Transmitted by the co-chairs of TF for Tyre Abrasion

Informal document **GRBP-79-47-Rev.1** (79th GRBP, February 6-9, 2024, agenda item 7 (f))

Status report to 79th GRBP (February 2024)

Task Force on Tyre Abrasion

On behalf of GRBP and GRPE

Task Force on Tyre Abrasion

Targets	 Develop a robust Define the accept uncertainty of the Based on the abrase in the market; Define abrasion environment; Develop a propose respect to their abrase 	procedure for measuring the abrasion of tyres: Test conditions and methods; ptable uncertainty for the tyre abrasion test method(s) and assess the e tyre abrasion test method; asion test method, define a characterisation of relative mileage potential index; sion performance and tread depth reduction of a wide range of tyres available limits for tyres in order to limit the emission of microplastics to the sal of amendment to UN Regulation No 117 for the type approval of tyres in brasion.						
Roles	Co-chairs:Secretariat:	France (<u>Elodie.COLLOT@utac.com</u>) and European Commission (<u>Theodoros.GRIGORATOS@ec.europa.eu</u>) ETRTO (European Tyre and Rim Technical Organisation)						
Reporting	To both working parties: GRPE and GRBP Adoption: GRBP							
Web page	Task Force on Tyre Al ToRs (under revision)	brasion (TF TA) - Transport - Vehicle Regulations - UNECE Wiki : <u>TF TA Terms of Reference</u>						

Task Force on Tyre Abrasion: facts and figures

- Meetings
 - 15th hybrid-meeting: 20th July 2023
 - 16th web-meeting: 26th Sept 2023
 - 17th web-meeting: 26th Oct 2023
 - 18th web-meeting: 13th Nov 2023
 - 19th web-meeting: 13th Dec 2023
 - 20th web-meeting: 24th Jan 2024
 - 21st hybrid meeting: 6th Feb 2024

- Attendees ~80
 - CPs:

European Commission, France, China, Germany, India, Japan, Norway, Netherlands, South Korea, Spain, Switzerland, UK, USA, Canada

• NGOs:

ADAC, AVL, ETRMA, ETRTO, HORIBA, IDIADA, ITMA, JAMA, JATMA, LINK, OICA, SMMT, TRAC, TÜV Nord, UniBW., USTMA, UTAC, VTI

Testing methods developed by TFTA

©UTAC

LABORATORY (Indoor drum method)

©ADAC / Test und Technik

IN-VEHICLE REAL LIFE (On-road method)

Task Force on Tyre Abrasion: work progress

Work on the 2023 test campaign	 Validation and correlation test campaign for 2023: ongoing for C1 Tyres selections (candidate and "reference" tyres) for correlation: done ☑ Tyres selections for alignment: done ☑ Validation test campaign on 3 on-road test centres and 4 drum test centres: done ☑ Alignment test campaign on 7 on-road test centres and 4 drum test centres: done ☑ Post processing: done ☑ (for the correlation) Market assessment: start of discussion (for tyre selection/organisation/logistics) □
Working document	 Test conditions and methods*: submitted ✓ for C1 tyres <u>GRBP/2024/10</u> as amended by <u>GRBP-79-12rev2</u> new supplement to UNR117.04 Revision of the ToRs (<u>GRBP-79-31</u>)
Market assessment for 2024	 For C1: preparation and first discussions on the number of tyres (~200 TBC), sizes and characteristics to be tested for 2024

Task Force on Tyre Abrasion: next

Work done	 Final proposal of methods Feedback expected of the GRPE (January 24) → GRPE endorsed the proposed changes in the end of January 2024 Adoption expected at GRBP (February 24)
C1 tyres	 Perform the market review (2024 and 1H 2025 (multi circuit assessment) Define and introduce reference tyre(s) for abrasion test in ASTM standard Set the limits for abrasion Sept 2025 Work on the feasibility of rating and definition of the mileage of tyres Feb 2025 "relative mileage potential calculated performance"
C2 tyres	 Propose abrasion method(s) Feb 2026 Set the limits for abrasion Sept 2027 Anticipation of 1 year will be evaluated depending on the C1 method(s)' suitability for C2 tyres C2 clustering
C3 tyres	 Propose abrasion method(s) Feb 2027 Set the limits for abrasion Sept 2029

Back up

Content of the test campaign (indoor and on-road)

- 11 tyres, including Summer, 3PMSF, M+S
- 4 tyre size :
 - 155/65 R14, Load Index 75
 - 205/55 R16, Load Index 91 (SL) and 94 (XL)
 - 235/65 R17, Load Index 108 (XL)
 - 235/55 R 19, Load Index 105 (XL)
- Test duplicated between vehicle and drum method
- 4 repetitions at each of the conditions
 - On different drums (3 tbc)
 - On 2 vehicle circuits, at 3 different temperature (low, medium, high)

Analysis of the vehicle abrasion method

©UTAC

Items tested and analyzed :

- Temperature sensitivity for summer, 3PMSF and M+S tyres
- Vehicle effects
- Dispersion of the vehicle method
- Effect of Temperature on abrasion index
- Alignment between the two abrasion circuits
- Improvements implemented

Reference tyres

Comparison of circuits 1 & 2

- For summer reference tyre on circuit 2: Abrasion rate decreases with temperature •
 - > With current data, negligible circuit effect between these 2 circuits: Same abrasion level on both circuits for summer SRTT at temperature around 20 °C
- For 3PMSF reference tyre, Abrasion rate increases with temperature •
 - Shift on the abrasion level between the 2 circuits for 3PMSF SRTT

More points are needed on Circuit 2, Circuit 1 and other circuits & vehicles to define the allowed ۲ range of circuit abrasiveness. TF on Tyre Abrasion

Temperature sensitivity per regulatory cluster

Reminder

• The 3PMSF reference tyre is currently prescribed for the 3PMSF cluster

(3 3PMSF in this test plan)

- The Summer reference tyre is currently prescribed for the summer and M+S cluster clusters

 (4 M+S tyres and 4 summer tyres in this test plan)
- We computed the temperature sensitivity of each tyre, and made the average per cluster

	Average temperature	
	sensitivity (mg/km/t per	Standard deviation
	°C)	(mg/km/t per °C)
Summer	-1.25	0.47
Ref summer	-1.37	

	Average temperature sensitivity (mg/km/t per °C)	Standard deviation (mg/km/t per °C)
M+S	0.67	0.15
3PMSF	0.71	0.33
Ref 3PMSF	0.71	

M+S tyres tested in this test campaign behaves like 3PMSF tyres and not Summer tyres → a change of cluster for M+S tyres is considered TF on Tyre Abrasion

11

Analysis of vehicle effect

The tests results reveals a very **significant impact of toe** on abrasion.

Influence of vehicle total toe on abrasion

Total toe (Avg Front & Rear weighted by load repartition), deg

Vehicle 1

Vehicle 2

Vehicle

Linéaire (All vehicles

y = 1.708x + 1.027

 $R^2 = 0.860$

180%

160% \$ 140%

120% relative .=

80%

60%

20% 0%

Abra 40%

The effect seems to depend on the vehicle (if we look only front toe) ullet

As toe front & rear are different on the 3 vehicles, we computed the "vehicle total toe"

 $Vehicle \ total \ toe = \ \frac{load_{Front} \times Toe_{Front} + load_{Rear} \times Toe_{Rear}}{load_{Front} + load_{Rear}}$ •

Linear fit made at a first glance, gives pessimistic image ٠

©UTAC

Rear

Camber (°)

0° ± tol (*)

0° ± tol (*)

New Recommended settings :

	Front		Rear		Front		
	Toe (°)	Camber (°)	Toe (°)	Camber (°)	Toe (°)	Camber (°)	Toe (°)
Loaded condition, reference vehicle	0°± tol (*)	[-1.2° ; 0°]	[0.05°; 0.15°]	[-1.9° ; -0.6°]	0° ± tol (*)	0° ± tol (*)	0° ± tol (
Loaded condition, candidate vehicle	0°± tol (*)	[-1.2° ; 0°]	[0.05°; 0.15°]	[-1.9° ; -0.6°]	0° ± tol (*)	0° ± tol (*)	0° ± tol (
			IF ON TY	IG ADIGZIOLI			

Test dispersion of the vehicle method

©UTAC

Synthesis of the test dispersion on vehicle method coming from this campaign :

Case	Standard deviation (in abrasion index)	Expanded uncertainty 95% (±2σ)	Range (in abrasion index)	σ/range (in %)
Raw	σ = 0.200	± 0.40	1.10	18.2%
Raw, w/o M+S	σ = 0.154	± 0.31	0.88	17.6%
<i>Estimated</i> landing point if the assumptions adopted to emulate M+S in 3PMSF cluster (*) will be verified	<i>σ</i> = ~0.14	~± 0.28	1.23	11.3%
<u>Estimated</u> landing point, M+S emulated in 3PMSF cluster, without Peugeot 308	σ = ~0.10	~± 0.20	~1.06	~9.8%

(*) Assumptions: Abrasion Ref 3PMSF = f(T°) from Circuit 1 data

The dispersion must be reassessed because significant improvements have been made in the vehicle method (M+S tire, vehicle settings), with expected good improvement of the dispersion

Analysis of temperature effect on abrasion index

The abrasion index appears sensitive to temperature variation, as it evolves with temperature An improvement can be proposed, by correcting the abrasion rate before the index calculation

- Correction based on mean gradient of a group and difference to a reference temperature
- Still some correlation for some tyres after correction: if the tyre have a different temperature gradient than the one used for the correction, you still observe a temperature effect

A significant improvement may be expected from this temperature correction :

- For vehicle method, a mean standard deviation for abrasion rate index of 0.11 instead of 0.2
 - still using Sum SRTT as reference tyre for M+S, and without consideration of the new vehicle settings limits

Alignment between vehicle circuits

©UTAC

Circuit alignment, all raw data

Circuit alignment, Emulation of M+S tyres in 3PMSF cluster

A very good alignment of the two circuits is observed

<u>Synthesis</u> of the vehicle method improvements

©UTAC

Improvement already validated :

- M+S tyres tested with 3PMSF reference tyre
- Improved vehicle settings limits

Improvements under study :

- Computation of the range for the σ /range indicator
- Temperature correction in the computation of the abrasion index

Analysis of the drum abrasion method

Items tested and analyzed :

- Available drum data
- SRTT 16" vs SRTT 17"
- Analysis of abrasion rate & abrasion index
- Analysis of temperature sensitivity & road surface
- Dispersion of the drum method
- Irregular wear
- Improvements

©UTAC

Drum available data

- Test results of drum4 may not be usable due to a malfunction in the testing machine.
 - The cause is still under analysis
- Therefore, test data from other 3 test centers is considered for verification of indoor
- 1st repetition was performed with SRTT16.
 2nd, 3rd, 4th repetition were performed with SRTT17.
- Specific test to compare SRTT16 with SRTT17 was included during test campaign.

Tyre		Test		Test			Test pr	ocedure		
No.	Tire Size	LI/SS	Category	Abrasion rate	Rim	Rim periond (week)		2nd time	3rd time	4th time
1	155/65R14	75H	Normal	low abrasion	5	2				
2	155/65R14	75T	3PMSF	low abrasion	5	2				
3	205/55R16	94W	Normal	high abrasion	6.5	2	ł	ł	ł	ł
4	205/55R16	91V	Normal	high abrasion	6.5	2				
5	205/55R16	91V	M+S	low abrasion	6.5	2				
6	205/55R16	91V	M+S	high abrasion	6.5	2	↓	ł	ł	ţ
7	205/55R16	91H	3PMSF	high abrasion	6.5	2				1
8	235/55R19	105Y	Normal	low abrasion	7.5	2				
9	235/55R19	105V	M+S	low abrasion	7.5	2		Ļ		
10	235/55R19	105H	3PMSF	high abrasion	7.5	2				1
11	235/65R17	108T	Special Use	high abrasion	7.5	2	↓ ↓	ł	↓	+
12	225/45R17	94V	Reference(Normal)	-	7.5	2				
13	225/45R17	94H	Reference(3PMSF)	_	7.5	2				

✓ Total 52 has been tested.

SRTT 16" vs SRTT 17"

©UTAC

These data were used to convert abrasion index from the 1st repetition

Analysis of the abrasion rate & index

13

Drum3

٠

: Blue

200

150

- Clear difference in abrasion rate per drum ٠
- The difference in abrasion rate between drums is cancelled by computing the ٠ abrasion index, relative to the reference tyre

Limits of abrasion rate for reference tyres

- Within a replacement cycle of test surface, the dispersion of abrasion rate shows a decreasing trend from the beginning to end of the cycle.
- We confirmed σ of abrasion rate at the beginning and the end of test surface cycle:

	σ at beginning	σ at end	Unit: mg/km/t
SRTT Normal	34.5	9.8	
SRTT 3PMSF	31.4	14.6	

- Considering the larger dispersion, the range is set as the abrasion rate at beginning +/-2 σ .
- In case of SRTT17 Normal, the abrasion rate of the reference tyre : range from 50 mg/km/t to 190 mg/km/t.
- In case of SRTT17 3PMSF, the abrasion rate of the reference tyre : range from 35 mg/km/t to 165 mg/km/t.

Temperature and drum surface effect

- No significant linear effect observed between the abrasion rate index and temperature
- No significant linear effect observed between the ref. abrasion rate and temperature for the 3 ref
 patterns
- No significant effect observed between sandpaper grit 80 and a realistic surface

Abrasion Rate Index vs TestAverageTemp (drum)

Reference Abrasion Rate vs TestAverageTemp (drum)

Dispersion of the drum method

Test Temp: all Drum Surface: all Drums 1 to 3 Test Data: 39

©UTAC

Case	Standard deviation (in abrasion index)	Expanded uncertainty 95% (±2σ)	Range (in abrasion index)	σ/range (in %)
All tyres (39 data)	σ = 0.086	± 0.172	0.612	14.1%
w/o M+S (26 data)	σ = 0.103	± 0.206	0.392	26.4%
Estimated landing point if the assumptions adopted to emulate M+S in 3PMSF cluster (*) will be verified	σ = ~0.088	~± 0.176	0.649	13.6%

(*) Assumptions: conversion made using the 2 conversion factors

While applying the method as described, ETRTO drums (5-7) results seems to show a higher dispersion than drums 1 to 3

Case	Standard deviation (in abrasion index)	Expanded uncertainty 95% (±2σ)	Range (in abrasion index)	σ/range (in %)
Raw	σ = 0.200	± 0.40	1.10	18.2%
Raw, w/o M+S	σ = 0.154	± 0.31	0.88	17.6%
<u>Estimated</u> landing point if the assumptions adopted to emulate M+S in 3PMSF cluster will be verified	<i>σ</i> = ~0.14	~± 0.28	1.23	11.3%

Note: ratio dispersion / range should be reassessed with market assessment results which will give the best evaluation of the range.

Tyre wear on drum test methods

©UTAC

- Irregular Wear (heel & toe) was found on many tyres on drum tested by ETRTO.
- Example SRTT 17" (Drum 5)

- Irregular Wear was not observed in JASIC drum.
- Example 225/45R17 94V XL (Drum 1)

 Heel and Toe wear was found on all the ETRTO drum results (More irregular wear on summer tyres)
 Further analysis is ongoing

Improvements of the drum method

©UTAC

4 improvements of the drum method have been implemented :

- Changing the reference tyres from SRTT 16" to SRTT 17"
- Definition of the limits of abrasion rate on Reference tyre to validate a drum test
- De-gumming : limitation of the "3rd body" nature (powder) to only 2 types : Talc or Silica
- Split the drum surface roughness indicator into 2 indicators (macro roughness, micro roughness),
 - with an allowed range for each

Some other improvements have been proposed :

- Define limits of flow rate for 3rd body (de-gumming system)
- Update load and pressure of the tyre to improve the correlation with vehicle method
- Update the forces animation (longitudinal and lateral) to improve the correlation with vehicle method

Analysis of the correlation between the two methods

- Sometimes the abrasion rate indexes are very similar, sometimes more difference
- Larger average standard deviation for vehicle method Could partly be explained due to temperature effect
- A larger range of temperature was tested for the vehicle method

Need to check with the market assessment generated data if this is improved with the better test method definitions

Abrasion Rate Index vs TyreCode

Average standard deviation Vehicle: 0.20, Average standard deviation Drum: 0.09

Thank you