difference is 0,23 percentage points, increasing to 0,45 percentage points if the annual price change is 20 percent or higher.

Absolute difference according to the absolute value of annual inflation

www.statistik.at Page 16

Contrary to our expectations, there are no classic seasonal products at COICOP 5 level in the categories with the greatest differences.

01185 - Ice Cream

01144 - Yogurt

01136 - Preserved fish

01122 - Beef

01183 - Chocolate

01135 - Smoked fish

01153 - Olive oil

01131 - Fresh fish

01182 - Jam, honey, etc.

01143 - Pres. milk

01154 - Edible oil

-2 -1 0 1 2 Difference

The largest positive difference in the December inflation data is for ice cream, where annual inflation is 1,60 percentage points higher at 25-month window lengths than at shorter window lengths. The second largest positive difference is for yogurt and the third largest is for preserved fish.

The largest negative difference is for edible oils, where annual inflation is 2,03 percentage points lower at 25- month window lengths than at the 13-month window lengths. For vegetable oils, annual inflation was well above average, but this is not true for all COICOP categories shown in the figure.

COICOP level 5 is not the elementary aggregate where the index calculation is done, so it is worth looking at the top differences at this lowest elementary. It is conceivable that the positive and negative differences cancel each other out in the COICOP 5 groups covering several seasonal elementary aggregates.

Top and bottom COICOP subclasses at level 5 according to the size of the difference in annual inflation in December 2022

www.statistik.at Page 17

As expected, at the level of elementary aggregates, seasonal products dominate the categories with the largest differences.

01161 - Grapes

01122 - Filet of pork

01185 - Ice cream

01144 - Fruit yogurt

01161 - Peach

01161 - Kiwi

01143 - Pre. milk

01161 - Orange

01161 - Strawberry

01154 - Edible oils

01182 - Canned peaches

-3 -2 -1 0 1 2 3 Difference

At the elementary aggregate level five of the eleven categories shown are some kind of fruit, but at the higher COICOP 5-digit level the category fruit (01161) do not appear in the top places because the positive and negative differences neutralize each other.

Besides fruit, there are other products such as ice cream and canned peaches that are also seasonal.

The frequent appearance of seasonal elementary aggregates is in line with the literature which shows that index calculation with long time windows can become more important, especially for seasonal products.

Top and bottom elementary aggregates by size of annual inflation differential in December 2022

www.statistik.at Page 18

In the case of the most seasonal elementary aggregates, the window lengths chosen make a difference.

0.08 0.19

0.11

-0.11

0.34

-1.0

-0.5

0.0

0.5

1.0

1 2 3 4 5 Quintiles of seasonality

Di ff

er en

ce in

A nn

ua l In

fla tio

n: W

in do

w s

le ng

th 2

5 - 1

3

Seasonality was expressed in terms of some quantifiable indicator: This indicator takes into account both the relative standard deviation of revenues and the number of months in which products are on sale in the window.

130 elementary aggregates calculated based on scanner data were devided into 5 quintiles along this new seasonality variable.

Apparently, the top 20 percent of elementary aggregates (quintile 5), which according to the indicator for seasonality can be considered as most likely to be seasonal, show on average a larger positive difference than the other less seasonal elementary aggregates. This top group includes strawberries, peaches, oranges, chocolate, veal, melons, or ice cream, among others.

www.statistik.at Page 19

Conclusion

• The annual inflation rates derived from the 25-month and 13-month window indices do not differ significantly. There are some small positive and negative differences, but these almost completely compensate each other, especially at higher levels of aggregation.

• However, the annual inflation of the lower COICOP level categories is more often higher than lower for a 25-month window than for a 13-month window.

• We also found that when an elementary aggregate is seasonal, the difference between the two methods becomes larger and mostly the method with longer window length measures higher inflation.

• Overall, the differences that we found between the two methods are small enough to recommend the introduction of scanner data with 13-month window length for saving time and resources.

www.statistik.at

Independent statistics for fact-based decisions

Questions and Discussion

Adam Tardos Statistics Austria, Team Price Contact: [email protected]

  • Slide Number 1
  • Slide Number 2
  • Challenges faced when implementing scanner data
  • Why window-length?
  • Slide Number 5
  • Timeline of Austrian scanner data project
  • Regulation: a national compromise was reached between all stakeholders.
  • Selected sectors: food, beverages, and cosmetic and toiletry articles
  • Data processing
  • Index-method
  • Slide Number 11
  • Average annual inflation would have been only 0,01 percentage points higher with a longer time-window
  • Monthly annual inflation shows increasing differences, with inflation rising as the year progresses.
  • Average annual inflation by food would have been 0,06 percentage points higher with a longer time-window
  • There is only a weak positive relationship between the level of inflation and the size of the difference between the methods.
  • Contrary to our expectations, there are no classic seasonal products at COICOP 5 level in the categories with the greatest differences.
  • As expected, at the level of elementary aggregates, seasonal products dominate the categories with the largest differences.
  • In the case of the most seasonal elementary aggregates, the window lengths chosen make a difference.
  • Conclusion
  • Slide Number 20

Introduction of Scanner Data into Austrian CPI and HICP – practical implementation experience, with a focus on window length options

After several years of preparation and a two-year transition period, scanner data have been introduced into the Austrian CPI and HICP in January 2022. A significant factor was the amendment of the Austrian national CPI-Regulation in December 2019, which since then regulates the scanner data requirements and ensures the weekly scanner data deliveries by most important retailers, initially by the grocery and drugstore retail trade (NACE classes 47.11 and 47.75).

Languages and translations
English

1

Introduction of Scanner Data into Austrian CPI and HICP – practical

implementation experience, with a focus on window length options

Adam Tardos

Statistics Austria

Department of Price and Parity

Summary

After several years of preparation and a two-year transition period, scanner data have been introduced

into the Austrian CPI and HICP in January 2022. A significant factor was the amendment of the

Austrian national CPI-Regulation in December 2019, which since then regulates the scanner data

requirements and ensures the weekly scanner data deliveries by most important retailers, initially by

the grocery and drugstore retail trade (NACE classes 47.11 and 47.75).

During the implementation of the project, pragmatic decisions had to be taken on a number of issues

ranging from the way to establish a good relationship with data providers through the method of data

access, to the classification of products, and the choice of the appropriate index calculation and

aggregation method. One small, but not insignificant subset of these decisions, is the time window

length chosen when adopting a multilateral approach, i.e. based on how many consecutive months

of data the index is compiled. Although a two-year transition period in which traditionally collected

price data and scanner data can be compared seems to be comfortably long, it is too short to test the

commonly used window length of 25 months. That is why Statistics Austria introduced scanner data

into production with a 13-month window length.

After an extra year, however, we started to study the benefits of possibly more precise data resulting

from a longer window length at the overall index level and at lower aggregation levels. We also

assessed the additional resource use (computational capacity) that would be required to move from

a 13-month window to a 25-month window. On this basis, we have carried out a cost-benefit analysis

to determine whether it is more reasonable to choose a shorter or longer window length. On the whole

it seems that in most cases the 13-month window length provides similarly good data quality as a 25-

month window and saves plenty of resources, however there are specific conditions (e.g. seasonality)

in which a longer window length has a positive impact on data quality.

Keywords:

CPI, HICP, Scanner data, Multilateral method, GEKS, Windows length, Seasonality

2

Table of Contents Background ..................................................................................................................................... 3

Description of the data .................................................................................................................... 4

Data preparation and verification ................................................................................................ 5

Product classification .................................................................................................................. 5

Index calculation ............................................................................................................................. 5

Temporal basis for the indices .................................................................................................... 6

Content data basis for the indices ............................................................................................... 6

Outlier filtering ........................................................................................................................... 6

Regionality and aggregation level ............................................................................................... 7

Index calculation: method and window length ........................................................................... 7

Linking index chains of the old method with index chains of the new method ......................... 9

Alternative window length: 25-month vs. 13-month windows length ............................................ 9

Impact of 25-month windows length on the overall index ....................................................... 10

Impact of 25-month windows length on CPI food and on food and non-alcoholic beverages . 12

Impact of 25-month windows length in an environment of rising inflation ............................. 13

Impact of 25-month windows and seasonality .......................................................................... 15

Conclusion .................................................................................................................................... 19

3

Background

New technical developments and the continuous diversification in retail in form of considerably

higher assortment ranges and a stronger segmentation of product groups as well as changes in pricing

are essential aspects that currently pose new challenges for the price survey of the consumer price

index. In view of the challenges, the use of scanner data in consumer price statistics represents a

major qualitative advance. The use of sales volume and turnover values as well as the comprehensive

coverage of the reporting periods and the range of goods will further ensure the quality of the CPI in

the future.

Since 2010, Statistics Austria had been working on obtaining scanner data and calculating price

indices from them. Initial negotiations with potential data providers to provide data on a voluntary

basis failed and therefore a legal obligation for mandatory scanner data deliveries had to be

introduced. In December 2019, the Austrian national CPI-Regulation defines the scanner data

requirements and ensures scanner data deliveries by the major retailers, initially by the grocery and

drugstore retail trade. After a two-year test period, scanner data were introduced into the Austrian

CPI and HICP in January 2022, mainly for food and drugstore products.

During the scanner data implementation phase, and particularly during the testing phase, many

decisions have to be taken, and sometimes conflicting methodological and practical considerations

need to be considered. Such decisions include the selection of data providers, the storage of data, the

classification of products, the filtering of data by product or over time and, of course, the choice of

the appropriate index calculation methodology.

It is known that one of the advantages of scanner data is that the time coverage of the data is much

more comprehensive than the spot data from the conventional price surveys in the outlets. Ideally,

scanner data are available for every week of the month. Obviously, from a theoretical point of view,

the more weeks of data we build our index on, the better the representation of the given month.

However, from a practical point of view, given the tight publication deadlines, it is questionable

whether there is enough time to calculate the indices and implement thoroughly all quality control

mechanisms, if one waits until the data of the last calendar week of a given month arrives.

When selecting an index method, a decision has to be made whether to choose between one of the

well-established bilateral methods or a multilateral method that is more suitable for scanner data and

more resistant to chain-drift effects.

Even if a multilateral index is chosen, there are several methods with different advantages and

disadvantages. Once the appropriate method has been selected, the process is still not complete, as

each method can be used under different parameters. It has to be decided which splicing method

should be used each month to link the multilateral index chains, and last but not least, it has to be

decided on how many subsequent months the multilateral index should be based.

This brings us to the focus of the present study, namely the choice of the window length, i.e. the

number of consecutive months on which to base the index. Due to seasonal effects, it seems advisable

to cover a period of at least one year (window = 13) or a multiple of this (2 years, window = 25).

The appropriate window lengths have been tested by several experts. Chessa1 found that the

use of 13-month windows can be sensitive to downward drift, especially in case of seasonal items.

Kevin J. Fox, Peter Levell and Martin O’Connell2 concluded that chain drift bias falls significantly

as the window size increases.

It seems that if methodological considerations alone are taken into account, it is preferable to use a

time-window as long as possible, but at least 25 months. However, it should be considered that even

if a two-year test period precedes the introduction of a new methodology, there may not be sufficient

1 Chessa, A.G. (2021) Extension of multilateral index series over time: Analysis and comparison of methods, Paper

written for the 2021 Meeting of the Group of Experts on Consumer Price Indices 2 Fox, K. J., Levell, P., O’Connell, M. (2022) Multilateral index number methods for Consumer Price Statistics

4

data available. The availability of historical data depends on the willingness of data providers, their

technical capabilities and the regulatory environment. If no historical data is provided, it will take 25

months of scanner data deliveries before testing with 25-month window lengths can begin. In

practice, the length of a test-period before the introduction of scanner data is limited in order to avoid

parallel data collection procedures and to reduce the burden on respondents. Another important factor

is the extent to which the new sector to be covered by the scanner data is characterised by the presence

of seasonal products. According to the literature, primarily indices for seasonal items benefit from

longer window lengths. And it should also be mentioned that longer window lengths require more

computing resources, with a 4-fold difference between 25- and 13-months window length.

For these practical reasons, Statistics Austria has introduced the scanner data into the CPI with a

window length of 13 months. Given the potential advantages and disadvantages of this decision, the

aim of this study is to compare, one year after the introduction of the Scanner data, how the index

would have evolved if a longer, 25-month-window-length had been chosen. Whether there is a

difference, and if so, whether it is significant. The results may provide guidance to other NSIs, who

are still in the early stages of scanner data implementation, on the conditions under which it is

relatively safe to opt for a shorter window length.

All the other decisions along the path of compiling CPIs with scanner data would merit a separate

paper, apparently the window length seems to have the most practical relevance, so after a brief

methodological overview we will look at this topic in more detail.

Description of the data

The Austrian CPI Regulation regulates the periodicity of the delivery of scanner data including shares

of turnover and the survey period. In contrast to the traditional survey, which usually only records

the current prices on a certain day (reference date), the use of scanner data has the character of a data

provision over a certain period of time, for which the achieved turnovers and sold quantities per

article are determined and from all this a so-called unit value (average value) is calculated. In order

to ensure a high degree of homogeneity, the data is required at least on a weekly basis, as well as (for

processing reasons) a prompt transmission of this data. The scope and characteristics of scanner data

require a change of CPI/HICP calculation processes and methods. For this reason, a gradual

introduction of scanner data into the CPI/HICP production process was foreseen, starting with the

scanner data of the enterprises classified in (Ö)NACE classes 47.11 (Retail sale in non-specialised

stores with food, beverages or tobacco predominating) and 47.75 (Retail sale of cosmetic and toiletry

articles in specialised stores), which are selected by cut-off sampling according to the Regulation

(Small and Medium-Sized Enterprises are excluded). The data of the enterprises in these (Ö)NACE

classes were particularly suitable for the introduction of scanner data, as the largest five retailers in

the food and drugstore sectors have a cumulated market share of more than 85% and as the product

groups primarily traded by them have a large weight of approx. 16% in the CPI shopping basket

(including food, beverages, daily consumer goods, drugstore goods).

Table 1 describes the properties and characteristics of scanner data as provided by the obliged

retailers for each item sold per postcode and calendar week. Table 1 - Scanner data variables and values

Variables Example(s)

Article number and EAN/GTIN (if available) 130404 (Art-nr.); 9100000742175 (GTIN)

Article name or description Red Bull 250 ml DS

Content quantity and unit 250 ml

Classification code and name of the article-related product group,

in as much detail as available.

Drinks/alcohol-free drinks/energy drinks

Sales volume 235

Sales value 315 EUR

Date (from - to, or calendar week) 07.11.22-13.11.22; (2022_45)

Postcode to which the local shop relates 1060

5

In 2023, it was decided to extend the scanner data project to include (Ö)NACE classes 47.71

(Retail sale of clothing in specialised stores) and 47.72 (Retail sale of footwear and leather goods in

specialised stores). These markets are more fragmented and therefore traditional data collection in

smaller shops and automated online price collection (web scraping) will continue to be important

alongside scanner data. These areas provide an excellent platform for exploring the potential for

synergy and combination of these three methods. As project in these fields are still in the early

stages, this document focuses on the areas already in production.

Data preparation and verification

The supplied files from the data providers are automatically transmitted, imported and checked.

Reports are created to verify the incoming data. These contain, among other things, the weekly

turnover per data provider, the number of postcodes from which data was delivered during the current

week, the number of product groups sold and the number of new products sold. In the case of

inconsistent data patterns, the data provider is contacted and either the plausibility of the data is

confirmed or the data delivery is repeated.

After the data have undergone all the checking mechanisms, the data are loaded into a DB2 database.

From the article data, an article master data file is created for each supplier. During the weekly data

deliveries from the individual suppliers, it can happen that not only new articles are added, but in

some cases existing article descriptions, product groups, etc. are modified. These changes are

adjusted in the course of the updates/synchronisation.

Product classification

Product classification is one of the most complex tasks of the scanner-data-based method. During

the test period, a blended classification system was developed, based partly on an automated

matching procedure using GTINs and product names, partly on several machine-learning methods

and partly on a manual procedure. At COICOP-5 level, 90-95% of products are classified fully

automated based on three models: Support Vector Machine, Random Forest and Naive Bayes or

more recently on Long Short-Term Memory Neural Network. A disagreement between models

indicates products that are particularly difficult to classify and where a higher probability

misclassification should be expected. Agreement between models, on the other hand, indicates

reliable classification. The COICOP-5 classification of such problematic products, as well as the

classification into finer categories than COICOP-5, is done manually.

Index calculation

There are different approaches - bilateral and multilateral methods - to calculate a price index with

scanner data at the elementary aggregate level.

Bilateral concepts are based on the comparison of two periods (base and comparison period). Such

approaches are based on the standard theory of bilateral price indices. This approach is well

understood, transparent and can be easily explained to users.

However, bilateral indices with scanner data face one or more limitations and drawbacks: limited

product coverage due to decreasing product matches over time because of product discontinuations,

a lack of consideration of item sales in the sample, and also the risk of chain drift in case of updating

the base period or monthly chaining or because of the over-consideration of items with promotional

prices.

These disadvantages of bilateral approaches can be avoided by multilateral methods. In fact, chain

drift is a violation of the multi-period identity test that must be prevented. This test requires that if

6

all prices and quantities in a period T return to their values observed in the base period 0, the index

should show no price change. Multilateral indices satisfy this test3.

During the transition period in 2020 and 2021, we compared a number of bilateral and multilateral

index calculation methods, which allowed us to choose the most suitable solution for us according

to theoretical and practical criteria.

Temporal basis for the indices

An important question is how much data should be used for the index calculation. Since data

providers deliver data on a weekly basis, using data from one, two and three calendar weeks per

month is optional. Four calendar weeks were out of the question, as not every month contains four

full calendar weeks, and the aim was of course to cover the same length of time each month.

Initial test calculations showed that the scanner data indices are somewhat more volatile than

traditional CPI indices. However, the more calendar weeks the index is based on, the more moderate

the fluctuations are. Therefore, it is intended to use as many calendar weeks as possible, i.e. three

calendar weeks per month.

It should also be noted that there is a lead time of several days between the reception and processing

of the data. This may cause practical difficulties in production, especially for meeting publication

deadlines.

To avoid this, the Austrian CPI/HCIP Flash Estimate, which is already published at the end of a

reporting month, is based on scanner data from two calendar weeks of the current month and the

final index is completed with data from the third week.

Content data basis for the indices

Scanner data provides comprehensive data of the entire product range. It may therefore be possible

not to restrict the index calculation to the narrowly defined CPI basket positions (elementary

aggregates), but to compile the index at COICOP-5 level, considering all products belonging to the

respective COICOP category.

It would be attractive to head in this direction, as the indices could then be based on much more

product data, not to mention practical aspects such as the possible simplification of the classification.

However, such a change would also have meant that long time series of elementary aggregate indices

(going back many years) could not be continued, so a transition to COICOP-5-digit level was not

carried out. The index calculation is therefore based on products that correspond to the narrowly

defined CPI basket position descriptions (elementary aggregates). However, the quantity criteria and

other rather narrow product descriptions, that used to help price collectors in shops to select

representative items, are no longer applied. This means for example, that the long grain rice position

does not only consider products in 1 kg packages, but all long grain rice products, regardless of

weight.

Outlier filtering

In addition to the control mechanisms during data entry, an outlier search is carried out among the

calculated unit values to exclude unrealistically high or low unit values before the index calculation.

3 Practical Guide on Multilateral Methods in the HICP Version September 2020, EUROPEAN COMMISSION

EUROSTAT, Directorate C: Macro-economic statistics, Unit C-4: Price statistics. Purchasing Power Parities. Housing

statistics

7

Regionality and aggregation level

The CPI Regulation in Austria defines "survey regions for scanner data deliveries [...] by postcodes

[...] ". The areas which are defined by the 346 postcodes listed in the annex to the CPI Regulation

were selected to ensure representativeness at regional level. This way, the elementary aggregate used

to calculate the index is the unit value of products by retail chain and by region. At this level of

aggregation, nine regional indices are compiled at the federal state level and then aggregated into a

national index. By doing so, the procedure is harmonised with the index calculation methodology of

the other survey types, the calculations of which are still based on a traditional, likewise hierarchical

methodology: cities, regions (federal states) and country. For the regional weights, the same values

are used for all items, regardless of whether it is the traditional or the new methodology.

Figure 1 – Aggregation levels of the CPI/HICP-Index

Index calculation: bilateral vs. multilateral method and window length

Multilateral methods are a special type of index compilation method that can be applied to scanner

data. A price index usually measures the aggregate price change (at CPI basket position or COICOP

5-digit level) of the current period compared to a base period.

In multilateral methods, the aggregate price change between two comparison periods is determined

from prices and quantities observed in several periods, not only in the two comparison periods. This

is the great advantage of multilateral methods: they consider all products that are available in at least

two periods of the observed time interval (time window). Multilateral methods have been used for

many years for geographical price comparisons (e.g. between different countries or regions) of

purchase price parities and have been adapted for temporal comparisons. Scanner data is typically

dynamic. New products are constantly being added to the product range, while obsolete products that

were previously available are removed. Bilateral price index methods compare the prices of products

in the current period with prices in a past base period. However, as time passes, the overlap of

products decreases, making it difficult to calculate price comparisons. One way to increase the

8

overlap of products is to frequently update the base period and chain the resulting bilateral price

indices. However, it has been shown that such an approach can be subject to chain drift, especially

when products are explicitly weighted. Chained indices often lead to systematic distortions and

therefore do not measure a plausible price change over longer periods.

Multilateral methods offer a solution to the problems of bilateral approaches. They take into account

all products that are available in the different periods. They allow the explicit weighting of each

product according to its importance in each period. Finally, they avoid the chain drift problems that

arise with chained bilateral indices. Given these advantages, multilateral methods have been

recommended as appropriate price index compilation methods for transaction data, despite their

additional complexity compared to bilateral methods4.

In order to use multilateral methods in the compilation of price indices, some data requirements must

be met:

• Access to historical data: since multilateral approaches use the data of many months at the

same time (time window), sufficiently long data series from the past are required to test and

implement these methods (therefore the relatively long test period and implementation phase

from December 2019 to December 2021).

• The raw data received must be pre-processed and classified (see check and classification steps

above). As the multilateral methods are essentially based on all transactions, it is not

necessary to select items by means of random sampling or to filter them out due to low

turnover. Each product is included according to its importance. In practice, however, item

records will still be excluded during processing and data control mechanism, if important

information is missing (e.g. the turnover or commodity group code) or if they contain

inconsistent values.

A multilateral index is constructed over a given time window length T consisting of a sequence of

consecutive months. The index formula takes as input the prices (unit values) and quantities or

turnover of the individual products available in the months of the given time window.

The first step in the calculation of all multilateral indices is to determine the length of the time window,

which in practice means how many months of data a particular calculation should take into account.

Given the seasonality of certain products, one of the most commonly used time window length is the

number of months in the year plus 1, i.e. 13. This time window allows products that are only sold in

one month of the year to be linked and thus have an impact on the index. Of course, it is possible to

calculate with a longer time window (e.g. two years + 1 = 25), but this implies a longer data series

and more calculation effort. Our calculations were tested with different time windows, but for the

reasons given in the background chapter (lack of historical data, not sufficiently long transition

period) we considered 13 to be the optimal choice.

We tested the three theoretically well-founded methods recommended by EurostatFehler! Textmarke nicht

definiert., the Gini, Eltetö and Köves, and Szulc (GEKS), the Weighted Time Product Dummy (WTPD),

and the Geary-Khamis (GK) index, respectively.

As we found only minor differences between the indices for most items, we have opted for the GEKS

index for practical reasons. Although all multilateral indices are based on a relatively complex

methodological background, the logic of the GEKS index is most similar to that of the traditional

bilateral indices and is therefore the easiest to communicate and to comprehend.

To calculate the GEKS index5, a matrix of bilateral indices at a given time window must be

constructed, and the corresponding bilateral index must be calculated for all possible pairs of

4 Guide on Multilateral Methods in the Harmonised Index of Consumer Prices, 2022 edition, Luxembourg:

Publications Office of the European Union

https://ec.europa.eu/eurostat/web/products-manuals-and-guidelines/-/ks-gq-21-020 5 Whenever a GEKS index is calculated, it is linked to a bilateral index method. This leads to many variants of the

GEKS (e.g. GEKS-Fisher, GEKS-Törnqvist, GEKS-Jevons). The different variants are usually close to each other. It

9

months. This implies 13x13 = 169 index calculations for a time window of 13. If we consider the

symmetry of the matrix and the fact that the diagonals of the matrix are all equally 1, this means in

practice that 78 bilateral indices are calculated. At a window length of 25 months, the number of

bilateral indices to be calculated increases by a factor of almost four (25x25-25)/2 = 300. The value

of the GEKS index for a given time is the geometric mean of the corresponding bilateral indices.

The GEKS index between time periods 0 and t is calculated for a given time window W as follows:

I &#x1d43a;&#x1d438;&#x1d43e;&#x1d446; &#x1d44a; 0,&#x1d461; = ∏ (&#x1d43c;0,&#x1d458;

&#x1d458;∈&#x1d44a; ∗ &#x1d43c;&#x1d458;,&#x1d461; )

1 |&#x1d464;|

Linking index chains of the old method with index chains of the new method

Three approaches are available for linking chain indices based on different calculation methods:

• One-month overlap: where a single month, the last month of the old method, is used as the

overlap

• Annual overlap: where a whole year is used as overlap

• Over the year: where always the equivalent month of the previous year is used as overlap

For annual overlap, the aim is for the change in the linked index over the year to be as similar as

possible to the new index. As the average annual index is an important analytical value for users,

we would have preferred to make the linking based on the annual overlap.

However, given the current European legal framework, monthly overlap is the standard method for

linking the conventional and the new index. Both the traditional surveyed data and the new scanner

data index were calculated simultaneously during the test period and in the last month before the

introduction of the new method into the production, the December index 2021 of the old and new

methods were set equal.

In January 2022, scanner data were successfully introduced into the Austrian CPI along these

parameters. In the following, we will turn to the subject of our analysis, i.e. what happens if one of

the parameters, the window length, is changed.

Alternative window length: 25-month vs. 13-month windows length

For the comparison, the GEKS index was calculated with exactly the same parameters and using

the same data, only the window length was modified from 13 to 25 months. The resulting index

was linked to the old index using exactly the same linking method as the index with 13-month

window lengths. We calculated annual inflation rates from the two indices for each month in 2022

and compared these annual inflation rates and their averages. The differences were compared at

different COICOP levels, starting from 1-digit level (total CPI) up to COICOP 5-igit level. The

comparison has been restricted, as appropriate, to the COICOP groups involved in the introduction

of the scanner data.

was decided to use the GEKS method with the Törnqvist index, accordingly by GEKS we actually mean GEKS-

Törnqvist.

10

Impact of 25-month windows length on the overall index

Table 2 - Number of COICOP categories affected by introduction of scanner data at different COICOP levels

COICOP level Number of categories Average weight of the

scanner data

1 1 16%

2 6 30%

3 7 65%

4 19 99%

5 62 100%

COICOP 1-digit level covers the entire consumer basket. The coverage of the scanner data on this

level is 16%. At 2-digit level, the scanner data covers for instance division 01 (food and non-

alcoholic beverages), and partly division 02 (alcoholic beverages, tobacco), or division 12

(miscellaneous goods and services)

The coverage for food is close to 100%, while for example the coverage for group 12 is 15%. The

average for the 6 groups is 30% as shown in the table. Once again it is important to note that

groups not covered at all by the scanner data (e.g. 07 Transport) are not included in the average.

The lower the COICOP level, the higher the coverage of the groups. At COICOP 5-igit level, the

coverage of the groups concerned is 100%.

Of course, if the indices in a given group are calculated using not only scanner data, this reduces

the impact of the 25-month index calculation, as the sub-indices calculated using the traditional

method are not affected by the method applied to the scanner data. Still, it is very important to see

what impact the 25-month window length would have had on the overall index.

Figure 2 – Difference in average annual inflation by COICOP level: window length 25 vs. 13 (2022)

Ø WL = 25 8,64 5,44 6,84 8,52 9,86

Ø WL = 13 8,63 5,42 6,81 8,45 9,80

∆(25-13) +0,01 +0,02 +0,03 +0,07 +0,06

The box-plot in figure 2 shows the differences in average inflation in 2022 at different COICOP

levels depending on whether a 13- or 22-month window length is used. The grey dots show the

differences between each COICOP category. A positive difference means that inflation calculated

11

with a 25-month window length is bigger, and a negative difference means the opposite. The

horizontal jittering of the points along the symmetry axes of the box plots is for illustrative reasons

purposes only, so that the overlapping points can be seen. The lower the level of COICOP, the

greater the dispersion of differences around 0. The points are spread in both positive and negative

directions around 0, but there are more categories of COICOPs with a positive spread. Of 62

COICOP 5-digit sub-classes, 40 have positive differences and only 22 have negative differences

The table below the plot in figure 2 shows that the average difference at COICOP 5-digit level is

only +0,06 percentage points. Differences at this level range from -1,16 to +0,9 percentage points.

At lower COICOP levels the difference is even smaller: the average annual inflation would have

been 0,01 percentage points higher (8,64% instead of 8,63%) if the longer 25-month window

length had been used at the time of implementation.

Figure 3 – Difference in annual inflation by COICOP level and by month (2022)

COICOP 1 2 3 4 5

January 2022

Ø WL = 25 4,96 2,89 2,65 3,17 3,31

Ø WL = 13 4,95 2,87 2,57 3,10 3,23

∆(25-13) +0,01 +0,02 +0,08 +0,07 +0,08

December 2022

Ø WL = 25 10,40 7,98 10,55 14,03 16,74

Ø WL = 13 10,37 7,95 10,50 13,81 16,62

∆(25-13) +0,03 +0,03 +0,05 +0,22 +0,12

If we express the difference between the two methods in terms of the monthly value of annual

inflation instead of the average annual inflation (see Figure 3), we see that the difference at

COICOP 1 level increases from +0,01 in January to +0,03 percentage points in December. The

magnitude of the average difference increases more significantly at the lower COICOP levels (4 to

5), from 0,07 to 0,08 percentage points to 0,12 to 0,22 percentage points, i.e. annual inflation with a

25-month window length is generally higher than its counterpart with a 13-month window length.

More than the average difference is revealed by the increasing variances in the monthly charts. At

COICIOP 5 level, the differences in January vary between -0,58 and 1,16 percentage points, in

December they range between -2,03 and 2,63.

12

It is important to note that in January, annual inflation in the COICOP 5 categories involved was

only 3,2-3,3 percent, depending on the window-length, while at the end of the year it was 16,6-16,7

percent. In other words, the difference between the two methodologies seems to be related to the

rate of price increases.

Impact of 25-month windows length on CPI food and on food and non-alcoholic beverages

Although it is very important to see how the length of the 25-month window would have affected

the overall index, it is nevertheless a logical step to limit our analysis to the COICOP categories

that were fully covered by scanner data after the methodological change. Since the coverage of

scanner data is complete in Division 01 (food and non-alcoholic beverages), we focus our analysis

on this division.

Table 3 - Number of COICOP categories affected by scanner data at different COICOP levels

COICOP level Number of categories Average weight of the

scanner data

2 1 100%

3 2 100%

4 11 100%

5 50 100%

In Table 3 we see that we have fewer categories in the analysis, but they are all fully covered with

scanner data. In this case, it should be noted that the lowest level of examination is the division, so

in the following figures and tables we will show four COICOP levels instead of the previous five.

Figure 4 – Difference in average annual inflation by COICOP level: window length 25 vs. 13 food only (2022)

Ø WL = 25 11,85 12,11 11,97 11,38

Ø WL = 13 11,79 12,07 11,97 11,33

∆(25-13) +0,06 0,04 0,00 +0,05

The average annual inflation in division 01 (food and non-alcoholic beverages) calculated with 25-

month window lengths is +0,06 percentage points higher than the inflation calculated with 13-

13

month window lengths. At COICOP 5-digit level, we again see relatively larger differences in the

range -1,16 to +0,76 percentage points.

Figure 5 – Difference in annual inflation by COICOP level and by month – food only (2022)

COICOP 2 3 4 5

January 2022

Ø WL = 25 4,83 4,98 4,93 4,01

Ø WL = 13 4,75 4,92 4,87 3,94

∆(25-13) +0,08 +0,02 +0,06 +0,07

December 2022

Ø WL = 25 18,53 17,62 18,26 18,88

Ø WL = 13 18,40 17,58 18,18 18,81

∆(25-13) +0,13 +0,04 +0,08 +0,07

The monthly annual inflation values obtained by the two methods show the same picture as before

for the average annual inflation: the average differences are very close to zero, but the spread

around 0 increases over COICOP levels and time, i.e., as inflation increases over the period we

examine. In December, the difference between the two methods ranges between -2,03 and 1,60

percentage points, while the average difference remains close to zero at +0,07 percentage points.

Below, we examine the relationship between the magnitude of inflation and the magnitude of

differences between method results. Later, we examine which COICOP groups are responsible for

the larger differences. For this purpose, we use December as a base, when we the largest

differences could be observed.

Impact of 25-month windows length in an environment of rising inflation

In the chart below, each point represents a COICOP 5 category for 12 consecutive months (January

to December 2022). The x-axis shows the extent of inflation for the respective month (calculated at

window length 13) for the respective COICOP 5 category, and the y-axis shows the differences

between annual inflation at window length 25 and 13. The relationship is not very obvious visually,

but it is clear that below 5% inflation, the vast majority of points are close to 0, while at high

inflation, above 20%, points close to 0 are relatively less frequent.

14

Figure 6 – The difference according to the level of annual inflation

If the graph is slightly rearranged to take the absolute value of both the x-axis and the y-axis, i.e., to

remove the sign of both the price change and the difference, the relationship between the two

variables becomes somewhat clearer.

Figure 7 – The absolute difference according to the absolute value of annual inflation

The regression line, albeit with a low R2 shows that there is a weak positive relationship between

the magnitude of the price change and the magnitude of the difference between the methods.

This is illustrated in the table below, where price changes are broken down into categories and

differences are evaluated accordingly. If the price change is between 0 and 5 percent, the average

15

difference is 0,23 percentage points, increasing to 0,45 percentage points if the annual price change

is 20 percent or higher.

Table 4 - The absolute difference by absolute value of annual inflation, split by categories

Annual inflation

(absolute value of change)

Absolute value of

difference

0-5 0,23

5-10 0,29

10-20 0,34

20+ 0,45

Impact of 25-month windows and seasonality

The largest positive difference in the December inflation data is for ice cream, where annual

inflation is 1,60 percentage points higher at 25-month window lengths than at shorter window

lengths. The second largest positive difference is for yogurt and the third largest is for preserved

fish. The largest negative difference is for edible oils, where annual inflation is 2,03 percentage

points lower at 25-month window lengths than at the 13-month window lengths. For vegetable oils,

annual inflation was well above average, but this is not true for all COICOP categories shown in

the figure.

Figure 8 – Top and Bottom COICOP Subclasses at 5-digit level according to magnitude of difference of annual

inflation in December 2022

COICOP 5-digit level is not the elementary aggregate where the index calculation is done, so it is

worth looking at the top differences at this lowest elementary level to see the negative and positive

differences. The 50 COICOP 5 categories (see in Table 3) contain a total of 130 elementary

aggregates.

16

Figure 9 – Top and Bottom elementary aggregates according to magnitude of difference of annual inflation in

December 2022

We see that at the elementary aggregate level five of the eleven categories shown are some kind of

fruit, but at the higher COICOP 5-digit level the category fruit (01161) do not appear in the top

places because the positive and negative differences neutralize each other. The most COICOP 5

categories contain only a maximum of 3 elementary aggregates, but fruit is one of the exceptions

with 13 positions, so such a balancing mechanism may rather play a role. Besides fruit, there are

other products such as ice cream and canned peaches that are also seasonal. This is in line with the

literature, which shows that index calculation with long time windows can gain importance,

especially for seasonal products. To avoid balancing mechanisms it is appropriate to continue our

analysis at this more detailed elementary aggregate level.

If we can express seasonality in terms of some quantifiable indicator, we can get a more accurate

picture of the strength of the relationship between seasonality and the deviation of annual inflation

calculated over a 25- and 13-month window. Two indicators have been defined to express

seasonality. One of these is based on the volatility of income data per elementary aggregate over

the 25-month window length. This was defined using the standard deviation of revenues. Since

each elementary aggregate generates different revenue magnitudes, we finally chose as one of the

indicators the coefficient of variation (CV), also known as relative standard deviation (RSD),

defined as the ratio of the standard deviation to the mean. The other indicator measuring

seasonality measures the average number of months per elementary aggregate that products are in

supply over the period defined by the 25-month window length. For seasonal products, this value is

lower because the products are not in supply out of season or are substituted by alternative products

(e.g. imported products for fruit).

The strength of the relationship between these variables was measured using Pearson's correlation.

In addition to seasonality, we have also included in our analysis the magnitude of annual inflation,

which we have already seen is slightly positive related to the magnitude of the difference between

the methods. Our aim is to put this weak relationship in context once again by understanding the

strength of the relationship between seasonality and the difference between the methods. We

express both the difference and annual inflation in absolute terms, as before at Figure 7.

17

Table 5 - Pearson's correlation matrix at elementary aggregate level

data based on 12 Month from January to December

Difference

(abs)

Revenue

(RSD)

Number of

months on sale

Annual Inflation

(abs)

Difference (abs) 1,00 0,55

<,0001 -0,33 <,0001

0,18 <,0001

Revenue relative

standard deviation (RSD)

0,55 <,0001

1,00 -0,50 <,0001

0,02 0,4418

Number of months on sale -0,33 <,0001

-0,50 <,0001

1,00 0,03 0,2014

Annual Inflation (abs) 0,18 <,0001

0,02 0,4418

0,03 0,2014

1,00

The correlation matrix shows the pairwise correlations between each variable. In the first matrix,

all 12 months considered are included.

There is a strong positive linear relationship between the absolute value of the difference

(difference abs) in yearly inflation rates calculated with a 25-month and a 13-month window length

and the relative standard deviation of the revenues of each elementary aggregate. This means that

the higher the monthly volatility of revenues, the larger the difference between the two methods.

There is also a significant linear relationship between our other indicator of seasonality and the

absolute difference, but the direction is negative and the relationship is less strong. The negative

direction is consistent with our expectations, since the fewer months on average a product is on

sale, the more we can assume the seasonal character of the elementary aggregate, which is

associated with a larger absolute difference. Consistent with the above, our two seasonal indicators

are also strongly negatively correlated.

There is also a positive relationship between the magnitude of the annual price change, currently

defined as the absolute value of annual inflation measured by the 13-window-length method, and

the magnitude of the difference between the two methods, but the strength of the relationship is not

robust. This is consistent with Figure 5, which showed that in the first half of the year, when annual

inflation was typically lower, we measured smaller differences between the methods than in the

second half of the year when inflation was higher.

Table 6 - Pearson's correlation matrix at elementary aggregate level

data based on one-month December 2022

Difference

(abs)

Revenue

(RSD)

Number of

months on sale

Annual Inflation

(abs)

Difference (abs) 1,00 0,31

0,0003 -0,17 0,06

0,01 0,9116

Revenue relative

standard deviation (RSD))

0,31 0,0003

1,00 -0,50 <,0001

-0,10 0,2787

Number of months on sale -0,17 0,06

-0,50 <,0001

1,00 0,26 0,0025

Annual Inflation (abs) 0,01 0,9116

-0,10 0,2787

0,26 0,0025

1,00

If only December data are used, the seasonality indicators show a similar relationship with the

difference between the method as for 12 months, but the strength of the relationship is weaker.

However, the magnitude of annual inflation in December is not correlated with the difference in

methods.

Summarising what we have observed so far, the annual inflation rates derived from the 25-month

and 13-month window indices do not differ significantly. There are some small positive and

negative differences, but these almost completely neutralize each other, especially at higher levels

of aggregation. Nevertheless, overall, we have measured higher annual inflation for more

18

categories than lower annual inflation using the 25-month windows. We also found that when an

elementary aggregate is seasonal, the difference between the two methods becomes larger.

However, we are not yet able to conclude whether the difference will be more positive or negative

in the case of seasonality, i.e. whether annual inflation calculated with a 25-month window length

will be higher or lower. Among the Top aggregates on Figure 6, we have seen examples of both the

former and the latter.

To determine whether the difference is positive or negative, we used an additional seasonality

indicator formed from our two previous seasonal variables. This indicator takes into account both

the relative standard deviation of revenues and the number of months in which products are on sale.

Saisonality = σ(revenue)

µ(revenue) X (1 −

µ(number of months on sale)

25 )

We divided the 130 elementary aggregates into 5 quintiles along this new seasonality variable and

evaluated the differences between the methods. To identify the signs, this time we used the original

differences rather than the absolute values.

Figure 10 – Seasonality and difference in annual inflation on elementary aggregate level for food,

December 2022

Apparently, the top 20 percent of elementary aggregates (quintile 5), which according to our

indicator for seasonality can be considered as most likely to be seasonal, show on average a larger

positive difference than the other less seasonal elementary aggregates. This top group includes

strawberries, peaches, oranges, chocolate, veal, melons, or ice cream, among others. Thus, the

analysis shows that while there may be differences between the two methods at the level of certain

elemental aggregates for non-seasonal products, these differences almost completely compensate

each other.

For seasonal products, the overall picture is that the method with 25-month window length,

although dependent on elementary aggregates, tends to measure higher inflation. The average

deviation is +0,34 percentage points for the 25-month window length, while the deviation of

quintiles 1-3 is much closer to 0, ranging from +0,08 to +0,19 percentage points. The fourth

quintile shows a deviation of -0,11 percentage points.

19

Conclusion

• The use of scanner data in consumer price statistics is seen as a major qualitative

improvement. After several years of preparation, scanner data have been introduced into the

Austrian CPI and HICP in January 2022. In this paper we focused on the decision-making

process involved in selecting the appropriate index calculation methodology, specifically the

choice of the window length. For practical reasons, Statistics Austria introduced scanner data

into the CPI with a 13-month window length using the GEKS index methodology. The aim of

this study was to compare, one year after the introduction of the scanner data, how the index

would have evolved if a longer, 25-month window length had been chosen, to provide

guidance to other NSIs in the early stages of implementation.

• We compared two consumer price indices calculated using different window lengths (13

months and 25 months) to see the impact of the window length on the annual inflation rates.

Annual inflation rates were calculated for each month in 2022 and compared at different

COICOP levels, ranging from 1-digit level (total CPI) to 5-digit level. The scanner data

covered only 16% of the consumer basket at COICOP 1-digit level, while the coverage was

100% at 5-digit level within the division 01 for food. We found that the difference between the

two methodologies seems to be slightly related to the rate of price increases, and the impact of

the 25-month window length on the overall index was small. The difference in average annual

inflation was only +0,01 percentage points higher if the longer window length had been used

at the time of implementation. The differences at the COICOP 5-digit level ranged from -1,16

to +0,9 percentage points, with an average difference of only +0,06 percentage points.

• Later we limited our analysis to COICOP categories that are fully covered by scanner data,

and focused on food and non-alcoholic beverages. The average annual inflation in COICOP

division 01 (food and non-alcoholic beverages) calculated with 25-month window lengths was

+0,06 percentage points higher than the inflation calculated with 13-month window lengths.

• As 2022 showed a gradually increasing inflation path each month, the question arose as to

whether the increasing inflation had an impact on the difference in methods. We find that there

is a weak positive relationship between the magnitude of the price change and the magnitude

of the difference between the methods at COICOP 5-digit level, however, this relationship

does not tell us whether the difference is negative or positive.

• When listing the COICOP 5-digit categories with the largest differences, it was found that,

contrary to expectations, the most seasonal category "fruit" was not among the top categories.

This prompted us to continue the analysis at an even finer level, namely at the elementary

aggregate level. Here we have already found that many fruit elementary aggregates have the

largest positive and negative differences between the methods, but at the higher COICOP 5-

digit level the positive and negative differences neutralize each other.

• We used two indicators to express seasonality in relation to the deviation of annual inflation

calculated over a 25- and 13-month window. The indicators were the relative standard

deviation of the revenues and the average number of months per elementary aggregate that

products were in supply. Pearson's correlation was used to measure the strength of the

relationship between these variables. When we studied the differences between the methods in

all 12 months at all food elementary aggregates the correlation matrix showed a strong

positive linear relationship between the absolute value of the differences in yearly inflation

rates and the relative standard deviation of the revenue. There was also a significant linear

relationship between the other indicator of seasonality and the absolute difference, but the

direction was negative and the relationship was less strong. Finally, there was a positive

relationship between the magnitude of the annual price change and the magnitude of the

difference between the two methods, but the strength of the relationship was not robust. Using

only one-month December data, the seasonality indicators showed a similar relationship with

20

the difference between the method as for the 12 months, but the strength of the relationship is

weaker.

• Finally, a correlation between seasonality and the difference in methods was found that

provides also information on the direction of the difference. The elementary aggregates were

grouped into quintiles of five equal groups based on seasonality. For the most seasonal

products (quintile 5), the general picture is that the 25-month window length method, although

dependent on the elementary aggregates, generally measures higher annual inflation. The

average deviation is +0,34 percentage points for the 25-month window length, while the

deviation for quintiles 1-3 is much closer to 0, ranging between +0,08 and +0,19 percentage

points. The fourth quintile shows a deviation of -0,11 percentage points.

• The annual inflation rates derived from the 25-month and 13-month window indices do not

differ significantly. There are some small positive and negative differences, but these almost

completely compensate each other, especially at higher levels of aggregation. Overall,

however, the annual inflation of the lower COICOP level categories is more often higher than

lower for a 25-month window than for a 13-month window. We also found that when an

elementary aggregate is seasonal, the difference between the two methods becomes larger and

mostly the method with longer window length measures higher inflation.

• Overall, the differences that we found between the two methods are small enough to

recommend the introduction of scanner data with 13-month window length for saving time and

resources.

THE PEP Conference Vienna 2023 - programme

THE PEP Partnership and klimaaktiv mobil Conference Programme

Languages and translations
English

THE PEP Partnership and klimaaktiv mobil Conference 2023 Vienna 1

THE PEP Partnership and klimaaktiv mobil Conference Programme

“Boosting active mobility and mobility management for climate friendly, healthy and energy saving mobility in Europe” – a contribution to THE PEP relay race workshop series

25-27 April 2023 Vienna

Conference location: Austrian Economic Chamber (WKO) – Julius Raab Hall, Wiedner Hauptstraße 63, Vienna

Conference languages: English and German (with simultaneous interpretation)

Moderation: Eva Pölzl

compact

puristic

long

THE PEP Partnership and klimaaktiv mobil Conference 2023 Vienna 2

25 April

12.00 am Check-In for registered participants

1.00 - 3.00 pm Session I: Welcome and Opening

1.00 pm Opening Panel – Strategic Dialogue • Leonore Gewessler, Austrian Federal Minister for Climate Action, Environment, Energy,

Mobility, Innovation and Technology

• Johannes Rauch, Austrian Federal Minister for Social Affairs, Health, Care and Consumer

Protection

• Frans Timmermans, Executive Vice-President European Commission (tbc)

• Olga Algayerova, Executive Secretary of the United Nations Economic Commission for

Europe UNECE

• Francesca Racioppi, Head of Office at World Health Organisation WHO European Centre for

Environment and Health

• Karlheinz Kopf, Secretary General of the Austrian Federal Economic Chamber

• Manuel Marsilio, General Manager Confederation of the European Bicycle Industry CONEBI

2.10 pm Keynote on Healthy Streets for liveable cities

• Lucy Saunders, London

2.30 pm Award ceremony for klimaaktiv mobil partners (businesses and communities)

3.00 pm Coffee break

3.30-4.00 pm THE PEP Partnerships, Pan European Masterplan for Cycling and Walking and the klimaaktiv mobil programme – role models for Europe

• Robert Thaler, Member of THE PEP Bureau and Head of Department, Austrian Federal

Ministry for Climate Action, Environment, Energy, Mobility, Innovation and Technology

4.00-6.00 pm Session II: Active Mobility – a key for healthy and climate friendly mobility • Moderation: Nicholas Bonvoisin, Chief of Section, Environment Division, United Nations

Economic Commission for Europe UNECE

• Rapporteur: Andreas Friedwagner, Verracon

4.00 pm Walking and Cycling – Latest evidence to support policy making and practice

• Francesca Racioppi and Nino Sharashidze, European Centre for Environment and Health,

World Health Organisation WHO

THE PEP Partnership and klimaaktiv mobil Conference 2023 Vienna 3

4.15 pm Panel on Promotion of Walking on national and European level • The Walking Dutchman: Filip van As, Ministry of Infrastructure and Water Management of

The Netherlands

• Austrian Masterplan Walking – National funding offensive for walking infrastructure:

Robert Thaler, Austrian Federal Ministry for Climate Action, Environment, Energy, Mobility,

Innovation and Technology, and Alessandra Angelini, Environment Agency Austria

• Local Masterplans for Walking – Let´s walk Vienna: Petra Jens, Walking Coordinator,

Mobility Agency Vienna

• Paths for Scotland – Walking for good health: Rona Gibb, Manager at Paths for All, Scotland

• Portugal walks: Sofia Pires Bento, Instituto da mobilidade e dos transportes, Portugal (tbc)

5.00 pm Panel on Promotion of Cycling on national and European level • Translating international action to the nation level and vice versa – the Austrian showcase:

Martin Eder, Austrian Federal Ministry for Climate Action, Environment, Energy, Mobility,

Innovation and Technology

• The French showcase: Thierry du Crest, Ministry of Transport, France (tbc)

• Private Public Partnership for bicycle promotion in Austria: Michael Nendwich,

Austrian Federal Economic Chamber

• On the way towards a trans-European cycling network: Gregor Steklačič,

Ministry of Environment, Climate and Energy, Slovenia (tbc)

• More people cycling in the Danube region – The Danube Cycle Plans project: Jitka Vrtalová,

Partnership for Urban Mobility Czech Republic

• The ECF perspective Pushing Cycling in Europe: Jill Warren, CEO of the

European Cyclists‘ Federation ECF

6.00 pm End of day 1

8.00 pm Evening Reception

THE PEP Partnership and klimaaktiv mobil Conference 2023 Vienna 4

26 April

8.30 am Coffee and snacks

9.15-11.15 am Session III: Mobility Management with a focus on companies, cities, tourism • Moderation: Iris Ehrnleitner, Austrian Federal Ministry for Climate Action, Environment,

Energy, Mobility, Innovation and Technology

• Rapporteur: Reinhard Jellinek, Austrian Energy Agency, klimaaktiv mobil management

9.15 am Mobility Management in the national and European Context • Melanie Schade, German Federal Office for Building and Regional Planning, Vice President of

the European Platform on Mobility Management EPOMM

9.30 am Panel on Mobility Management in companies and cities • Success stories of the klimaaktiv mobil programme Mobility Management for businesses,

property developers and fleet operators: Markus Schuster, Herry Consult

• Show case Mobility Management in Austrian companies: N.N. (tba)

• Mobility Management – the French experience: Joris Marrel, Project director for

the decrease of mobility demand at CEREMA

• Mobility Management for companies and schools in the Brussels region. Noemi Halen,

Service public régional de Bruxelles

• Challenges and pathways for sustainable urban mobility: Michael Glotz-Richter,

Free Hanseatic City of Bremen

• Competence center and lighthouse project Mobility Management: Christina Röll,

Hamburger Verkehrsverbund HVV

10.30 am Panel on Mobility Management for sustainable tourism • THE PEP Partnership on Sustainable Tourism Mobility: Monika Klinger,

Austrian Federal Ministry of Labour and Economy

• Show case from Slovenia: Stasa Kraljic, Ministry of Environment, Climate and Energy,

Slovenia (tbc)

• Alpine Pearls – destinations for sustainable tourism mobility: Peter Brandauer,

Mayor of Werfenweng, Salzburg

• New initiatives to make rail travelling great again: N.N., Austrian Federal Railways (tba)

• Success stories of the klimaaktiv mobil programme Mobility Management for tourism and

the leisure industry: Romain Molitor, komobile

11.15 am Coffee break

THE PEP Partnership and klimaaktiv mobil Conference 2023 Vienna 5

11.45 am-1.15 pm Session IV: Why we need to start with children and young people to achieve the mobility transition

• Moderation: Francesco Dionori, Chief Transport Networks and Logistics Section, United

Nations Economic Commission for Europe UNECE

• Rapporteur: Graphic Recording

11.45 am Welcome and introduction • Petra Völkl and Alexandra Dörfler, Austrian Federal Ministry for Climate Action, Environment,

Energy, Mobility, Innovation and Technology, and Andreas Maier, Austrian Federal Ministry

for Social Affairs, Health, Care and Consumer Protection

11.55 am “Cyclepath to 2025” – THE PEP Partnership on child- and youth-friendly mobility • Kathrin Chiu, Austrian Energy Agency, klimaaktiv mobil

12.15 pm THE PEP Youth Position Paper – Impetus for change • Verena Matlschweiger, Co-Editor of the Youth Position Paper

12.30 pm Designing Streets for Kids • Skye Duncan, Executive Director Global Designing Cities Initiative, New Zealand

12.45 pm Panel Discussion: How to foster active child- and youth-friendly mobility (and why that´s good for all)

• N.N., National Austrian Youth Council (tba)

• Verena Matlschweiger, Co-Editor of the Youth Position Paper

• Carina Schönsleben-Seyringer, Transport Association VVT (Tyrol)

• Michael Schwifcz, City of Salzburg

1.15 pm Lunch

2.15-3.30 pm Session V: Eco-driving and driving education • Moderation: Robin Krutak, Austrian Federal Ministry for Climate Action, Environment, Energy,

Mobility, Innovation and Technology

• Rapporteur: Thomas Bogner, Austrian Energy Agency, klimaaktiv mobil EcoDriving Austria

2.15 pm Welcome and introduction

• Alexander Klacska, Chairman Transport and Traffic Division, Austrian Federal Economic

Chamber

2.20 pm The new driving licence directive – important aspects in the context of EcoDriving and E-Mobility

• Claire Depré, Head of Unit Directorate-General for Mobility and Transport,

European Commission (tbc)

THE PEP Partnership and klimaaktiv mobil Conference 2023 Vienna 6

2.35 pm klimaaktiv mobil driving schools & driving instructors for electric mobility • Stefan Ebner, Director Professional Association for Driving Schools and General Traffic,

Austrian Federal Economic Chamber

2.45 pm Experiences in Germany with Code 78 „automatic regulation“ in driving licences • Jürgen Kopp, Federal Union of Driving Instructor Groups, Germany

2.55 pm Smart Driving in Switzerland • Reiner Langendorf, Quality Alliance Eco-Drive Switzerland

3.05 pm EcoDriving commercial vehicles in practice – successfully implemented in a logistics company

• Johannes Hödlmayer jun., Hödlmayr International

3.15 pm Discussion and conclusion of session

3.30 pm Conclusions of the Conference

3.45 pm Excursion • Aspern Seestadt, one of Europe‘s largest urban development projects

in the north-east of Vienna

6.00 pm Reception at Aspern Seestadt

Excursion

Aspern Seestadt is one of Europe‘s largest urban development projects. Here in Vienna‘s fast-growing 22nd district

in the north-east of the city, a new urban centre is taking shape – a smart city, designed to accommodate the

whole spectrum of life. A multi-phase development through to the next decade will see the creation of high- quality

housing for over 25,000 people and, eventually, thousands of workplaces. Built on a foundation of innovative

concepts and forward-looking ideas, this city-within-a-city combines high quality of life with economic drive and

offers something for everyone.

Date and time: 26 April, 4.15-8.00 pm

Meeting point: Entrance (Registration Point) Austrian Economic Chamber

Address: Seestadt Aspern, 1220 Vienna

Programme 3.30 pm Joint trip with Public Transport

4.15 pm Guided tour at Seestadt Aspern

6.00 pm Reception @ Technology Centre Seestadt

THE PEP Partnership and klimaaktiv mobil Conference 2023 Vienna 7

Back to back THE PEP Partnerships and Working Group Meetings

Restricted participation for registered members only Meeting language: English

Meeting of THE PEP Partnership on Sustainable Tourism Mobility External venue: Austrian Energy Agency, Mariahilfer Straße 136, Vienna

24 April, 2.00-6.00 pm, including coffee breaks

25 April, 9.30-11.30 am, including coffee breaks and light lunch

Meeting of the EU Expert Group Urban Mobility, Sub Group Active Mobility and the Safety of Vulnerable Road Users Conference Venue: Austrian Economic Chamber, Wiedner Hauptstraße 63, Vienna (Hybrid Meeting)

24 April, 2.00-5.00 pm, including coffee breaks

25 April, 9.30-11.30 am, including coffee breaks and light lunch

Meeting of the THE PEP Strategy Working Group Conference Venue: Austrian Economic Chamber, Wiedner Hauptstraße 63, Vienna (Hybrid Meeting)

27 April, 10.00 am-4.00 pm

11.00 am Coffee break

1.00-2.00 pm Light lunch

Meetings of THE PEP Partnership on Active Mobility and THE PEP Partnership on Child- and Youth-friendly Mobility Conference Venue: Austrian Economic Chamber, Wiedner Hauptstraße 63, Vienna

27 April 7.15 am Safe travel to school – a school street in practice.

Field Excursion starting at Austrian Economic Chamber

8.30 am Coffee and snacks at Austrian Economic Chamber

8.50 am-4.00 pm Meeting of THE PEP Partnership on Active Mobility

Meeting of THE PEP Partnership on Child- and Youth-friendly Mobility

11.00 am Coffee break

1.00-2.00 pm Light lunch

  • THE PEP Partnership
    • 25 April
    • 26 April
    • Excursion
    • Back to back THE PEP Partnerships and Working Group Meetings