

Informal Document **GRBP-79-37** 79th GRBP, 06 – 09 February 2024 Agenda Item 7 (c)

Tyre Abrasion Study for vehicles of category M & N Study performed by UTAC for ACEA

UTAC

Tyre Abrasion Study for ACEA

79th GRBP

CONTENTS

- Tyre Abrasion Study Overview
- WP3 Real Life Testing
- WP4 Statistical Analysis
- Conclusions & Recommendations

TYRE ABRASION STUDY OVERVIEW

- Scope:
 - Theoretical and experimental study of influencing factors on tyre wear / abrasion.
- Objectives:
 - Review GRBP TF TA tyre abrasion requirements proposal: test method, interdependency evaluations, etc,
 - Quantify differences in tyre wear / abrasion in relation to vehicle type (ICE vs BEV),
 - Quantify possible differences between OE and Aftermarket tyres by testing tyres with different label values.
- Work Packages & Timing:

	Work Packages	Updated Timing			
WP1	Literature Review	Jun-23 (completed)			
WP2	EPREL Tyre Database Analysis	Aug-23 (completed)			
WP3	Real Life Testing	Aug-23 (completed)			
WP4	Test Results Analysis	Analysis: Oct-23 (completed)			
WP5	Presentations to GRBP/GRPE:	Interim report: GRBP 78 th session (completed) Final report: GRPE 90 th session / GRBP 79 th session			

- Objectives:
 - Quantify differences in tyre wear / abrasion in relation to:
 - Vehicle type: ICE vs BEV,
 - Tyre type: OE vs aftermarket tyres with different label values.
- Vehicles selection:
 - Scope: BEV & ICE vehicles from same model platform,
 - Vehicles: 1 x BMW iX1 xDrive (BEV) vs 5 x BMW X1 (ICE).
- Tyres selection:
 - Scope: C1 summer tyres,
 - Tyre size: 245/45R19 102 Y,
 - Tyre labels (rolling resistance / wet grip):
 - AA (aftermarket, best label combination available, eco tyre for EV),
 - AB (OE homologated, eco tyre),
 - BA (OE homologated, comfort tyre),
 - CA (aftermarket, best-selling based on analysis of French tyre distributors websites, High Performance tyre),
 - DB (aftermarket, worst label combination available, High Performance tyre),
 - Tyres tested before tyre wear test to check wet grip and rolling noise label values.
 - Start of Production: between 23/20 and 29/22
 - DOT: between 20/22 and 19/23

Circuit:

- Specifications as close as possible to TADG-ORV Test Method proposal,
- Open road circuit around UTAC Mortefontaine site (Northern France),
- Compatible with BEV range & charging constraints.
- Test Method:
 - Test procedure as close as possible to TADG-ORV Test Method proposal,
 - Main differences with TADG-ORV Test Method proposal:
 - 1 double convoy: 3 + 3 vehicles mixing ICE and BEV to limit test time & cost,
 - Reference (REF): BMW X1 (ICE) fitted with AB OE homologated Tyre,
 - Total running distance: 15,000km (8 weeks),
 - Measurement parameters: tyre tread depth and tyre weight.
 - Intermediate measurements every 2,000km:
 - Tyre tread depth,
 - Wheel & tyre assembly weight.
- Timing: July August 2023

Circuit characteristics							
Length (km)	390						
City (km / %)	59 km / 15 %						
Road (km / %)	195 km / 50 %						
Highway (km / %)	137 km / 35 %						
Average speed (km/h)	93,13						
Standard deviation speed	32						
Standard deviation longi accel (m/s ²	0,68						
Standard deviation lat accel (m/s ²)	0,87						

• Average weight loss rate per vehicle normalised by vehicle load (Abrasion Level as per TF TA proposal):

- REF AB OE: Rear Right tyre counted twice due to Rear Left tyre replacement during testing,
- Abrasion level at intermediate distances based on tyre weight loss estimation from W&T assembly measurement,
- Vehicle weight influence observed between ICE and BEV → Change in test results when normalised by vehicle load,
- Similar abrasion level between ICE and BEV when tested in same convoy.

• Average tread depth loss rate per vehicle normalised by vehicle load 15,000km (wear rate):

- Difficult to measure accurately tread depth in shoulders area \rightarrow Larger results dispersion,
- Vehicle weight influence observed between ICE and BEV → Change in test results when normalised by vehicle load,
- Longer test distance required to get stabilized tread depth loss rate compared to abrasion level.

WP4 – STATISTICAL ANALYSIS

- Statistical analysis of:
 - Tyre label values: Rolling Resistance, Wet Grip, Rolling Noise,
 - Tyre test results: Wet Grip Index, Sound Level, Abrasion Level, Tread Depth Loss Rate.
- Objective:
 - Identify factors involved in tyre wear / abrasion phenomenon from point of view of :
 - Tyre performances interdependency,
 - OE vs AM tyres.
- Analyses carried out:
 - Data exploration: radar chart,
 - Correlation analysis to look for significant relationship between variables when considered one vs another,
 - Principal Component Analysis (PCA) to identify trend between variables.

CONCLUSIONS: TEST METHOD EVALUATION

- Abrasion level:
 - Stabilization at 8,000 km partially confirmed.
 - Vehicle load normalization helps remove impact of vehicle weight on tyre ranking.
- Wear rate:
 - No stabilization observed within 15,000 km → Wear test method specifications for tyre mileage definition to be further investigated included tread depth measurement process.
 - Vehicle load normalization helps remove impact of vehicle weight on tyre ranking.
- Different types of vehicle (ICE vs BEV) does not necessarily lead to significant differences in abrasion level.

CONCLUSIONS: TYRE PERFORMANCE

- Based on statistical analysis of sample of 6 tyres tested, lower tyre abrasion level tends to imply:
 - Higher noise level,
 - Higher rolling resistance.
- \rightarrow Statistical analysis on larger data set to confirm trends.
- \rightarrow Tyre performance measurement to confirm trends based on tyre label analysis.
- OE Tyre with best safety performance among sample has much higher Wet Grip Index than AM tyres of the same label A.
- Performance trade-offs observed for all tested tyres, no tyre of sample set excels in all performances.

www.utac.com

ANNEX – WP1 – LITERATURE REVIEW – FINDINGS

- Tyre performances interdependency:
 - Tyre wear / abrasion vs rolling resistance: good level can be achieved for both performances, depending on:
 - Strategy chosen during tyre development,
 - Type of tyre considered (ie: eco vs high performance / sport).
 - Tyre wear / abrasion vs rolling noise: good level can be achieved for both performances, depending on:
 - Strategy chosen during tyre development,
 - Type of tyre considered (ie: eco vs high performance / sport).
 - Tyre wear / abrasion vs safety: challenging to achieve good level for both performances:
 - Investments required in development and implementation of innovative technical solutions.

(UTAC, TA-03-04 OICA GRBP-75-19-Rev.1)

• Tyre Labels Value and Tyre Test Results:

Tyre	RR Label	WG Label	Noise Label	WG Index ⁽¹⁾	Sound Level (dB(A)) ⁽²⁾	Abrasion Level (mg/km/ton) ⁽³⁾	Tread Depth Loss Rate (mm/1000km/ton) ⁽⁴⁾
AA - AM	А	А	A (69dB)	1,56	70,2	69,3	0,047
REF AB – OE ⁽⁵⁾	А	В	A (69dB)	1,48	71,2 (B)	88,6	0,055
BEV AB – OE ⁽⁶⁾	А	В	A (69dB)	1,48	71,2 (B)	87,1	0,053
BA – OE	В	А	B (70dB)	1,70	72,5	67,0	0,049
CA – AM	С	А	B (72dB)	1,56	73,8	80,2	0,063
DB – AM	D	В	B (70dB)	1,58 (A)	72,1	58,7	0,056

• Notes:

⁽¹⁾ Wet Grip Index in new state as per Annex 5 to UNR117.

⁽²⁾ Sound Level only after temperature correction according to §4.3 of Annex 3 to UNR117.

⁽³⁾ Abrasion Level after 15,000km.

⁽⁴⁾ Average Tread Depth Loss rate (centre tread and shoulders) per vehicle normalised by vehicle load after 15,000km.

⁽⁵⁾ AB – OE tyre fitted to reference Internal Combustion Engine (ICE) vehicle for tyre abrasion / wear testing.

⁽⁶⁾ AB – OE tyre fitted to Battery Electric Vehicle (BEV) for tyre abrasion / wear testing.

ANNEX – WP4 – DATA EXPLORATION

UTAC

- Observations aligned with WP1
 - Literature Review Findings:
 - No clear correlation highlighted with abrasion level or tread depth loss rate.
 - Good tyre in RR can be good for tread depth loss rate.
 - Good tyre in Noise can be good for tread depth loss rate.
 - Good tyre in Wet Grip can be good for tread depth loss rate and abrasion level.
 - Abrasion level and tread depth loss rate not correlated.
- No clear picture to be drawn between:
 - OE vs AM tyres.
 - Eco vs Comfort vs High Performance tyres.
- Handling data would be required to confirm tyres type differences.

ANNEX – WP4 – CORRELATION ANALYSIS

- P-Value:
 - The p-value or probability value is, for a given statistical model, the probability that, when the null hypothesis is true, the statistical summary would be greater than or equal to the actual observed results.
 - In the present case, the null hypothesis is: "there is no correlation between characteristics".
 - In other words, if **p-value is low then the null hypothesis is false** and **it can be concluded that there is a correlation**. The admitted threshold value is: 5%.

A **p-value** (shaded green area) is the probability of an observed (or more extreme) result assuming that the null hypothesis is true.

ANNEX – WP4 – CORRELATION ANALYSIS

- Significant Relationship between variables:
 - Correlation between 2 characteristics if Pearson correlation coefficient is significant (probability value, p-value < 0,05).
- Variables considered:
 - RR label,
 - Wet Grip label,
 - Noise label,
 - RR / Wet Grip / Noise label,
 - Wet Grip Index,
 - Sound Level,
 - Abrasion Level:
 - per Vehicle / Front / Rear,
 - after 2k / 4k / 6k / 8k / 10k / 12k / 15k km,
 - Normalised Tread Depth Loss Rate:
 - per Vehicle / Front / Rear,
 - after 2k / 4k / 6k / 8k / 10k / 12k / 15k km,
 - Centre tread grooves (3 & 4) / Intermediate tread grooves (2 & 5) / shoulders (1 & 6).

			1.5 1	.7		60	90		0	.0300 0.042	5	C	0.060 0.	.085	;	
-	Label R	_R	•	•	· ·	•	•	° ° ° °	•	· · · ·	° •	•	°	•	· · · ·	- 4.0 - 2.5 - 1.0
1.7 - 1.6 - 1.5 -	- ° • °	•	WG		° ° °	••	° ° °	° ° °	•	° ° ° °	° °	° °	° ° ° ∞	•	° °°°°	-
-	• •	•	° °	•	Noise	° °	•	°.	•	。 。 。 。	° °	•	° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	•	° ° ° ° °	- 74 - 72 - 70
90 - 60 -	• • • •	۰	0 0 0 0	•	0 0 0 0	w_l ate_	oss_r _15k	• • •	•	0 0 0 0	。 。 。	•	°.	۰	°°°°	_
-	8 8	•	° 8 °	•	°°°	• •	° °	dep_lo _rate_ 15k	F	。 。。。。 。	000	°	° ° °	•	°°°°	- 0.085 - 0.065
0.0425 -	- • •	•	0 0 0 0	•	° ° °	0 00	° °	。 。 。	0	dep_loss _rate_R _15k	。 。 。	°	。 。 。	•	° °	_
-	0 0 0	•	0 8 0 0	•	° 8° °	。 。 。	•	°°°°	0	。 。 。 。	dep_ _rate 5k_	_loss e_F1 sho	° &	•	°°°	- 0.060 - 0.045
0.085 - 0.060 -	8 8	•	8 °	•	8 °	°.	° ° °	。	•	°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°		•	dep_lo _rate_ _5k_ir	DSS F1 זל	°°°	_
-		•	°	•		• ••	。 。 」	° °	•			•	°, °	•	dep_loss _rate_F1 5k_cen	- 0.11 - 0.09
	1	4	·	•	70 72 74	•	•	0.065 0.0)85		0.045	0.060		•	0.09 0.11	

Scatterplot matrix for tire data

ANNEX – WP4 – CORRELATION ANALYSIS

• Significant Relationship with abrasion level or tread depth loss rate:

	Variable 1	Variable 2	Pearson Correlation coefficient example	P-value example	
1	Noise	Tread depth loss rate (2k/4k/6k/8k/10k/12k, Front 15k shoulder)	Front 15k shoulder: 0.95	Front 15k shoulder: 0.003	
2	Label (RR + WG + Noise) (AAA:3, AAB =4,)	Tread depth loss rate (2k / 8k, Rear 15k shoulder)	Rear 15k shoulder: 0.93	Rear 15k shoulder: 0.008	
3	Label Noise (A=1, B=2)	Abrasion level (Rear 2k / 6k)	Rear 2k: -0.89	Rear 2k: 0.017	
4	Label Noise (A=1, B=2)	Tread depth loss rate (2k / 4k / 6k / 8k / 10k, Rear 15k shoulder)	6k: 0.85	6k: 0.031	
5	Label RR (A=1, B=2)	Abrasion level (2k, Rear 2k / 6k)	Rear 2k: -0.87	Rear 2k: 0.026	
6	Label RR (A=1, B=2)	Tread depth loss rate (2k, Rear 15k shoulder)	2k: 0.87	2k: 0.026	

- No correlation found between Noise measurement and abrasion level.
- RR measurements would be required to confirm correlation between RR label and abrasion level.
- No correlation found between Wet Grip and abrasion level or tread depth loss rate.

ANNEX – WP4 – PRINCIPAL COMPONENT ANALYSIS

- Data:
 - n individuals observed on p quantitative variables
 - Individual: element of R^p
 - Variable: element of Rⁿ

 X^2

 $\underline{\mathbf{X}}^{\mathbf{p}}$

- Cloud of individual representation:
 - To each individual noted e_i, a point can be associated in R^p
 - Each variable in table X is associated with an axis of R^p.

20

ANNEX – WP4 – PRINCIPAL COMPONENT ANALYSIS

- Cloud of individual representation:
 - Looking for a representation of the n individuals, in a subspace F_k of R^p of dimension k

 \rightarrow Trying to define k new variables linear combinations of the p initial variables that will cause as little information loss as possible.

- As little information loss as possible:
 - F_k will have to be "adjusted" as best as possible to the cloud of individuals: the sum of the squares of the distances from individuals to F_k must be minimal.
 - F_k is the subspace such that the projected cloud has a maximum inertia (dispersion).

 \rightarrow Based on notions of distance and orthogonal projection.

axe 2

ANNEX – WP4 – PRINCIPAL COMPONENT ANALYSIS

- Principal Component Analysis (PCA):
 - Mathematical procedure used to convert a set of possibly correlated variables into a smaller set of uncorrelated variables called principal components.
 - PCA used here to reduce a set of 20 characteristics (label, RR, Wet Grip, Noise, Tread Depth Loss Rate (after 2k / 4k / 6k / 8k / 10k / 12k / 15k km), Abrasion Level (after 2k / 4k / 6k / 8k / 10k / 12k / 15k km) to 2 variables.
- PCA results:
 - Inertia of the first dimensions:
 - Shows if strong relationships between variables,
 - Suggests the number of dimensions to be studied.
 - First 2 components of PCA express 88% of the total dataset inertia
 → 1st plane well represents data variability.

- PCA Results:
 - Circle of correlations: projection of the cloud of variables on the level of the main components.
 - The variables close to the circle are well represented, those close to the origin are poorly represented.

Part of inertia	56%	31%	9%	
	Axis 1	Axis 2	Axis 3	
Depth loss rate (2-10k)	~ 0.85	~ 0.46	~ -0.08	
Depth loss rate (12-15k)	~ 0.44	~ 0.85	~ -0.08	
Weight loss rate (2-15k)	~ -0.86	~ 0.43	~ 0.20	
label3	0.88502	0.17721	-0.41404	
Label RR	0.94854	0.11917	-0.27238	
Label WG	-0.25291	0.16245	-0.90412	
Label Noise	0.95283	0.14110	0.18091	
WG	0.64342	-0.39953	0.55614	
Noise	0.71800	0.62501	0.27369	

UTA

ANNEX – WP4 – PRINCIPAL COMPONENT ANALYSIS

- PCA Visualisation and Explanation:
 - Trend between Rolling Noise and Tread Depth Loss Rate,
 - Opposition trend between Rolling Noise and Abrasion Level,
 - Opposition trend between Abrasion Level and Tread Depth Loss Rate after distances < 10,000km,
 - Different Tread Depth Loss Rate evolution for some tyres after distances > 10,000km.
- Comments on PCA Results Representativeness:
 - PCA can be considered as descriptive method: it summarises the information but does not explain it,
 - Recommended to have a relatively large sample to ensure an optimal statistical power of the analysis: at least a ratio of 10 subjects per variable.
 - With a sample of 6 tyres, trends shown maybe valid for this sample but necessary to remain cautious regarding generalization of interpretations given the representativeness of the tyres' population.

