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1.1.1.1 Assess contribution of VOCs on high O, pollution episodes using observations from

intensive measurement period (summer 2022) and regular time series from EMEP network.
Including model intercomparison exercise for intensive measurement week

e Speciation: explicit emission splits are created for
individual VOCs, based on UK NAEI and several other
studies

e VOC Tracers: take pure emissions and follow
species-specific chemistry to yield pure concentrations

o 2 different chemical mechanisms: CRIV2R5Em and
EmChem19rc

e Large emitting sector: Fugitive, Solvents, Road
transport

e Large emitting VOCs: ethane, propane, benzene,

toluene
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Abstract. Atmospheric volatile organic compounds (VOC) constitute a wide range of species, acting as precursors to ozone and
aerosol formation. Atmospheric chemistry and transport models (CTMs) are crucial to understanding the emissions, distribution,
and impacts of VOCs. Given the uncertainties in VOC emissions, lack of evaluation studies, and recent changes in emissions, this
work adapts the European Monitoring and Evaluation Programme Meteorological Synthesizing Centre - West (EMEP MSC-W) CTM
to evaluate emission inventories in Europe. Here we undertake the first intensive model-measurement comparison of VOCs in two
decades. The modelled surface concentrations are evaluated both spatially and temporally, using measurements from the regular
EMEP monitoring network in 2018 and 2019, and a 2022 campaign. To achieve this, we utilised the UK National Atmospheric
Emission Inventory to derive explicit emission profiles for individual species and employed a “tracer' method to produce pure
concentrations that are directly comparable to observations. Model simulations for 2018 compare the use of two European
inventories, CAMS and CEIP, and of two chemical mechanisms, CRIV2RSEm and EmChem19rc; those for 2019 and 2022 use CAMS
and CRIV2RSEm only.
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1.1.1.1 Assess contribution of VOCs on high O, pollution episodes using observations from

intensive measurement period (summer 2022) and regular time series from EMEP network.
Including model intercomparison exercise for intensive measurement week

Capture spatial patterns and
time series of some VOC
species (e.g. n-butane,
longer-chain alkanes, aromatics,
HCHO)

Performs less well for others
(e.g. propane, ethyne).

E.g. Propane-to-ethane ratios,
ratios of isomeres of butane and
pentane points to potential
issues in speciation or total
emissions in certain sectors (as
well as BIC issues)

HCHO (2022 IMP)

MGLYOX (2022 IMP)
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Figure 16. Scatter plots of average modelled and measured methanal and methylglyoxal concentrations during 2022 IMP.
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Sensitivity to speciation of VOC emissions

B obs How:
—— nDef Sol6: VOC speciation of solvent
100 + “<s sole sector is replaced with the
= 50l6-nDef gasoline
80 -
Results:

Changes in VOC speciation
have little impact on mean
ozone levels, but changes can
be significant close to sources
and in high NOx conditions.

Ozone (ppb)
[=)]
o

20 -
Next:
0+ Importance of VOC
0 50 100 150 200 250 300 350 (speciation) for the 2022
Day of year EIMP

Figure 17. Impacts of VOC sensitivity tests on modelled daily maximum O; at Beromiinster. nDef and Sol6 are two model runs, and the
lowest line gives the difference, Sol6-nDef. Observed O; shown by shaded area. Model runs for 2018.



Ozone - Importance of European, non-European and CH, mitigation

e Whatis it possible to achieve for ozone by 2050 by

(@]
@)
(@]

reducing CH, emissions
reducing European emissions
reducing emissions outside of Europe (ROW)

e \What can be achieved compared to ‘no further policy’ (CLE)?
e What is new compared to TFHTAP/TFMM work:

O
(@]
(@)
(@)
(@)

How?

Gothenburg Protocol Review emission scenarios (CLE, LOW)
Including new indicators for ozone such as Peak Season MDAS8
Including other indicators such as POD,crop and SOMO35
Meteorological variability

Being done now: Updated scenarios, including MFR scenarios

e Global EMEP MSC-W model runs for 2015, 2050 (CLE, MFR, LOW) and in addition
with CH, concentrations changed -> Boundary and initial conditions

e European EMEP MSC-W model runs for 2015, 2050 (CLE, LOW) and CH,
concentrations

2050 LOW
scenario -
Ambitious global
action on air
pollution and
methane,
including
non-technical

measures

|::> Simulated ozone concentrations in the future and the impact of European

NOx/VOC, Rest of World (ROW) NOx/VOC and CH4 emission mitigation
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UNECE (excl. NA) SOMO35 (ppb day~1)

Substantial reductions can be achieved, but WHO AQG levels not attained even in LOW

CH, becomes more important because of its projected increase in CLE.

Action on methane would only be part of the solution; (UNECE) NOx/VOC emission reductions would still be very
important to reduce surface O,
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Results are qualitatively the same, but the effect of LOW versus CLE for 2050 is much larger (because of the cut off)



2050 LOW versus 2050 CLE
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(b)
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The EMEP MSC-W
model is:

- reproducing
MDAS well for
the 5-year
average

- able to model
and span the
meteorological
variability
(compare well to
observations for
‘high’ and ‘low’
MDAS years)

Figure 2. Modelled versus observed peak season MDAS across Europe. Panel (a) shows five-year averaged values at each of the 56 stations,

with panel (b) showing the annual values averaged over all stations. Panel (c) shows the yearly averages for Sweden, Germany, Spain, the

United Kingdom, and Poland, with the number in brackets indicating the number of stations in each of the countries.




Source-receptor methodologies: brute force and sensibilities (local fractions)

and their applicability

PM Paris contribution, August

1 " The LF method was implemented & tested
10 ] PM2.5 for:
2 e PPM
> 6] e deposition of S and N
’ o O
N e NO,
| e MDAS8

time hours
SIA. Paris contribution, August

74 — NEW (implemented but not finished
— BF testing):
i
e SOMO35

1 e POD is being implemented

. r e SIA (Secondary inorganic aerosols)
g e SOA (Secondary organic aerosols)
%31 e BVOC (Biogenic Volatile Organic

Compounds)
e PM, including water
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1.1.1.6 Update GAINS for simulating O, response to reduction of precursor emissions

03 concentrations, July, due to NOx/VOC reductions, NL

104 — O3

sum deltas

sum deltas nox
sum deltas voc

sum deltas nox NL
sum deltas voc NL
sum deltas nox NOS

sum deltas nox GB
sum deltas nox Others

03 change [ug/m3]

0.2 0.4 0.6 0.8
anthropogenic emissions [relative]

Could potentially be parametrized and implemented in
GAINS, but do you want to parametrize this?

1.0

The local fraction
method has been
tested and compared
to BF

When and how far
can we assume
linearity?

o (How large
reductions -
which regimes,
NOx vs VOC
etc)

Which indicators
should we focus on

for GAINS?
o Peak season
MDAS8?
o SOMO35?
o POD3 crop?
o other?



1.1.1.4 Consolidate representation of intermediate and
semi-volatile condensable emissions in models and validation

against existing observations of PM composition (TFMM, MSC-W,
CCC, CEIP, TFEIP)

e Compare modelled OC (and EC) from different sources to ‘new types’ of
observations (PMF data and other tracers)

o Test different SOA mechanisms in the EMEP MSC-W model

o Supported by other projects: CAMAERA, RI-URBANs, EASVOLEE,

CAMEO



Improve evaluation & modelling for EECCA, Turkiye and West Balkan countries

o Almost no EMEP measurements available in EECCA, Turkey or West
Balkan - difficult to assess model and emissions

¢ Increasing availability of satellite data (but cannot be compared directly to
model output)

e More countries have their own network/data with air quality
measurements. Low(er) quality and less rural sites, but still useful

At present:

- Collecting surface data from different sources
- Making an archive of satellite data and prepare for comparison
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Use of satellite data for EECCA, Turkiye and West Balkan countries

Instrument Products
(satellite)
TROPOMI NO,, SO,, CO, HCHO, glyoxal

(Sentinel-5P)
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(Suomi NPP, NOAA-20)
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(Suomi NPP, NOAA-20/21)

Co-funded by Norwegian Space agency - SESAM
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Example Georgia (emission data used in 2021)

TROPOMI

Georgia 2019-01
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(a) Mean PM;o mass

Biogenic aerosols - why and what? -
Why? Tis I.
2. A
e Biogenic aerosols can be 20% of PM, , (in summer)
e Models ‘normally’ do not include biogenic aerosols 7
e PM,, in general more underestimated than PM,, °
e Biogenic aerosols are OC - we need to understand ;. 1'¢

the different sources of OC 8°/IIIII II
wwllll |l
/ .

Weber et al, 2021. Source apportionment of PM10
(15 yearly datasets in France) 20% -
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PBAB: Primary Biological Aerosol Particles

What will we attempt to model?

Forgat

Pollen

Proteins Virus Bacteria

Clouds & Fog Precipitation
Aerosol K—H (Rain, Snow, Graupel, Hail)
A A
Gas - TR A
Molecules Proteins Viruses Bacteria Spores Pollen
Sulfate, SOA, Soot  Mineral Dust, Sea Spray Diameter (m)

I 1 ! |
I T T T T T T TTTTIT T T T T T T TTTTIT T T TTTI T T TTTTTT T T T 7T T T T T T T

1E10 1E-09 1E-08 1E07 1E-06 1E05 1E-04 1EO03 1E-02 1E-01

100pm 1nm 10nm 100nm 1pm 10pum 100pm 1mm 1cm 10 cm
- ultrafine - - fine - - coarse -

+ Marine sources
(algae)

From: J. Fréhlich-Nowoisky et al. Bioaerosols in the Earth system: Climate, health, and ecosystem interactions, Atmospheric Research Volume 182, 346-376 (2016).



3)

PM10 (ug m-

Assumptions:
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1.1.1.12 Collaborate with EMEP regarding =
data gap filling (ICP Forests, MSC-W)
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