

RED: transposition and challenges in the transport sector in North Macedonia

Aleksandar Dukovski, Energy and Climate Consultant 21 November 2023, Tbilisi, Georgia

A NEW EUROPEAN APPROACH TO RENEWABLES

- Binding EU-target of at least 32% (upward review in 2023)
- Underpinned by national contributions
- Formula to assess contributions (in case of ambition gap)
- Collective responsibility of target achievement
- Joint measures (EU financial platform)

MAINSTREAMING RENEWABLE ENERGY IN TRANSPORT

from food and feed crops frozen around 2020 levels

> **High ILUC risk** biofuels first frozen, and then gradually reduced towards 0% by 2030

18

RED

Figure 3: Energy consumption in transport per capita by type of fuel in 2018¹⁴

RE Targets

Targets for share of energy from renewable sources in gross final consumption of energy

Contracting Party	2005 Share of energy from renewable sources	2020 Target for share of energy from renewable sources	2030 Target for share of energy from renewable sources
Albania	31,2%	38%	52,0%
Bosnia and Herzegovina	34,0%	40%	43,6%
Georgia	n/a	n/a	27,4%
Kosovo*	18,9%	25%	32,0%
Moldova	11,9%	17,0%	27,0%
Montenegro	26,3%	33%	50,0%
North Macedonia	17,2%	23%	38,0%

RE Share – Future estimates

Source: MARKAL results from the Strategy for energy development up to 2040, project team analyses

Transport evolution

Source: MARKAL input data for the Strategy for energy development up to 2040, project team analyses

RE Targets - transport

Figure 32. Estimated trajectories for the share of renewable energy in final energy consumption in the electricity, heating and cooling and transport sector

Measures to decarbonization of the transport sector in Macedonia

Priority government support measures

		38% share in gross final energy consu	umption			
Decarbonization	66% share in gross electricity production					
(Renewable energy)		45% share in gross final energy consumption for heating and cooling				
10% in final energy consumption in transport						
	PM_EE17	Increased use of the railway	\checkmark	V	\checkmark	V
	PM_EE18	Renewing of the national car fleet	\checkmark	\checkmark	\checkmark	
	PM_EE19	Renewing of other national road fleet	\checkmark	V	V	V
	PM_EE20	Advanced mobility	\checkmark	\checkmark	\checkmark	V

PM_EE21	Construction of the railway to Republic of Bulgaria	\checkmark	\checkmark	V	\checkmark
PM_EE22	Electrification of the transport	\checkmark	V	V	V

Measures to decarbonization of the transport sector in Macedonia

Priority government support measures

Decarbonization (Renewable energy)	38% share in gross final energy consumption
	66% share in gross electricity production
	45% share in gross final energy consumption for heating and cooling
	10% in final energy consumption in transport

PM_EE17	Increased use of the railway	180.6	180.6	0.0
PM_EE18	Renewing of the national car fleet	1599.5	2167.7	568.2
PM_EE19	Renewing of other national road fleet	2300.0	2300.0	0.0
PM_EE20	Advanced mobility	1	1	1
PM_EE21	Construction of the railway to Republic of Bulgaria	720.0	720.0	0.0
PM_EE22	Electrification of the transport	1201.7	8292.3	7090.6

RE fuels potential

North Macedonia: Potential renewable fuel production, compared to current energy use in road and rail transport

Perspectives for RES-T contributions

Table 53:

Potential RES-T contributions from all options in North Macedonia

		Contribution to	Amount of
		incl multiple	renewable fuel
Option		counting	used (ktoe)
Ø	1. Crop-based biofuels in road transport	2.0%	15.6
NBO	2. Liquid fuels produced from Annex IX B feedstocks in road transport	3.4%	13.3
lid RF	3. Liquid advanced Biofuels (based on Annex IX A feedstocks) in road transport	3.1%	11.9
liqu	4. Liquid RFNBOs in road transport	0.58%	4.49
and	5. Renewable methane in road transport	0.44%	1.7
els	6. Renewable liquid fuels in shipping	0.0%	0.00
iofu	7. Renewable liquid fuels in aviation	0.0%	0.00
ш	8. Renewable liquid fuels in rail	0.0%	0.00
sity	9. Rail electrification	0.608%	3.2
ctric	10. Electric public transport (bus, trolleybus, tram, metro)	0.010%	0.03
Ele	11. Electric road vehicles (passenger cars and trucks)	0.352%	0.69
E	12. Hydrogen in rail	0.003%	0.02
lydroge	13. Hydrogen bus and coach (urban bus, long distance coaches)	0.004%	0.03
	14. Hydrogen road vehicles (passenger cars and trucks)	0.088%	0.69
-	15. Hydrogen in refineries	0.0%	0.00
Total		10.5%	51.6

Interesting facts – discussion

ENERGY IS EVERYWHERE

- Your average apartment requires around 65 MWh of energy to be built
- Your average combustion car requires around 17 MWh of energy to be built
- Your average electric car requires around 47.6 MWh of energy to be built
- Your average toilet paper roll requires around 0.7 kWh of energy to be produced
- Your average bread (Ikg) requires around 5 kWh of energy to be produced
- Your average tomatoes (1kg greenhouse) require around 7.5 kWh of energy to be produced
- Your average t-shirt requires 0.4 kWh of energy to be produced

1 Wind turbine 3.5 MW or 1 Solar panel 300 W

- Your average apartment requires around 18.5h of wind or 24.7 years of solar to be built
- Your average combustion car requires around 5h of wind or 6.5 years of solar to be built
- Your average electric car requires around 13.6h of wind or 18 years of solar to be built
- Your average toilet paper roll requires around 1 second of wind or 2.3h of solar to be produced
- Your average bread (lkg) requires around 5 seconds of wind or 16.6h of solar to be produced
- Your average tomatoes (Ikg greenhouse) require around 7.7 seconds of wind or 25h of solar to be produced
- Your average t-shirt requires half a second of wind or 1.3h of solar to be produced

ENERGY IS PREREQUISITE FOR DEVELOPMENT

Global primary energy demand, millions of terajoules

Source: McKinsey Energy Insights' Global Perspective, January 2019

End of ICE

Table 17

	Country	Target year – 100% ZEV sales target or ICE sales ban	Target year – ICE free fleet
•	Costa Rica	2050	
•	Denmark	2030	
0	France	2040	
+	Iceland	2030	
0	Ireland	2030	
*	Israel	2030	2045
	Netherlands	2030	2045
+	Norway	2025	
()	Portugal	2040	
-	Slovenia	2030	
	Spain	2040	2050
	Sri Lanka		2040
	United Kingdom	2040	

Countries that have announced a 100% ZEV sales target, ICE ban or

target for ICE free fleet

HISTORY OF ELECTRIC CARS - 19TH CENTURY

HISTORY OF ELECTRIC CARS - 20TH CENTURY

HISTORY OF ELECTRIC CARS - 21 ST CENTURY

Minerals in

ELECTRIC VEHICLES VS GAS CARS

Electric vehicles require a wider range of minerals for their motors and batteries compared to gas cars.

In fact, an EV can have 6 times more minerals than a gas car and be on average 340 kg heavier.

Approximate composition of a Nickel Manganese Cobalt (NMC) battery, by weight

Material consumption Nikel mine

Material consumption Lithium mine

Material consumption Cobalt mine

Charging EV

If federal zero-emission vehicle sales targets are met, the United States could have more than 48 million electric vehicles on the road in 2030.

Electric-vehicle parc, by segment¹ growth, thousands of vehicles²

¹ Based on a scenario where zero-emissions vehicles (battery-electric vehicles, plug-in hybrid electric vehicles, fuel-cell electric vehicles) account for half the vehicles sold in the United States in 2030, in line with a federal target.

²Battery-electric vehicles and plug-in hybrid electric vehicles.

Source: McKinsey Center for Future Mobility

McKinsey & Company

Demand of TWh for EVs

While most electric-vehicle chargers would be in homes, about 1.2 million would be public chargers.

Annual energy demand from electric vehicles, in 2030,1 terrawatt-hours Passenger cars Light commercial vehicles

11

10.8

2021

0.2

0.1

0.1

230

UNECE

Charger demand

Cumulative charger demand in 2030,¹ thousands of chargers

Note: Figures may not sum, because of rounding.

¹ Based on a scenario where zero-emissions vehicles (battery-electric vehicles, plug-in hybrid electric vehicles, fuel-cell electric vehicles) account for half the vehicles sold in the United States in 2030, in line with a federal target.

Source: McKinsey Center for Future Mobility

Thank you for your attention

