
JSON Schema Naming and Design Rules V1.0 2022-09-13

 Page 1 of 57

UN/CEFACT

UNITED NATIONS

Centre for Trade Facilitation and Electronic Business

(UN/CEFACT)

METHODOLOGY AND TECHNOLOGY PROGRAMME DEVELOPMENT AREA

SPECIFICATIONS DOMAIN

JSON SCHEMA NAMING AND DESIGN RULES
TECHNICAL SPECIFICATION

SOURCE: API TechSpec Project Team

ACTION: Ready for publication

DATE: 13 September 2022

STATUS: v1.0

Disclaimer (Updated UN/CEFACT Intellectual Property Rights Policy – ECE/TRADE/C/CEFACT/ 2010/20/Rev.2)

ECE draws attention to the possibility that the practice or implementation of its outputs (which include but are not limited to
Recommendations, norms, standards, guidelines and technical specifications) may involve the use of a claimed intellectual property right.

Each output is based on the contributions of participants in the UN/CEFACT process, who have agreed to waive enforcement of their
intellectual property rights pursuant to the UN/CEFACT IPR Policy (document ECE/TRADE/C/CEFACT/2010/20/Rev.2 available at
http://www.unece.org/cefact/cf_docs.html or from the ECE secretariat). ECE takes no position concerning the evidence, validity or
applicability of any claimed intellectual property right or any other right that might be claimed by any third parties related to the
implementation of its outputs. ECE makes no representation that it has made any investigation or effort to evaluate any such rights.

Implementers of UN/CEFACT outputs are cautioned that any third-party intellectual property rights claims related to their use of a
UN/CEFACT output will be their responsibility and are urged to ensure that their use of UN/CEFACT outputs does not infringe on an
intellectual property right of a third party.

ECE does not accept any liability for any possible infringement of a claimed intellectual property right or any other right that might be
claimed to relate to the implementation of any of its outputs.

JSON Schema Naming and Design Rules V1.0 2022-09-13

 Page 2 of 57

Abstract

This JSON Schema Naming and Design Rules technical specification defines an
architecture and a set of rules necessary to define, describe and use JSON to consistently
express business information exchanges namely via APIs. It is based on the JSON Schema
team’s specification and the UN/CEFACT Core Components Technical Specification. This
specification will be used by UN/CEFACT to define JSON Schema and JSON Schema
documents, which will be published as UN/CEFACT standards. It will also be used by other
organisations who are interested in maximizing inter- and intra-industry interoperability.

JSON Schema Naming and Design Rules V1.0 2022-09-13

 Page 3 of 57

Abstract ... 2

1.1 DOCUMENT HISTORY .. 5

1.2 CHANGE LOG .. 5

1.3 JSON SCHEMA NAMING AND DESIGN RULES PROJECT TEAM 7

1.4 ACKNOWLEDGEMENTS ... 7

1.5 CONTACT INFORMATION... 7

1.6 NOTATION ... 7

1.7 AUDIENCE ... 8

2 INTRODUCTION... 9

2.1 OBJECTIVES .. 9

2.2 REQUIREMENTS .. 9

2.3 DEPENDENCIES ... 9

2.4 CAVEATS AND ASSUMPTIONS ... 9

2.5 GUIDING PRINCIPLES .. 10

2.6 CONFORMANCE ... 10

3 JSON SCHEMA ARCHITECTURE .. 12

3.1 BASIC ARCHITECTURE .. 12

3.1.1 JSON serialization in a RESTful context .. 12

3.1.2 Overall JSON Schema Structure ... 12

3.2 VERSIONING AND "$ID" .. 13

3.3 GENERAL NAMING RULES MOVING FROM CCTS TO JSON 15

3.4 JSON SCHEMA LANDSCAPE .. 17

3.5 DATA TYPES .. 18

3.5.1 Primitive Data Types .. 18

3.5.2 Approved Core Component Types .. 19

3.5.3 Unqualified Data Types .. 19

3.5.4 Qualified Data Types for Date and Time .. 26

3.5.5 Other Qualified Data Types .. 30

3.6 RESTRICTION AND EXTENSION ... 35

3.6.1 Restriction ... 35

JSON Schema Naming and Design Rules V1.0 2022-09-13

 Page 4 of 57

3.6.2 Extension ... 38

3.6.3 Publication and reusing contextualization ... 38

3.7 ABIE AND BBIE REPRESENTATION IN JSON SCHEMA .. 41

3.7.1 General handling of ABIEs and BBIEs ... 41

3.7.2 ASBIE representation in JSON Schema supporting document based and
resource-based information .. 42

3.8 FOSTERING IMPLEMENTATION .. 44

3.8.1 Compatibility with JSON schema draft before version 2020-12 44

3.8.2 Hints for tool developers and designers when specifying real-life guidelines 45

3.8.3 Referencing the Github Repository in an OpenAPI specification 48

4 APPENDIX A: EXAMPLES ... 49

5 APPENDIX B: NAMING AND DESIGN RULES LIST .. 50

6 APPENDIX C: GLOSSARY .. 56

JSON Schema Naming and Design Rules V1.0 2022-09-13

 Page 5 of 57

1.1 Document History

Phase Status Date Last Modified
Draft development First draft 17 Dec 2021
Publication Publication 13 Sep 2022

Table 1 – Document history

1.2 Change Log

The change log is designed to alert users about significant changes that occurred during the
development of this document.

Date of Change Version Paragraph
Changed

Summary of Changes

24 Jan 2022 0.2 3 Adding rules for basic data types
25 Jan 2022 0.3 3
08 Feb 2022 0.4 3.6 Extensions, Restrictions, ABIEs, QDTs
17 Feb 2022 0.5 5 Adding rules list into appendix B
22 Feb 2022 0.5 3.2, 3.4, 3.5 JSON schema versioning

Date Time qDT
Identification Schemes part of qDT
Note on quantity unit of Rec20+21
JSON schema structure

14 Mar 2022 0.6 3.3 R 13
3.5.4
3.5.5
3.6.1

3.6.3 New R36,
higher rules
renumbered
3.7 R 37

Handling of hard spaces
Adjusted to modifications in next chapter
Modified code and identifier list export
Added example for lower layer
restriction
New chapter about contextualisation

Deprecated ABIEs

21 Mar 2022 0.7 R9
R28
3.6.3

Handling of $id
Placement of code list files
Explanation of Export methods

30 Mar 2022 0.8 R 12ff.

Table 8
R 39

Adding new R 12 to R 14 for the origin
of JSON schema names.
Adjusted export options
New R 39 for UN/CEFACT publication

05 Sep 2022 0.9 1.4
3.1.1
3.1.2
R 40
3.8
4
5
New:

Consideration of comments from the
public review and minor corrections

JSON Schema Naming and Design Rules V1.0 2022-09-13

 Page 6 of 57

Date of Change Version Paragraph
Changed

Summary of Changes

R 4
R 46, R47

13 Sep 2022 1.0 Table 6
3.8.3
R7, R10

Compatibility for base64 encoding
Referencing Github
Naming of schemas
Minor changes

Table 2 - Document change log

JSON Schema Naming and Design Rules V1.0 2022-09-13

 Page 7 of 57

1.3 JSON Schema Naming and Design Rules Project Team

We would like to recognize the following for their significant participation in the
development of this Unites Nations Centre for Trade Facilitation and Electronic Business
(UN/CEFACT) JSON Schema Naming and Design Rules technical specification.

ATG2 Chair

Marek Laskowski

Project Lead

Jörg Walther

Lead editors
Andreas Pelekies Gerhard Heemskerk

1.4 Acknowledgements

This version of UN/CEFACT JSON Schema Naming and Design Rules Technical
Specification has been created to foster convergence among Standards Development
Organisations (SDOs). It has been developed in close coordination with these organisations:

• DCSA

• GS1

• Odette

1.5 Contact information
ATG2 – Marek Laskowski, Marek.laskowski@gmail.com
NDR Project Lead – Jörg Walther, jwalther@odette.org
Editor – Andreas Pelekies, Andreas@pelekies.de
Editor – Gerhard Heemskerk, Gerhard.heemskerk@kpnmail.nl

1.6 Notation

The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this
specification, are to be interpreted as described in Internet Engineering Task Force (IETF)
Request For Comments (RFC) 21191.

1 Key words for use in RFCs to Indicate Requirement Levels - Internet Engineering Task Force, Request For
Comments 2119, March 1997, http://www.ietf.org/rfc/rfc2119.txt?number=2119

mailto:Marek.laskowski@gmail.com
mailto:jwalther@odette.org
mailto:Andreas@pelekies.de
mailto:Gerhard.heemskerk@kpnmail.nl
http://www.ietf.org/rfc/rfc2119.txt?number=2119

JSON Schema Naming and Design Rules V1.0 2022-09-13

 Page 8 of 57

Example A representation of a definition or a rule. Examples are informative.

 [Note] Explanatory information. Notes are informative.

 [R n|c] Identification of a rule that requires conformance. Rules are normative. In
order to ensure continuity across versions of the specification, rule numbers
“n” are randomly generated. The number of a rule that is deleted will not be
re-issued. Rules that are added will be assigned a previously unused random
number.
The second number “c” after the pipe symbol | identifies the conformance
category of the given rule as defined in section 2.6 Conformance.

Courier All words appearing in bolded courier font are values, objects or
keywords. Representation of non-printable characters like whitespace are
surrounded by double-quotes, e.g. " ".

<<var>> All placeholders are surrounded by double less-than and greater-than
characters. The meaning of the placeholder is described in the text.

1.7 Audience

The audience for this UN/CEFACT JSON Schema Naming and Design Rules Technical
Specification is:

• Members of the UN/CEFACT Applied Technologies Groups who are responsible for
development and maintenance of UN/CEFACT JSON Schema.

• The wider membership of the other UN/CEFACT Groups who participate in the
process of creating and maintaining UN/CEFACT JSON Schema definitions.

• Designers of tools who need to specify the conversion of user input into JSON Schema
definitions adhering to the rules defined in this document.

• Designers of JSON Schema definitions outside of the UN/CEFACT Forum
community. These include designers from other organisations that have found these
rules suitable for their own organisations.

JSON Schema Naming and Design Rules V1.0 2022-09-13

 Page 9 of 57

2 Introduction

2.1 Objectives

This JSON Schema NDR technical specification document forms part of a suite of
documents that aim to support modern web developers to make use of UN/CEFACT
semantics.

It can be applied on any layer of the UN/CEFACT Reference Data Models to create
conformant JSON artefacts in accordance with the UN/CEFACT Core Components
Technical Specification Version 2.01. This includes comprehensive RDMs like Buy-Ship-
Pay, or Accounting as well as their contextualization like the Supply-Chain-Reference-
Data-Model (SCRDM), Multi-Modal-Transport-Reference-Data-Model (MMT-RDM)
down to single message implementation like the Road Consignment Note (eCMR) or the
certificate of origin (COO).

2.2 Requirements

Users of this specification should have an understanding of basic data modelling concepts,
basic business information exchange concepts and basic JSON concepts.

2.3 Dependencies

This document depends on
• UN/CEFACT Core Components Technical Specification Version 2.01.
• API TechSpec Open API design rules.

2.4 Caveats and Assumptions

Schemas created as a result of employing this specification should be made publicly
available as schema documents in a universally free, accessible, and searchable library.
UN/CEFACT will make its contents freely available to any government, individual or
organisation who wishes access.

Although this specification defines schema components as expressions of Reference Data
Models, non-CCTS developers can also use it for other logical data models and information
exchanges.

This specification does not address transformations via scripts or any other means. It does
not address any other representation of CCTS artefacts – such as XML, JSON-LD, OWL,
and XMI.

JSON Schema Naming and Design Rules V1.0 2022-09-13

 Page 10 of 57

2.5 Guiding Principles
• JSON Schema Creation

UN/CEFACT JSON Schema design rules will support JSON Schema creation
through handcrafting as well as automatic generation.

• Tool Use and Support
The design of UN/CEFACT JSON Schema will not make any assumptions about
sophisticated tools for creation, management, storage, or presentation being
available.

• Technical Specifications
UN/CEFACT JSON Schema Naming and Design Rules will be based on technical
specifications holding the equivalent of JSON Schema recommendation status.

• JSON Schema Specification
UN/CEFACT JSON Schema Naming and Design Rules will be fully conformant
with the JSON Schema recommendation.

• Interoperability
The number of ways to express the same information in a UN/CEFACT JSON
Schema and UN/CEFACT JSON instance document is to be kept as close to one as
possible.

• Maintenance
The design of UN/CEFACT JSON Schema must facilitate maintenance.

• Context Sensitivity
The design of UN/CEFACT JSON Schema must ensure that context-sensitive
document types are not precluded.

• Ease of implementation
UN/CEFACT JSON Schema should be intuitive and reasonably clear in the context
for which they are designed. They should allow an intuitive implementation in
REST APIs, a.k.a. RESTful API, as well as other interchange appliances.

2.6 Conformance

Designers of JSON Schema in governments, private sector, and other standards
organisations external to the UN/CEFACT community have found this specification
suitable for adoption. To maximize reuse and interoperability across this wide user
community, the rules in this specification have been categorized to allow these other
organisations to create conformant JSON Schema while allowing for discretion or
extensibility in areas that have minimal impact on overall interoperability.

JSON Schema Naming and Design Rules V1.0 2022-09-13

 Page 11 of 57

Accordingly, applications will be considered to be in full conformance with this technical
specification if they comply with the content of normative sections, rules and definitions.
[R 1|1]
Conformance SHALL be determined through adherence to the content of the normative
sections and rules. Furthermore, each rule is categorized to indicate the intended audience
for the rule by the following:

Category Description

1 Rules, which must not be violated. Else, conformance and interoperability are
lost.

2 Rules, which may be modified, while still conformant to the NDR structure.
Table 3 - Conformance categories

JSON Schema Naming and Design Rules V1.0 2022-09-13

 Page 12 of 57

3 JSON Schema Architecture

3.1 Basic architecture

The CCTS defines naming and design rules for a hierarchical data model that supports a
document centric modelling approach as well as a resource based modelling approach. In
order to support the document centric modelling approach and to be backwards compatible
it is designed in a hierarchy. REST APIs on the other hand are resource based only. This
means that when moving from CCTS to REST APIs using JSON Schema both options are
to be considered. In addition, the JSON syntax has its own naming and design rules that
differs from the naming and design rules from the CCTS. This section elaborates on how to
move from CCTS to JSON Schema.

3.1.1 JSON serialization in a RESTful context

In order to use the JSON schema artefacts in REST API specifications, the question arises at
which level a hierarchical structure is split into a resource-based structure. The
UN/CEFACT project API Town Plan has already dealt with this fundamental problem. It
formulated that the decision cannot be made centrally in advance. Rather, it depends on the
implementation needs in the respective concrete project or the concrete domain.

For this reason, a form of serialization is chosen within the JSON Schema NDR that allows
both options for each decision point: The retention of the document-centric hierarchy or the
separation according to resources. All ASBIE2 connections are affected by this. The
corresponding data type is modelled in the chapter 3.7.

3.1.2 Overall JSON Schema Structure
[R 2|1]
In the scope of this specification, a JSON schema is a file that complies with a JSON
schema definition as defined at https://json-schema.org. It may include subschemas defined
in the $defs section. A JSON schema fragment means both the overall JSON schema as
well as each of its included subschemas.

The current version of the JSON Schema draft at the time of publication of this document is
2020-12. It was created in particular due to user requirements in the development of APIs. It
corresponds to the OpenAPI 3.1.x version. With this in mind, the latest version of the JSON
schema Draft is used in this NDR.

2 Associated Business Information Entity

JSON Schema Naming and Design Rules V1.0 2022-09-13

 Page 13 of 57

[R 3|1]
Each JSON schema SHALL be declared to be a “JSON Draft 2020-12 schema3” with the
appropriate $schema string property defined as https://json-
schema.org/draft/2020-12/schema.

 [R 4|2]
In section 3.8.1 a set of rules is defined that allows achieving compatibility with many tools,
which do not yet support JSON schema version 2020-12. This set of rules MAY be applied
in a publication or the resulting schemas may be published as a second set of JSON schemas
marked as "deprecated compatibility set".

[R 5|1]
Each JSON schema SHALL contain a "title" annotation. It SHALL be an overall
description title.

[R 6|1]
Each JSON schema SHALL contain a "description" annotation. It contains an overall
description for that file as well as copyright information.

[R 7|1]
Each declared Document and Library ABIE definitions and their BBIE4 and ASBIE
members SHALL contain a "title" annotation and a "description" annotation. The
"title" annotation SHALL be the CCTS Dictionary Entry name for the BIE. If there
exists a contextualised business name, it SHALL be used instead.
"description" annotation shall be the CCTS definition value. Members of enums
SHALL NOT contain the "title" or the "description" annotation.

[R 8|1]
The "unevaluatedProperties" property of each JSON schema fragment SHALL be
set to false, excluding subschemas for primitive data types, unqualified data types and
qualified data types. For subschemas, specifying primitive data types, unqualified data types
or qualified data types the "unevaluatedProperties" property SHALL be stated as
defined in this document.

3.2 Versioning and "$id"

Fostering interoperable and highly automated data exchange means enabling machines to
process the information in the correct syntactical structure and the correct semantic

3 https://json-schema.org/specification-links.html

4 Basic Business Information Entity

JSON Schema Naming and Design Rules V1.0 2022-09-13

 Page 14 of 57

meaning. As requirements change on a regular base, the created standards need to adapt to
the new requirements. Therefore, it is necessary to define the given version of the technical
artefacts in a machine-readable way.

It is a clear goal to keep the JSON schema artefact structure as compatible as possible with
older and future versions.
[R 9|1]
The JSON schema file names SHALL NOT contain a version information. Differences in
versions are only indicated by $id and the folder structure in which the JSON schema
artefacts are located.

[R 10|1]
Each JSON schema being published by user groups or standardisation organisations
SHALL contain an identifier for the schema in the appropriate $id URI property. JSON
schema exports that are only used in a closed environment (e.g. for testing) do NOT NEED
to contain the $id property.
The URI SHALL follow the following format:
"$id": "<basepath>/<variant>/<domain>/<version>[/<RDM>]/<BIE>"
with <basepath> identifying the originator. For UNECE artefacts that is
 "https://github.com/uncefact/spec-JSONschema"
 <variant> representing the JSON schema draft version and the export variant. e.g.
 "JSONschema2020-12/library"
 <domain> like "BuyShipPay"
 <version> in the UNECE publication format e.g. "D22A"
 <BIE> with one
 - distinct name for each message assembly ABIE5 (e.g. Cross Industry
 Invoice) without a file extension
 - name for all BBIE components: "BasicComponents"
 - distinct name for every RDM set of library ABIE components:
 e.g. "BSP-RDMComponents" or "SC-RDMComponents"
 - distinct name for each extension collection
 <RDM> For the snapshot variant additional structuring is allowed.
The JSON schema file name SHALL be built with the following format:
<originator>-<abbreviation>.json
with
 - <originator> identifying the originator. For UNECE artefacts,
 it SHALL be UNECE.
 - <abbreviation> identifying the RDM set of Library ABIE components. If a
 contextualised business name exists for a message structure, it SHALL be used
 instead. If a .json-File with this name already exists, the message model name
 SHALL be added, separated by another hyphen.

5 Aggregated Business Information Entity

JSON Schema Naming and Design Rules V1.0 2022-09-13

 Page 15 of 57

[Examples]
"$id": "https://github.com/uncefact/spec-JSONschema/JSONschema2020-12/
 library/BuyShipPay/D22A/BasicComponents"

UNECE-BasicComponents.json

"$id": "https://github.com/uncefact/spec-JSONschema/JSONschema2020-12/
 library/BuyShipPay/D22A/CrossIndustryInvoice"

UNECE-CrossIndustryInvoice.json

"$id": "https://github.com/uncefact/spec-JSONschema/JSONschema2020-12/
 library/BuyShipPay/D22A/CrossIndustryInvoice-Variant"6

UNECE-CrossIndustryInvoice-Variant.json

[R 11|1]
The BasicComponents JSON schema file SHALL contain all subschemas for primitive data
types, unqualified data types as well as qualified data types.

3.3 General naming rules moving from CCTS to JSON

The dictionary entry names follow specific naming rules defined in the CCTS containing
special characters like full stops . and white spaces " " that are not allowed in JSON for
naming entities.

The basic rules listed below apply when transferring CCTS names in JSON schema.

[R 12|1]
A property is a name/value pair inside a JSON object. The property name is the key or name
part of the property. The property value is the value part of the property.
[Example]
{
 "propertyName": "propertyValue"
}

[R 13|1]
JSON property names SHALL be derived from Dictionary Entry Names (DEN).
In e.g. in a BBIE or ASBIE the DEN contains the DEN of the surrounding ABIE, it SHALL
be removed. In case a BBIE or ASBIE contains consecutive identical words, the duplication
SHALL be removed. If by applying the NDR rules words in the DEN are duplicated, the
duplication SHALL be removed.

6 This example is just for illustrating the rule. It is very unlikely that this is applied in practice.

JSON Schema Naming and Design Rules V1.0 2022-09-13

 Page 16 of 57

 [R 14|1]
Any special characters such full stops ., non-breaking spaces (ASCII code 160) and
underscores _ SHALL be removed from the underlying Dictionary Entry Name. If a digit
(0-9) was before and another digit after the white space, the white space SHALL be
replaced by a hyphen -.
[Example]
"This. is_ a. class. name" is represented as "thisIsAClassName"
"ISO 4217 3 A" is represented as "ISO4217-3A"

[R 15|1]
JSON property names SHALL be lower camel-cased ASCII strings and JSON schema
compliant: The character after a white space shall be a capital letter. Capital letters in the
DEN SHALL NOT be kept.

[Example]

"Specified. IBAN. Identifier" is represented as "specifiedIbanId"

"AAA Archive_ Document. Specified. AAA Archive_ Archive Parameter" is
represented as "specifiedAaaArchiveParameter"

[R 16|1]
The abbreviations and acronyms SHALL be used as defined in Table 4.
[R 15|1] SHALL be taken into account.

CCTS Appearance JSON Representation
"Uniform Resource.
Identifier"

or
"URI_
Identification.
Identifier"

"Uri"
with
"type": "string"
"format": "uri"
The rule for abbreviating "Identifier" is not applied in this
case. It SHALL NOT be abbreviated as "UriId".

"Identification
Scheme"

"Scheme"

"Details" "Type"
"Identifier" "Id"
"Indicator" SHALL be omitted. "isOrHas" is added as a prefix.
"Identification.
Identifier"

"Id"

"Text" SHALL be omitted
"Specified_" SHALL be omitted
"AAA " at the beginning
"TT_"
"Transport_"
"Supply Chain_"
"CI_"

SHALL be omitted, if the resulting name of the ABIE is
unique, else it SHALL be kept

"Formatted_" SHALL be omitted

JSON Schema Naming and Design Rules V1.0 2022-09-13

 Page 17 of 57

CCTS Appearance JSON Representation
"Trade_ Party" at the
end

SHALL be omitted

Table 4 – JSON Representation for abbreviations and acronyms

[R 17|1]
The Object Class Term "Identification Scheme" SHALL be represented as
"Scheme". [R 15|1] SHALL be taken into account.

3.4 JSON schema landscape

Figure 1 – JSON schema landscape

ExtensionComponents
…

• ABIEs
• QDTs

MMT-RDMComponents

Agri-RDMComponents

BasicComponents

• Unqualified Data Types
• Qualified Data Types
• OpenAPI Data Types

Code Lists and Identification
Lists

CrossIndustryInvoice
eCMR

…

• ABIEs

BSP-RDMComponents

• ABIEs
• BBIEs

SC-RDMComponents

• ABIEs
• BBIEs

JSON Schema Naming and Design Rules V1.0 2022-09-13

 Page 18 of 57

3.5 Data types

The CCTS defines a hierarchical relationship of basic data types. From primitive data types
(PDT), Approved Core Component Types (CCT) and finally unqualified data types (UDT)
are formed.7

3.5.1 Primitive Data Types

The decimal data type, which is used in particular to represent amounts (in a specific
currency), as well as measured values, requires special treatment. JSON does not support
such a decimal data type. It only supports the data type "number", which is technically
implemented as a float or double precision data type. There are many discussions8, but also
practical experiences (e.g. based on the application of validation rules from the
implementation of EN16931), which show the difficulties of using float data types instead
of a decimal data type. In summary, it can be stated that the use of a float data type
inevitably leads to rounding differences and imprecise representations of the transmitted
values. Since the implementation of the UNECE reference data models involves the
exchange of business data, precise transmission of values is the top priority. With this in
mind, the decimal data type is represented as a string representation in JSON schema. This
can be implemented cleanly and without loss in the various implementation languages, even
if direct arithmetic use is not possible at JSON level.

Examples for the implementation of the decimal type are:
Language Implementation
C# decimal
Go decimal
Java java.math.BigDecimal
JavaScript decimal.js
Python decimal.Decimal

Table 5 – Implementation of the decimal type in different languages

[R 18|1]
Primitive data types (PDT) SHALL be represented in JSON schema, as stated in Table 6.
They SHALL be placed under $defs/pdt/.

7 See CCTS Section 8.1

8 See e.g. https://github.com/zalando/jackson-datatype-money/blob/main/MONEY.md

JSON Schema Naming and Design Rules V1.0 2022-09-13

 Page 19 of 57

CCTS
Primitive data type JSON Representation
Binary

Representation when used with OpenAPI 3.0.x:
"binaryType":
{
 "title": "Binary",
 "description": "",
 "type": "string",
 "format": "byte"
}

Representation when used with OpenAPI 3.1.x (full JSON
Schema support, default publication variant):
"binaryType":
{
 "title": "Binary",
 "description": "",
 "type": "string",
 "contentEncoding": "base64"
}

Boolean "type": "boolean"

Decimal "decimalType":
{
 "title": "Decimal",
 "description": "",
 "type": "string",
 "pattern": "^([+-]?(0?|[1-9][0-9]*)(\\.?\\d+))$"
}

Integer "type": "integer"

String "type": "string"

Table 6 – JSON representation of CCTS Primitive data types

3.5.2 Approved Core Component Types

The Approved Core Component Types have no direct representation in JSON schema.
Instead, UDTs are mapped directly into JSON schema.

3.5.3 Unqualified Data Types

UDTs form the basis for all further data structures of the CCTS. They consist of the actual
value (content), as well as usually optional supplementary components9. During
contextualisation, some of these supplementary components are often omitted. This in fact
multiplies the number of UDTs in the actual implementation and complicates it technically.
For this reason, contextualisation of UDTs is not mapped into JSON schema. Instead, the
complete UDTs in the higher data types are always used.

9 See CCTS section 8.1

JSON Schema Naming and Design Rules V1.0 2022-09-13

 Page 20 of 57

[R 19|1]
Unqualified data types SHALL be represented in subschemas. "Type" as part of the
Dictionary Entry Name SHALL be retained.

[R 20|1]
The CCTS content property SHALL be represented in a subschema with the name
"content". Its data type SHALL use the underlying PDT. The content-property SHALL
be required.

[R 21|1]
Property names of supplementary components SHALL NOT repeat the JSON subschemas
property name.

[R 22|1]
Supplementary components may reference to code lists and/or identification schemes. In
this case, the JSON property SHALL reference the appropriate code list or identification
scheme as defined in section 3.5.5 Other Qualified Data Types.

 [R 23|1]
Unqualified data types SHALL be represented in subschemas as shown in Table 7. The
title and description properties are not shown in the following table. Instead, they
are indicated with the placeholder <title and description> as those can change
over time. They SHALL be published in alignment with rules [R 5|1], [R 6|1], and [R 7|1].
They SHALL be placed under $defs/udt.

CCTS
Unqualified data type

JSON Representation

• Amount. Type
• Amount. Content
• Amount Currency.

Identifier
• Amount Currency.

Code List Version.
Identifier

"amountType": {
 <<title and description>>
 "type": "object",
 "properties": {
 "content": {
 <<title and description>>
 "$ref": "#/$defs/pdt/decimalType"
 },
 "currencyId": {
 <<title and description>>
 "$ref": "ISO_4217-
3A.json#/$defs/codeList/iso4217-3AType"
 },
 "currencyCodeListVersionId": {
 <<title and description>>
 "type": "string"
 }
 },
 "required": ["content"],
 "unevaluatedProperties": false
}

JSON Schema Naming and Design Rules V1.0 2022-09-13

 Page 21 of 57

• Binary Object. Type
• Binary Object. Content
• Binary Object. Format.

Text
• Binary Object. Mime.

Code
• Binary Object.

Encoding. Code
• Binary Object.

Character Set. Code
• Binary Object. Uniform

Resource. Identifier
• Binary Object.

Filename. Text

"binaryObjectType": {
 <<title and description>>
 "type": "object",
 "properties": {
 "content": {
 <<title and description>>
 "$ref": "#/$defs/pdt/binaryType"
 },
 "format": {
 <<title and description>>
 "type": "string"
 },
 "mimeCode": {
 <<title and description>>
 "type": "string"
 },
 "encodingCode": {
 <<title and description>>
 "$ref":
"UNECE_CharacterSetEncoding.json#/$defs/
codeList/characterSetEncodingType"
 },
 "characterSetCode": {
 <<title and description>>
 "$ref": "UNECE_CharacterSets.json#/$defs/
codeList/characterSetsType"
 },
 "uri": {
 <<title and description>>
 "type": "string",
 "format": "uri"
 },
 "filename": {
 <<title and description>>
 "type": "string"
 }
 },
 "required": ["content"] ,
 "unevaluatedProperties": false
}

• Code. Type
• Code. Content
• Code List. Identifier
• Code List. Agency.

Identifier
• Code List. Agency

Name. Text
• Code List. Name. Text
• Code List. Version.

Identifier
• Code. Name. Text
• Language. Identifier
• Code List. Uniform

Resource. Identifier

"codeType": {
 <<title and description>>
 "type": "object",
 "properties": {
 "content": {
 <<title and description>>
 "type": "string"
 },
 "listId": {
 <<title and description>>
 "type": "string"
 },
 "listAgencyId": {
 <<title and description>>
 "$ref": "UNECE_UNTDID-
3055.json#/$defs/codeList/untdid3055Type"
 },

JSON Schema Naming and Design Rules V1.0 2022-09-13

 Page 22 of 57

Code List Scheme.
Uniform Resource.
Identifier

 "listAgencyName": {
 <<title and description>>
 "type": "string"
 },
 "listName": {
 <<title and description>>
 "type": "string"
 },
 "listVersionId": {
 <<title and description>>
 "type": "string"
 },
 "name": {
 <<title and description>>
 "type": "string"
 },
 "languageId": {
 <<title and description>>
 "$ref": "UNECE_UNTDID-
3453.json#/$defs/codeList/untdid3453Type"
 },
 "listUri": {
 <<title and description>>
 "type": "string",
 "format": "uri"
 },
 "listSchemaUri": {
 <<title and description>>
 "type": "string",
 "format": "uri"
 }
 },
 "required": ["content"] ,
 "unevaluatedProperties": false
}

• Date Time. Type "dateTimeType": {

 <<title and description>>
 "type": "string",
 "format": "date-time"
}

• Date. Type "graphicType": {

 <<title and description>>
 "$ref": "#/$defs/udt/binaryObjectType"
}

• Graphic. Type "graphicType": {
 <<title and description>>
 "$ref": "#/$defs/udt/binaryObjectType"
}

• Identifier. Type
• Identifier. Content
• Identification Scheme.

Identifier
• Identification Scheme.

Name. Text

"identifierType": {
 <<title and description>>
 "type": "object",
 "properties": {
 "content": {
 <<title and description>>
 "type": "string"
 },

JSON Schema Naming and Design Rules V1.0 2022-09-13

 Page 23 of 57

• Identification Scheme
Agency. Identifier

• Identification Scheme.
Agency Name. Text

• Identification Scheme.
Version. Identifier

• Identification Scheme
Data. Uniform Resource.
Identifier

• Identification Scheme.
Uniform Resource.
Identifier

 "schemeId": {
 <<title and description>>
 "type": "string"
 },
 "schemeName": {
 <<title and description>>
 "type": "string"
 },
 "schemeAgencyId": {
 <<title and description>>
 "$ref": "UNECE_UNTDID-
3055.json#/$defs/codeList/untdid3055Type"
 },
 "schemeAgencyName": {
 <<title and description>>
 "type": "string"
 },
 "schemeVersionId": {
 <<title and description>>
 "type": "string"
 },
 "schemeDataUri": {
 <<title and description>>
 "type": "string",
 "format": "uri"
 },
 "schemeUri": {
 <<title and description>>
 "type": "string",
 "format": "uri"
 }
 },
 "required": ["content"],
 "unevaluatedProperties": false
}

• Indicator. Type "indicatorType": {

 <<title and description>>
 "type": "boolean"
}

• Measure. Type
• Measure. Content
• Measure Unit. Code
• Measure Unit. Code

List Version. Identifier

"measureType": {
 <<title and description>>
 "type": "object",
 "properties": {
 "content": {
 <<title and description>>
 "$ref": "#/$defs/pdt/decimalType"
 },
 "unitCode": {
 <<title and description>>
 "$ref": "UNECE_UNTDID-
6411.json#/$defs/codeList/untdid6411Type"
 },
 "unitCodeListVersionId": {
 <<title and description>>
 "type": "string"
 }
 },
 "required": ["content"],

JSON Schema Naming and Design Rules V1.0 2022-09-13

 Page 24 of 57

 "unevaluatedProperties": false
}

• Name. Type
• Text. Content
• Language. Identifier
• Language. Locale.

Identifier

"nameType": {
 <<title and description>>
 "$ref": "#/$defs/udt/textType"
}

• Numeric. Type
• Numeric. Content
• Numeric. Format. Text

"numericType": {
 <<title and description>>
 "type": "object",
 "properties": {
 "content": {
 <<title and description>>
 "$ref": "#/$defs/pdt/decimalType"
 },
 "format": {
 <<title and description>>
 "type": "string"
 }
 },
 "required": ["content"] ,
 "unevaluatedProperties": false
}

• Percent. Type "percentType": {

 <<title and description>>
 "$ref": "#/$defs/udt/numericType"
}

• Picture. Type "pictureType": {

 <<title and description>>
 "$ref": "#/$defs/udt/binaryObjectType"
}

• Quantity. Type
• Quantity. Content
• Quantity Unit. Code
• Quantity Unit. Code

List. Identifier
• Quantity Unit. Code

List Agency. Identifier
• Quantity Unit. Code

List Agency Name.
Text

"quantityType": {
 <<title and description>>
 "type": "object",
 "properties": {
 "content": {
 <<title and description>>
 "$ref": "#/$defs/pdt/decimalType"
 },
 "unitCode": {
 <<title and description>>
 "$ref": "UNECE_REC-
20+21.json#/$defs/codeList/rec20+21Type"
 },
 "unitCodeListId": {
 <<title and description>>
 "type": "string"
 },
 "unitCodeListAgencyId": {
 <<title and description>>
 "$ref": "UNECE_UNTDID-
3055.json#/$defs/codeList/untdid3055Type"
 },

JSON Schema Naming and Design Rules V1.0 2022-09-13

 Page 25 of 57

 "unitCodeListAgencyName": {
 <<title and description>>
 "type": "string"
 }
 },
 "required": ["content"],
 "unevaluatedProperties": false
}

[Note]

Rec 20 supports a combination with Rec 21 by adding a prefix to the
Rec 21 code values. In the usage of this JSON subschema, the combined
code list can be restricted as needed.

• Rate. Type "rateType": {

 <<title and description>>
 "$ref": "#/$defs/udt/numericType"
}

• Sound. Type "soundType": {

 <<title and description>>
 "$ref": "#/$defs/udt/binaryObjectType"
}

• Text. Type
• Text. Content
• Language. Identifier
• Language. Locale.

Identifier

"textType": {
 <<title and description>>
 "type": "object",
 "properties": {
 "content": {
 <<title and description>>
 "type": "string"
 },
 "languageId": {
 <<title and description>>
 "$ref": "ISO_6391-1-
2A.json#/$defs/codeList/iso6391-1-2AType"
 },
 "languageLocaleId": {
 <<title and description>>
 "type": "string"
 }
 },
 "required": ["content"],
 "unevaluatedProperties": false
}

• Time. Type "timeType": {

 <<title and description>>
 "type": "string",
 "format": "time"
}

• Value. Type "valueType": {

 <<title and description>>
 "$ref": "#/$defs/udt/numericType"
}

JSON Schema Naming and Design Rules V1.0 2022-09-13

 Page 26 of 57

• Video. Type "videoType": {
 <<title and description>>
 "$ref": "#/$defs/udt/binaryObjectType"
}

Table 7 – JSON representation of Unqualified data types

3.5.4 Qualified Data Types for Date and Time

The CCTS supports the wide subset of the different date and time formats of ISO 8601.
However, this flexibility is only needed and used to a limited extent in practical
applications. Often, date, time and combined information can be reduced to their simple
representation form, which is directly supported by JSON schema. There exist a few
exceptions, so that in the CCTS some specialised QDTs have been defined. The modelling
of these QDTs goes back to the early EDIFACT definitions and no longer seems up-to-date
for application in OpenAPI using JSON schema. Nevertheless, this notation is still used in a
wide community. Against this background, the following simplification of these QDTs is
used:
 [R 24|1]
The "Date Mandatory_ Date Time. Type" SHALL be replaced by the
formattedDateTimeType.

[R 25|1]
The "Time Only_ Formatted_ Date Time. Type" SHALL be replaced by the
formattedDateTimeType.

The implementation of the Formatted Date Time Type shall take into account the direct
mappability of certain date and time information directly into JSON schema. To allow an
intuitive implementation, the code list UNTDID 2379 is replaced by a JSON specific
variant for this purpose.
[R 26|1]
The "Formatted_ Date Time. Type" SHALL be represented as follows.
"formattedDateTimeType": {
 <<title and description>>
 "oneOf": [
 { "type": "string", "format": "date-time" },
 { "type": "string", "format": "time" },
 { "type": "string", "format": "date" },
 { "type": "string", "format": "duration" },
 { "type": "object",
 "properties": {
 "content": { "type": "string" },
 "format": { "$ref": "UNECE_UNTDID2379-
JSON.json#/$defs/codeList/untdid2379JsonType" }
 },
 "required": ["content", "format"]
 }
]
}

JSON Schema Naming and Design Rules V1.0 2022-09-13

 Page 27 of 57

[Example]

JSON schema definition:
{ "properties": {
 "myDateTime": { "$ref": "#/$defs/formattedDateTimeType"}
 }
}

JSON instance:
Hint: The presence of "content" indicates that it is a UNECE specific format not directly supported by JSON
schema.

{
 "myDateTime": {"content": "2022-W02", "format": "CCYY-Www"},
 "myDateTime": {"content": "1T10:00/1T12:00", "format":
"NThh:mm/NThh:mm"},
 "myDateTime": "2022-02-11",
 "myDateTime": "2022-02-11T12:23:58Z",
 "myDateTime": "12:23:58Z",
 "myDateTime": "P10W"
}

[R 27|1]
Based on the code list "UNTDID 2379" an additional code list "UNTDID 2379 json"
SHALL be specified. All format definitions that are already represented in their meaning by
existing JSON date and time formats SHALL be omitted. This code list SHALL be
maintained in accordance with UNTDID 2379. All other formats SHALL be represented as
follows.
"untdid2379JsonType": {
 "title": "Date and Time format codes for JSON representation.",
 "description": "This code list is based on UNTDID 2379. It is adjusted
to take JSON date and time representation into account.\n
The following abbreviations are used\n
* 'C' – Century\n
* 'Y' – Year\n
* 'M' – Month\n
* 'D' – Day\n
* 'h' – Hour\n
* 'm' – Minute\n
* 's' – Second\n
* 'w' – Week\n
* 'T' – Time zone offset separator (+/-/Z) \n
\n
* 'A' – 10 day period within a month of a year\n
* 'B' – 1: First half month; 2: second half month\n
* 'E' – Week of a month\n
* 'G' – Working days\n
* 'H' – Half month\n
* 'I' – 1-9: Shift in a day\n
* 'K' – 1-5: First to fifth week in a month\n
* 'M' – Trimester: A period of three months\n
* 'N' – 1-7: Numeric representation of the day (Monday = 1, Sunday = 7)\n
* 'P' – A period of 4 months\n
* 'Q' – Quarter\n
* 'RR' – 00-99: Time period\n
* 'S' – Semester\n
*\n

JSON Schema Naming and Design Rules V1.0 2022-09-13

 Page 28 of 57

* Hyphens and additional character in a format string are kept. According
to ISO 8601 a slash is used to separate time spans.\n
Codes from UNTDID 2379 and their representation in JSON\n
* '2' – is represented as 'date' format\n
* '3' – is represented as 'date' format\n
* '4' – is represented as 'date' format\n
* '5' – is represented as 'date-time' format\n
* '6' – is represented as 'CCYY-MM-B'\n
* '7' – is represented as 'CCYY-MM-K'\n
* '8' – is represented as 'CCYY-MM-DD-I'\n
* '9' – is represented as 'CCYY-MM-DD-RR'\n
* '10' – is represented as 'date-time' format\n
* '101' – is represented as 'date' format\n
* '102' – is represented as 'date' format\n
* '103' – is represented as 'YY-Www-N'; 01 is first week of January; 1 is
always Monday\n
* '104' – is represented as 'MM-WEE/MM-WEE'\n
* '105' – is represented as 'YY-DDD'; January the first = Day 001; Always
start numbering the days of the year from January 1st through December
31st \n
* '106' – is represented as '-MM-DD'\n
* '107' – is represented as 'DDD'\n
* '108' – is represented as 'WW'\n
* '109' – is represented as '-MM-'\n
* '110' – is represented as '--DD'\n
* '201' – is represented as 'date-time' format\n
* '202' – is represented as 'date-time' format\n
* '203' – is represented as 'date-time' format\n
* '204' – is represented as 'date-time' format\n
* '205' – is represented as 'date-time' format\n
* '206' – is represented as 'date-time' format\n
* '207' – is represented as 'date-time' format\n
* '208' – is represented as 'date-time' format\n
* '209' – is represented as 'date-time' format\n
* '210' – is represented as 'hh:mm:ssZhh:mm/hh:mm:ssZhh:mm'\n
* '301' – is represented as 'date-time' format\n
* '302' – is represented as 'date-time' format\n
* '303' – is represented as 'date-time' format\n
* '304' – is represented as 'date-time' format\n
* '305' – is represented as '-MM-DDThh:mm' format\n
* '306' – is represented as '--DDThh:mm' format\n
* '307' – is represented as 'date-time' format\n
* '308' – is represented as 'CCYY-MM-DDThh:mmZhh:mm/CCYY-MM-
DDThh:mmZhh:mm' \n
* '401' – is represented as 'time' format\n
* '402' – is represented as 'time' format\n
* '404' – is represented as 'time' format\n
* '405' – is represented as 'duration' format\n
* '406' – is represented as 'Zhh:mm'\n
* '501' – is represented as 'hh:mm/hh:mm' \n
* '502' – is represented as 'hh:mm:ss/hh:mm:ss' \n
* '503' – is represented as 'hh:mm:ssZhh:mm/hh:mm:ssZhh:mm' \n
* '600' – is represented as 'CC'\n
* '601' – is represented as 'YY' \n
* '602' – is represented as 'CCYY' \n
* '603' – is represented as 'YY-S' \n
* '604' – is represented as 'CCYY-S' \n
* '608' – is represented as 'CCYY-Q' \n
* '609' – is represented as 'YY-MM' \n
* '610' – is represented as 'CCYY-MM' \n
* '613' – is represented as 'YY-MM-A' \n

JSON Schema Naming and Design Rules V1.0 2022-09-13

 Page 29 of 57

* '614' – is represented as 'YY-MM-A' \n
* '615' – is represented as 'YY-Www \n
* '616' – is represented as 'CCYY-Www' \n
* '701' – is represented as 'YY/YY' \n
* '702' – is represented as 'CCYY/CCYY' \n
* '703' – is represented as 'YY-S/YY-S' \n
* '704' – is represented as 'CCYY-S/CCYY-S' \n
* '705' – is represented as 'YY-P/YY-P' \n
* '706' – is represented as 'CCYY-P/CCYY-P' \n
* '707' – is represented as 'YY-Q/YY-Q' \n
* '708' – is represented as 'CCYY-Q/CCYY-Q' \n
* '709' – is represented as 'YY-MM/YY-MM' \n
* '710' – is represented as 'CCYY-MM/CCYY-MM' \n
* '713' – is represented as 'YY-MM-DDThh:mm/YY-MM-DDThh:mm' \n
* '715' – is represented as 'YY-Www/YY-Www' \n
* '716' – is represented as 'CCYY-Www/CCYY-Www' \n
* '717' – is represented as 'YY-MM-DD/YY-MM-DD' \n
* '718' – is represented as 'CCYY-MM-DD/CCYY-MM-DD' \n
* '719' – is represented as 'CCYY-MM-DDThh:mm/CCYY-MM-DDThh:mm' \n
* '720' – is represented as 'NThh:mm/NThh:mm' \n
* '801' – is represented as 'duration' format \n
* '802' – is represented as 'duration' format \n
* '803' – is represented as 'duration' format \n
* '804' – is represented as 'duration' format \n
* '805' – is represented as 'duration' format \n
* '806' – is represented as 'duration' format \n
* '807' – is represented as 'duration' format \n
* '808' – is represented as 'S' \n
* '809' – is represented as 'P' \n
* '810' – is represented as 'M' \n
* '811' – is represented as 'H' \n
* '812' – is represented as 'A' \n
* '813' – is represented as 'N' \n
* '814' – is represented as 'G' \n
",
 "oneOf": [
 { "const": "CCYY-MM-B" },
 { "const": "CCYY-MM-K" },
 { "const": "CCYY-MM-DD-I" },
 { "const": "CCYY-MM-DD-RR" },
 { "const": "YY-Www-N" },
 { "const": "MMWEE/MMWEE" },
 { "const": "YY-DDD" },
 { "const": "-MM-DD" },
 { "const": "DDD" },
 { "const": "-WW" },
 { "const": "-MM-" },
 { "const": "--DD" },
 { "const": "hh:mm:ssZhh:mm/hh:mm:ssZhh:mm" },
 { "const": "-MM-DDThh:mm" },
 { "const": "--DDThh:mm" },
 { "const": "CCYY-MM-DDThh:mmZhh:mm/CCYY-MM-DDThh:mmZhh:mm" },
 { "const": "Zhh:mm" },
 { "const": "hh:mm/hhmm" },
 { "const": "hh:mm:ss/hh:mm:ss" },
 { "const": "hh:mm:ssZhh:mm/hh:mm:ssZhh:mm" },
 { "const": "CC" },
 { "const": "YY" },
 { "const": "CCYY" },
 { "const": "CCYY-S" },
 { "const": "CCYY-Q" },

JSON Schema Naming and Design Rules V1.0 2022-09-13

 Page 30 of 57

 { "const": "YY-MM" },
 { "const": "CCYY-MM" },
 { "const": "YY-MM-A" },
 { "const": "CCYY-MM-A" },
 { "const": "YY-Www" },
 { "const": "CCYY-Www" },
 { "const": "YY/YY" },
 { "const": "CCYY/CCYY" },
 { "const": "YY-S/YY-S" },
 { "const": "CCYY-S/CCYY-S" },
 { "const": "YY-P/YY-P" },
 { "const": "CCYY-P/CCYY-P" },
 { "const": "YY-Q/YY-Q" },
 { "const": "CCYY-Q/CCYY-Q" },
 { "const": "YY-MM/YY-MM" },
 { "const": "CCYY-MM/CCYY-MM" },
 { "const": "YY-MM-DDThh:mm/YY-MM-DDThh:mm" },
 { "const": "YYWww/YYWww" },
 { "const": "CCYYWww/CCYYWww" },
 { "const": "YY-MM-DD/YY-MM-DD" },
 { "const": "CCYY-MM-DD/CCYY-MM-DD" },
 { "const": "CCYY-MM-DDThh:mm/CCYY-MM-DDThh:mm" },
 { "const": "NThh:mm/NThh:mm" },
 { "const": "S" },
 { "const": "P" },
 { "const": "M" },
 { "const": "H" },
 { "const": "A" },
 { "const": "N" },
 { "const": "G" }
]
}

3.5.5 Other Qualified Data Types

In the CCTS code and identifier lists are specified as qualified data types (QDT). They base
on the UDT codeType or idType The UDT codeType and as before described idType
offers the ability to state code list or identification scheme specific properties like the
publishing agency or the used code list version or schema version.

Not in every code list and identification scheme or qualified data type, all of these
properties are applicable, which is taken into account.
[R 28|1]
Each QDT that does not fall under section 3.5.4 SHALL be restricted according to its
definition applying the method described in section 3.6.1.
[Example]
"unitMeasureType": {
 "title": "Unit_ Measure. Type",
 "description": "A numeric value determined by measuring an object along
with the specified unit of measure.",
 "$ref" : "#/$defs/udt/measureType",
 "required": ["unitCode"],
 "properties": {
 "unitCodeListVersionId": false
 }
}

JSON Schema Naming and Design Rules V1.0 2022-09-13

 Page 31 of 57

[R 29|1]
Each QDT SHALL be represented in a subschema. If code or id values are specified locally,
they SHALL be as a oneOf combination of const definitions. They SHALL NOT be
specified as enum arrays. Each code value SHALL be represented as a string type. If the
values of codes and ids are organised in code and identification schemes the corresponding
JSON schema SHALL refer to the appropriate code list or identification scheme.

[R 30|1]
Each code list and identification scheme SHALL be specified in a separate JSON schema
file.
A JSON schema file SHALL be created for each code list and identification scheme being
used. Its name SHALL represent the name of the code list or identification scheme and
SHALL be unique with the following form:

<Code List Agency Name>_<Code List Name or Identifier>.json

<Identification Scheme Agency Name>_<Identification Scheme
Name or Identifier>.json

Where:
• All special characters SHALL be removed from the name. A period . in the version

number is replaced by the letter p.
• <Code List Agency Name> – Agency that maintains the code list.
• <Identification Scheme Agency Name> – Agency that maintains the identification

scheme.
• <Code List Name or Identifier> – If a code list identifier exists in the UNTDID, the

identifier is given in the format UNTDID<identifier>. Else, the code list name is
stated as assigned by the publishing agency.

• <Identification Scheme Name or Identifier> – If an identification scheme identifier
exists in the UNTDID, the identifier is given in the format UNTDID<identifier>.
Else, the identification scheme name is stated as assigned by the publishing agency.

The file SHALL be placed in a subfolder codelists of the export path. The $id
property SHALL reflect this subfolder structure.
[Example]
UNECE_UNTDID-1001.json
OpenPEPPOL_DocumentTypes.json

[R 31|2]
It is a clear goal to keep the JSON schema artefacts as compatible with code lists and
identification schemes as possible. For this reason the code list version and identification
scheme version is neither part of the .json filename nor part of the type name. Nevertheless,
it is part of the $id, so that JSON schema files can be used for differentiating versions if
needed. If for some reason more than one version of a code list or identification scheme
needs to be used in a specific scenario, the <Code List Version> or
<Identification Scheme Version> SHOULD be added to the file name in the
following format:

JSON Schema Naming and Design Rules V1.0 2022-09-13

 Page 32 of 57

<Code List Agency Name>_<Code List Name or Identifier>_<Code
List Version>.json

<Identification Scheme Agency Name>_<Identification Scheme
Name or Identifier>_<Identification Scheme Version>.json

Since the invention of JSON, there has been repeated discussion about whether JSON
should support comments in schema files. In terms of its basic concept, JSON is data-only
and it was deliberately decided not to support comments. Nevertheless, as versioning
progressed, annotations such as description and $comment were introduced. The latter is
supposed to be ignored by parsers and should not be used to present information to schema
users. Instead $comment is only intended to contain information for future schema
developers e.g. to highlight schema maintenance information10. A much-discussed topic for
years is the commenting of enums.

JSON Schema does not support comments in the .JSON file analogous to the double slash
in languages like C or the hashtag as in PHP. Some JSON editors support such comments
proprietarily. However, usually only one of the two variants, which often correspond to the
conventions of one's own programming language. Since there is consequently no universal
convention, the UNECE JSON Schema code and identifier lists dispense with such
proprietary comments.

This NDR technical specification is created with the goal of applicability of the JSON
schema artefacts for use in OpenAPI specifications. This means that for the implementer of
such a specification, the documentation of the individual code or identifier values is
important.

Starting with OpenAPI 3.1 the preferred representation of code lists is an oneOf
combination of const definitions. This allows code names and definitions to be added
directly to the definition of each individual code. In addition, further amendments like
adding validity periods for individual code values become possible.

 [R 32|1]
The description property of the JSON schema specifying a code or identifier list
SHALL list the copyright notice information as defined in the CCL. This includes the code
or identifier list name, code or identifier list agency, code or identifier list version, and
copyright information.

10 See https://json-schema.org/understanding-json-schema/reference/generic.html#comments

JSON Schema Naming and Design Rules V1.0 2022-09-13

 Page 33 of 57

 [R 33|2]
The title property of the subschema specifying the const definitions holding the values
of a code or identifier list SHOULD be the code name value in English language.
The description property of the subschema specifying the const definitions holding
the values of a code or identifier list SHOULD be the code definition value in English
language.

The following rule defines the representation of code and identifier lists as files.

[R 34|1]
Code lists SHALL be represented in a subschema of the corresponding schema file with the
following naming convention:
$defs/codeList/<Code List Name or Identifier>Type
with <Code List Name or Identifier> – If a code list identifier exists in the UNTDID, the
identifier is given in the format untdid<identifier>. Else, the code list name is stated as
assigned by the publishing agency with special characters removed.

The following example shows a complete code list JSON schema file content.
[Example]
{
 "$schema": "https://json-schema.org/draft/2020-12/schema",
 "$id": "https://service.unece.org/trade/uncefact/json-
schema/D22A/UNECE_UNTDID-3131",
 "title": "Address type code",
 "description": "<<copyright notice information>>",
 "$defs": {
 "codeList": {
 "untdid3131Type": {
 "title": "Address type code",
 "oneOf": [
 {
 "const": "1",
 "title": "Postal Address"
 },
 {
 "const": "2",
 "title": "Fiscal Address"
 },
 {
 "const": "3",
 "title": "Physical Address"
 },
 {
 "const": "4",
 "title": "Business Address"
 },
 {
 "const": "5",
 "title": "Delivery To Address"
 },
 {
 "const": "6",
 "title": "Residential Address"
 },
 {

JSON Schema Naming and Design Rules V1.0 2022-09-13

 Page 34 of 57

 "const": "7",
 "title": "Mail To Address"
 },
 {
 "const": "8",
 "title": "Postbox Address"
 }
]
 }
 }
 }
}

[R 35|1]
Identification schemes SHALL be represented in a subschema of the corresponding schema
file with the following naming convention:
$defs/identificationScheme/<Indentification Scheme Name or
Identifier>Type
with < Identification Scheme Name or Identifier> – If an identification scheme identifier
exists in the UNTDID, the identifier is given in the format untdid<identifier>. Else, the code
or identification scheme name is stated as assigned by the publishing agency with special
characters removed.

The following example shows a complete identification scheme JSON schema file content.
[Example]
{
 "$schema": "https://json-schema.org/draft/2020-12/schema",
 "$id": "https://service.unece.org/trade/uncefact/json-
schema/D22A/ISO_639-1-2A",
 "title": "Language identifier",
 "description": "<<copyright notice information>>",
 "$defs": {
 "identificationScheme": {
 "iso639-1-2AType": {
 "title": "Language identifier",
 "oneOf": [
 {
 "const": "AR",
 "title": "ARABIC"
 },
 {
 "const": "AS",
 "title": "ASSAMESE"
 },
 {
 "const": "AV",
 "title": "AVARIC"
 },
 {
 "const": "AY",
 "title": "AYMARA"
 },
 {
 "const": "AZ",
 "title": "AZERBAIJANI"
 },
 {

JSON Schema Naming and Design Rules V1.0 2022-09-13

 Page 35 of 57

 "const": "BA,
 "title": "BASHKIR"
 },
 {
 "const": "BE",
 "title": "BELARUSIAN"
 }
]
 }
 }
 }
}

3.6 Restriction and Extension

3.6.1 Restriction

The CCTS defines methods of restriction to create e.g. industry specific profiles of the
CCL. One output of this process are the Reference Data Models (RDMs) being published
like the Supply-Chain-Reference-Data Model (SCRDM) or the Multi-Modal-Transport-
Reference-Data-Model (MMT-RDM). For data transmission via messages, the method of
restriction is also used to restrict cardinalities and values of code or identifier list (p.s.
qualified data types are being created in case of restricting values of code or identifier list).
A significant part of the standardisation activity of UN/CEFACT has been dealing with this
very issue for many years.

As defined in rule [R 10|1] for each individual layer of data models a separate JSON
schema file is published.
[R 36|1]
Restrictions to CCTS objects SHALL be represented in a subschema as follows:
Cardinalities
• From 0..1 to 1..1
[Example]
"toBeRestrictedType": {
 "type": "object",
 "properties": {
 "id": { "type": "string" }
 }
},
"restrictingType": {
 "$ref": "#/$defs/toBeRestrictedType",
 "required": ["id"]
}

• From 0..1 to 0..0 (forbidden)
[Example]
"toBeRestrictedType": {
 "type": "object",
 "properties": {
 "id": { "type": "string" },
 "name": { "type": "string" }
 }

JSON Schema Naming and Design Rules V1.0 2022-09-13

 Page 36 of 57

},
"restrictingType": {
 "$ref": "#/$defs/toBeRestrictedType",
 "properties": {
 "id": false
 }
}

• From 0..unbounded to 0..n with n < unbounded
[Example with n=2]
"toBeRestrictedType": {
 "type": "object",
 "properties": {
 "id": {
 "type": "array",
 "items": { "type": "string }
 }
 }
},
"restrictingType": {
 "$ref": "#/$defs/toBeRestrictedType",
 "properties": {
 "id": { "maxItems": 2 }
 }
}

• From 0..unbounded to n..unbounded
[Example with n=2]
"toBeRestrictedType": {
 "type": "object",
 "properties": {
 "id": {
 "type": "array",
 "items": { "type": "string }
 }
 }
},
"restrictingType": {
 "$ref": "#/$defs/toBeRestrictedType",
 "properties": {
 "id": { "minItems": 2 }
 }
}

Restriction of value ranges
[Example restricting content to values with exact 2 fraction digits]
"restrictingType": {
 "allOf": [
 { "$ref": "UNECE-BasicComponents.json#/$defs/udt/amountType" },
 { "properties": {
 "content": { "pattern": "^.*\..{2}$" }
 }
 }
]
}

Restriction of const
[Example restricting content to a code list subset]
"addressType": {
 "type": "object",
 "properties": {
 "countryId": { "$ref": "UNECE-
BasicComponents.json#/$defs/qdt/countryIdType"}

JSON Schema Naming and Design Rules V1.0 2022-09-13

 Page 37 of 57

 }
},
"restrictingType": {
 "allOf": [
 { "$ref": " #/$defs/addressType" },
 { "properties": {
 "countryId": { "const": ["CH", "DE", "FR"] }
 }
 }
]
}

The same type of restriction can be applied if restrictions are defined on a lower level.

[Example]

{
 "$defs": {
 "restriction": {
 "allOf": [
 {
 "$ref": "#/$defs/levelOne"
 },
 {
 "properties": {
 "oneFirst": {
 "properties": {
 "twoFirst": false
 }
 }
 }
 }
]
 },
 "levelOne": {
 "type": "object",
 "properties": {
 "oneFirst": {
 "$ref": "#/$defs/levelTwo"
 },
 "oneSecond": {
 "type": "string"
 }
 }
 },
 "levelTwo": {
 "type": "object",
 "properties": {
 "twoFirst": {
 "type": "string"
 },

JSON Schema Naming and Design Rules V1.0 2022-09-13

 Page 38 of 57

 "twoSecond": {
 "type": "string"
 }
 }
 }
 }

}

Figure 2: Example for second level restrictions

3.6.2 Extension

The CCTS does not support extensions. Therefore, no NDR rules analogous to the
Restrictions chapter can be set up for the CCTS that extend cardinalities, value ranges or
enum. Should an implementation nevertheless require such an extension, the result is no
longer compliant with the artefacts according to this technical specification. Technically,
this can be achieved by combining a schema with anyOf.

However, especially when implementing OpenAPI specifications, extensions to the
properties are needed. For example, to add metadata to the API endpoints.

[R 37|1]
The BasicComponents SHALL define a JSON subschema for extension as follows:
"$defs": {
 "extensibleType": {
 "patternProperties": { "^x-": true}
 }
}

The extensibleType allows users to add their own JSON properties to the JSON
subschemas. The only rule they have to follow is that they must start with x-. This makes it
compliant to the extension method defined in the OpenAPI specification. An example can
be found in the next section in rule [R 42|1].

3.6.3 Publication and reusing contextualization

The CCL is undergoing a continuous development. This way it contains definitions that are
not used any more in newer versions. In order to prevent confusion with published data
types that are not used any more the RDM level is the lowest export level for any
UN/CEFACT publication.

[R 38|1]
The base of all JSON schema exports SHALL be the RDM level. This means that each
underlying CCL basic data type SHALL be profiled and contextualised according to the
RDM definition. Only data types that are used in an RDM SHALL be exported.

JSON Schema Naming and Design Rules V1.0 2022-09-13

 Page 39 of 57

If the rules defined in this section are applied to the entire CCL, the resulting JSON
artefacts can become complex and very large. This approach creates a high level of
traceability of the restrictions and ensures a consistent (re-)use of the individual data types.

In a practical application of an API, however, these libraries can be unnecessarily large.
Especially if only a subset of the CCL is used.

Therefore, it can be useful to export "snapshots" of the required (sub-) structures as JSON
artefacts. The procedure here corresponds to the XML design principle "Venetian blind":
Only one JSON schema file is created, which contains all the required data types for the use
case. All properties that are not required are not even exported. Restrictions are kept to a
minimum. Compliance with the CCL is mandatory.

[R 39|2]
A user community may decide to create "snapshot" JSON schema artefacts for a specific
subset of the CCL. A "snapshot" JSON schema artefact SHALL contain all relevant data
types that are needed to define the subset. The "snapshot" JSON schema artefact MAY
contain additional restrictions and extensions.

Together with the "snapshot" export, there exist three possible ways of creating JSON
schema artefacts:

Export
variant

Description

Library
export

The library export creates one JSON schema file for each level of
contextualisation as they are defined by the UN/CEFACT standards. It
creates one large CCL JSON schema representation as a foundation. On top
of it, it creates one JSON schema file contextualising and restricting the
CCL to the defined RDMs and document-centric structures. Each level may
already use restricted data types that are restricted exactly at that level. This
needs to be considered when creating this type of export.

Pro
The complete CCL, all RDMs as well as all (document-centric) message
structure definitions are exported as defined by UN/CEFACT standards. A
maximum of re-usable data structures and definitions are created. It assures
by design that any implementation is consistent and ready for any process-
amendment.

Contra
Any implementation needs to handle the huge CCL library as a base import
as well as the multi-layer-restrictions as they are defined by UN/CEFACT
standards. For example, the eCMR message is defined as a
contextualisation of a master message structure for all document-centric
messages defined by UN/CEFACT. The contained data structure is process
specific contextualisation of a multi modal transport reference data model.
The MMT-RDM is a transport specific contextualisation of the Buy-Ship-

JSON Schema Naming and Design Rules V1.0 2022-09-13

 Page 40 of 57

Pay reference data model. Moreover, this again is a contextualisation of the
underlying CCL.

Thus, an implementation could get rather complex while at the same time
achieving a maximum compliance level.

Subset
export

The subset export follows the same principles as the library export with one
major difference: Only the needed data structures of the selected subset are
exported. All other data structures are omitted. This way the file size and
content is reduced to a minimum set of information, while at the same time
keeping all relations available. It is important that all levels of restrictions
be taken into account. Only the result of applying all levels of restrictions in
hierarchical order is represented in the resulting technical artefact.

Pro
In addition to the arguments defined in the library export, the subset export
is easier to handle in respect of file size and quantity of data objects.

Contra
The complexity of layers of contextualisation is still the same as with the
library export. Amendments of the subset lead to changes in the underlying
objects. Only those data objects are exported that are needed for a specific
subset. When the scope of the subset is widened in a future version, it may
need additional objects in the underlying data structures. This means that
implementations of the subset need to be updated at all players at the same
time.

Snapshot
export

Content wise the snapshot export is equal to the subset export. The main
difference is that the multi-layer-contextualisation over a set of several
JSON schema files is removed. Only one single JSON schema file is
created that contains all necessary data structures of the snapshot objects. It
is comparable with the XML "Ventian Blind" approach. Underlying data
objects are still defined (like a party data type). However, they only contain
schema objects being used in the snapshot selection.

Pro
The complexity for the given snapshot is reduced to a minimum. Only one
single self-contained JSON schema file is created. The JSON schema file
can easily be used by all common JSON tools as well as OpenAPI design
tools. The exported data structures are compliant to the UN/CEFACT
standards and reflect "the compilation" of all restrictions and
contextualisation.

Contra
One self-contained JSON schema file is created for each individual
snapshot. If this approach is used in a pre-defined environment, it works
quite well. Thus, it is important to clearly define the snapshot content in
advance.
Things start to get complicated if in one implementation more than one self-
contained JSON schema files are used. Let us assume that for example one
self-contained JSON schema file is created for each document-centric

JSON Schema Naming and Design Rules V1.0 2022-09-13

 Page 41 of 57

message (as it is done with XML schema files). Each of those JSON
schema files defined the underlying data types (e.g. party). In an OpenAPI
specification, it is not so easy to combine those multiple schema files into
one single OpenAPI file as it may come to conflicts between the underlying
data types. The reason is that the same data type with the same name may
have a diverging contextualisation between the different JSON schema
files.

Table 8: Export variants

[R 40|1]
A UNECE publication SHALL provide a library export on a server being able to handle the
necessary requirements for a global community accessing the published artefacts.
In addition, UNECE SHOULD provide an additional snapshot export for each
contextualised document ABIE.

[Note]

As the $id property of a JSON schema must represent a valid URL aspects
of scalability of the provided service have to be taken into account. One

option could be to provide the publication in a GIT-compliant repository.

3.7 ABIE and BBIE representation in JSON Schema

3.7.1 General handling of ABIEs and BBIEs

[R 41|1]
Each ABIE SHALL be represented in a JSON subschema. ABIEs that are marked as
deprecated from a former version SHALL NOT be represented in a JSON subschema.

[Note]

For example an ABIE is defined to be deprecated starting in version D20B.
When the JSON schema artefacts for version D21A are exported, the ABIE

SHALL NOT be represented in this export.

[R 42|1]
All ABIE representations in JSON subschemas SHALL include a reference to the
extensibleType.
[Example]
"abieType": {
 "title": "The Dictionary Entry Name",
 "description": "The description",
 "type": "object",
 "properties": {
 "p1": { "type": "string" }
 },

JSON Schema Naming and Design Rules V1.0 2022-09-13

 Page 42 of 57

 "required": ["p1"],
 "$ref": "UNECE-BasicComponents.json#/$defs/extensibleType",
 "unevaluatedProperties": false
 }
}
[Example of a valid JSON object]
{
 "p1": "value",
 "x-addedStringProperty": "added value",
 "x-addedObjectProperty": { "content": "a123"}
}
[Example of an invalid JSON object]
{
 "p1": "value",
 "addedStringProperty": "added value"
}

[R 43|2]
Extension property names SHOULD follow the same naming conventions as defined in this
technical specification.

3.7.2 ASBIE representation in JSON Schema supporting document
based and resource-based information

The CCTS was invented for the purpose of standardising and modelling classic EDI
messages. Even today, document-based data exchange is still predominant, especially in the
B2B and B2A environment.

As described at the beginning of this technical specification, REST APIs are characterised
by the fact that they are not based on the exchange of business documents, but on the
management of resources. This means that, for example, business partner information can
be managed separately from transaction data such as an invoice or a transport order. In
CCTS, these are all the places where ABIEs are associated with each other in the form of
ASBIEs.

With the aim of supporting REST APIs via the JSON schema artefacts, it is precisely at this
point that the option of switching from document-centred to resource-centred data exchange
must be supported.

Resource-based data management means that resources must have unique identifiers.
Therefore, only those ABIEs can be converted to resources that have a unique identifier.
Using this unique identifier represented as an URI, the information about a buyer in an
order can be retrieved following the URI to the party information of the buyer.

[R 44|1]
The BasicComponents SHALL define a JSON subschema for resource based data exchange
as follows:

JSON Schema Naming and Design Rules V1.0 2022-09-13

 Page 43 of 57

"$defs": {
 "resourceType": {
 "type": "string",
 "format": "uri"
 }
}

[R 45|1]
All ASBIEs whose ABIEs contain an identifier SHALL be modelled using an oneOf
choice between the resourceType and the associated ABIE.
All other ASBIEs SHALL be referenced directly.
In both cases, the defined cardinality SHALL be observed.
To stay focused, title, description etc. are not shown in the following example.
[Example]
"$defs": {
 "invoiceType": {
 "type": "object",
 "properties": {
 "buyer": {
 "oneOf": [
 { "$ref": "UNECE-BasicComponents.json#/$defs/resourceType" },
 { "$ref": "#/$defs/partyType" }
]
 }
 },
 "required": ["buyer"],
 "$ref": "UNECE-BasicComponents.json#/$defs/extensibleType",
 "unevaluatedProperties": false
 },
 "partyType": {
 "type": "object",
 "properties": {
 "id": {
 "type": "array",
 "items": {
 "$ref": "UNECE-BasicComponents.json#/$defs/udt/identifierType"
 }
 },
 "name": { "type": "string" },
 "postalTradeAddress": { "$ref": "#/$defs/addressType" }
 },
 "$ref": "UNECE-BasicComponents.json#/$defs/extensibleType",
 "unevaluatedProperties": false
 },
 "addressType": {
 "type": "object",
 "properties": {
 "street": { "type": "string"},
 "city": { "type": "string"},
 "postalCode": { "type": "string"},
 "countryCode": { "$ref": "UNECE-
BasicComponents.json#/$defs/qdt/countryIdType"}
 },
 "$ref": "UNECE-BasicComponents.json#/$defs/extensibleType",
 "unevaluatedProperties": false
 }
}

JSON Schema Naming and Design Rules V1.0 2022-09-13

 Page 44 of 57

3.8 Fostering implementation

3.8.1 Compatibility with JSON schema draft before version 2020-12

As stated earlier in the document, version 2020-12 of the JSON schema Draft is used in this
NDR.
Nevertheless, many previous JSON schema Draft versions are still in use in practice and
tool support for the current version is not yet very high. In some places, the previous version
and the current version are not compatible. This means that tools that do not yet support the
latest version could very likely have difficulties in use. However, this NDR must be
independent of the capability of certain tools. Furthermore, it is not intended to be based on
an old version that has already been revised due to practical requirements.
The following rules describe how to achieve higher compatibility for such tools. Since these
rules limit the possibilities of the generated JSON schema, these rules should only be
applied transitionally, at most until the publication of CCTS library version D25A.

 [R 46|2]
This rule can be applied transitionally up to and including the publication of library version
D25A. Thereafter, modelling according to this rule is no longer conform to this NDR. It
shall be applied to the following rules:

[R 29|1]:
A list of coded values or identifiers SHALL be modelled using enum, and Not as const.
The description of each coded value or identifier SHALL be put in the description of
the corresponding type as well as a comment after each enum value as shown in the
following example:
[Example]
{
 "$schema": "https://json-schema.org/draft/2020-12/schema",
 "$id": "https://service.unece.org/trade/uncefact/json-
schema/D22A/UNECE_UNTDID-3131",
 "title": "Address type code",
 "description": "<<copyright notice information>>",
 "$defs": {
 "codeList": {
 "untdid3131Type": {
 "title": "Address type code",
 "description": "Applicable codes:
* '1' – Postal Address
* '2' – Fiscal Address
* '3' – Physical Address
* '4' – Business Address
* '5' – Delivery To Address
* '6' – Residential Address
* '7' – Mail To Address
* '8' – Postbox Address",
 "enum": [
 "1", # Postal Address
 "2", # Fiscal Address
 "3", # Physical Address
 "4", # Business Address

JSON Schema Naming and Design Rules V1.0 2022-09-13

 Page 45 of 57

 "5", # Delivery To Address
 "6", # Residential Address
 "7", # Mail To Address
 "8" # Postbox Address
]
 }
 }
 }
}

[R 27|1] SHALL be modelled accordingly.

 [R 47|2]
This rule can be applied transitionally up to and including the publication of library version
D25A. Thereafter, modelling according to this rule is no longer conform to this NDR. It
shall be applied to the following rules:

[R 42|1]:
The reference to the extensibleType in an ASBIE relationship SHALL be embedded
in an allOf:
[Example]
"abieType": {
 "title": "The Dictionary Entry Name",
 "description": "The description",
 "type": "object",
 "properties": {
 "p1": { "type": "string" }
 },
 "required": ["p1"],
 "allOf": [{
 "$ref": "UNECE-BasicComponents.json#/$defs/extensibleType"
 }],
 "unevaluatedProperties": false
 }
}

3.8.2 Hints for tool developers and designers when specifying real-life
guidelines

Even if it were technically possible, data exchange standards are usually not implemented to
the full extent. Instead, subsets tailored to the exact problem, e.g. the reference data models,
are defined and implemented.

The aim of using standards is always to create interoperability between the systems,
processes and organisations involved. Different levels of interoperability can be
distinguished, but these will not be discussed in detail in the course of this document. One
possible definition can be found, for example, in the European standard EN16931 for
electronic invoices to public sector customers.

JSON Schema Naming and Design Rules V1.0 2022-09-13

 Page 46 of 57

From an organisational and process perspective, the most important and at the same time
the most minimal goal is to achieve semantic interoperability. Without this, an automated,
cross-organisational exchange of information is not possible.

If (only) semantic interoperability is taken as a maxim, the frequently different syntax
representations in (fixed) technical data structures often lead to a high mapping effort. A
good example of this are the many industry and company profiles of one and the same
EDIFACT message that exist in practice today.

In order to solve this problem, two different approaches are mainly pursued in practice:

1. The definition of reference data models and reference message structures.

2. The definition of semantic vocabularies based on JSON-LD.

The first approach is followed by these JSON Schema NDR. It is more conservative
because it can directly satisfy the many requirements that exist today from the exchange of
business documents. Nevertheless, the modelling also enables use on the basis of resources:
the information components in the data models can be declared as resources and thus used
in modern technologies such as REST APIs while maintaining the harmonisation work
carried out over decades.

The second approach includes the idea that (any) technical formats can link to the semantic
definitions and thus technical interoperability can be achieved "on-the-fly". Depending on
the application scenario, this can be implemented well in practice and offers corresponding
advantages. In particular, since the implementer can use generalisation and inheritance to
model the information components according to his own requirements and ensure semantic
interoperability by means of a link to the vocabulary. This approach is all the more relevant
the more organisations or data providers are involved in the respective process. The
implementation of a booking portal or tracking and tracing applications are good examples
where this approach shows its strengths.

However, this approach poses new challenges for the implementer if, for example, he wants
to map the exchange of legally required business documents in a legally compliant manner
in this way. The first approach is also preferable if there are data forwarders in the
processes, i.e. the actual information is not exchanged synchronously between two
participants. If information is routed via several intermediate stations (e.g. a solution
provider network), meta information is needed for this purpose, which requires a minimum
hierarchical message structure. (e.g. envelope with the routing information and the actual
exchange information contained therein).

In summary, the implementation effort should correspond to the implementation
requirements. During implementation, the scope of information for data exchange in the

JSON Schema Naming and Design Rules V1.0 2022-09-13

 Page 47 of 57

respective process is defined. It is also determined whether an ABIE or BBIE from an
ASBIE should continue to be transmitted as a hierarchical structure or should be considered
as an independent resource. Information on a business partner is given as an example. In
typical business documents, this is transmitted in detail (hierarchically): for example, the
name and full address of a buyer and seller. In a resource-based approach, the resource
"party" would be managed independently and the corresponding places in the business
document would only refer to it; similar to a customer number, location number or tax
number.

The rules defined in this NDR allow the implementer or designer to decide flexibly at which
point which form of modelling should be used. Thus, the JSON schema files according to
these specifications represent templates for the implementation. With the help of
appropriate tools, these JSON schema templates can be simplified during implementation:
For the ASBIE, it is decided in each case whether the hierarchical structure or the resource-
based structure should be retained.

The resulting contextualised JSON schemas are thus much smaller and easier to implement.
Nevertheless, they are conform to the JSON schemas published according to this
specification.

 [R 48|2]
JSON schemas used in implementation MAY be contextualised subsets of the published
JSON schema artefacts. This explicitly means that at the ASBIE level decisions have been
made if a hierarchical or resource based approach is used. Consequently, the OneOf choice
between those two options may be optimised so that only the remaining reference is used:

[Example: Original]
"provider": {
 "title": "Document_ Authentication. Provider. Trade_ Party",
 "description": "The trade party providing this document
authentication.",
 "oneOf": [
 { "$ref": "#/$defs/tradePartyType" },
 { "$ref": "#/$defs/resourceType" }
]
}

[Example: Contextualisation]
"provider": {
 "title": "Document_ Authentication. Provider. Trade_ Party",
 "description": "The trade party providing this document
authentication.",
 "$ref": "#/$defs/tradePartyType"

}

JSON Schema Naming and Design Rules V1.0 2022-09-13

 Page 48 of 57

3.8.3 Referencing the Github Repository in an OpenAPI specification

Der Entwicklungsprozess für jeden Datenaustausch kann wenigstens in die Phasen Design-
Time und Run-Time unterschieden werden. Bei der Run-time, der eigentlichen
Durchführung von Konvertierungen und Datenübertragungen ist Effizienz und
Ressourcenschonung ein Wesentliches Ziel. Bei einer Run-Time-Umgebung ist der Verweis
auf Ressourcen auf externen Servern, über die keine Kontrolle besteht, in der Regel als
kritisch einzustufen. Dies ist während der Spezifikations- und Entwicklungszeit – der
Design-Time, anders. Bei einer OpenAPI-Spezifikation handelt es sich um ein Dokument
der Design-Time. Damit ist eine direkte Referenzierung der UN/CEFACT-Publikationen
über das entsprechende Repository denkbar.

Werden die JSON Schema Artefakte oder OpenAPI Templates direct aus einem github –
Repository verlinkt, ist dabei zu beachten, dass die Raw-Variante der Quelle verwendet
wird. Dadurch ändert sich auch der Link zu der entsprechenden Ressource.

[Example]

For example, if a file is located in the following repository:

https://github.com/uncefact/spec-JSONschema/blob/main/
JSONschema2020-12/snapshot/BuyShipPay/D22A/Regulatory/eCert/PrefCoO/
UNECE-BSPPreferentialCoO.json

its raw variant is to be referenced via the following link:

https://raw.githubusercontent.com/uncefact/spec-JSONschema/main/
JSONschema2020-12/snapshot/BuyShipPay/D22A/Regulatory/eCert/PrefCoO/

UNECE-BSPPreferentialCoO.json

JSON Schema Naming and Design Rules V1.0 2022-09-13

 Page 49 of 57

4 Appendix A: Examples

Printed JSON schema files of a realistic example can be very large, especially because of
the code lists used. Therefore, we have not included an example here.

However, examples can be found on the web at the following address:

https://github.com/uncefact/spec-JSONschema/examples

https://github.com/uncefact/spec-JSONschema/examples

JSON Schema Naming and Design Rules V1.0 2022-09-13

 Page 50 of 57

5 Appendix B: Naming and Design Rules List
Rule # Rule

[R 1|1]

Conformance SHALL be determined through adherence to the content of the
normative sections and rules. Furthermore, each rule is categorized to indicate the
intended audience for the rule by the following:
1. Rules, which must not be violated. Else, conformance and interoperability is lost.
2. Rules, which may be modified, while still conformant to the NDR structure.

[R 2|1]

In the scope of this specification, a JSON schema is a file that complies to a JSON
schema definition as defined at https://json-schema.org. It may include subschemas
defined in the $defs section. A JSON schema fragment means both the overall
JSON schema as well as each of its included subschemas.

[R 3|1]

Each JSON schema SHALL be declared to be a “JSON Draft 2020-12 schema ” with
the appropriate $schema string property defined as https://json-
schema.org/draft/2020-12/schema.

[R 4|2] In section 3.8.1 a set of rules is defined that allows to achieve compatibility with
many tools, that do not yet support JSON schema version 2020-12. This set of rules
MAY be applied in a publication or the resulting schemas may be published as a
second set of JSON schemas marked as "deprecated compatibility set".

[R 5|1] Each JSON schema SHALL contain a "title" annotation. It SHALL be an overall
description title.

[R 6|1] Each JSON schema SHALL contain a "description" annotation. It contains an
overall description for that file as well as copyright information.

[R 7|1]

Each declared Document and Library ABIE definitions and their BBIE and ASBIE
members SHALL contain a "title" annotation and a "description"
annotation. The "title" annotation SHALL be the CCTS Dictionary Entry name for
the BIE. If there exists a contextualised business name, it SHALL be used instead.
"description" annotation shall be the CCTS definition value. Members of
enums SHALL NOT contain the "title" or the "description" annotation.

[R 8|1]

The "unevaluatedProperties" property of each JSON schema fragment
SHALL be set to false, excluding subschemas for primitive data types, unqualified
data types and qualified data types. For subschemas specifying primitive data types,
unqualified data types or qualified data types the "unevaluatedProperties"
property SHALL be stated as defined in this document.

[R 9|1]

The JSON schema file names SHALL NOT contain a version information. Differences
in versions are only indicated by $id and the folder structure in which the JSON
schema artefacts are located.

[R 10|1]

Each JSON schema being published by user groups or standardisation organisations
SHALL contain an identifier for the schema in the appropriate $id URI property.
JSON schema exports that are only used in a closed environment (e.g. for testing)
do NOT NEED to contain the $id property. The URI SHALL follow the following
format:
"$id": "<basepath>/<variant>/<domain>/<version>[/<RDM>]/<BIE>"
with <basepath> identifying the originator. For UNECE artefacts that is
 "https://github.com/uncefact/spec-JSONschema"
 <version> in the UNECE publication format e.g. "D22A"
 <variant> representing the JSON schema draft version and the export
 variant. e.g. "JSONschema2020-12/library"
 <domain> like "BuyShipPay"
 <BIE> with one

- distinct name for each document ABIE without a file extension

JSON Schema Naming and Design Rules V1.0 2022-09-13

 Page 51 of 57

- name for all BBIE components: "BasicComponents"
- distinct name for every RDM set of Library ABIE components
- distinct name for each extension collection

 <RDM> For the snapshot variant additional structuring is allowed.
The JSON schema file name SHALL be build with the following format:
<originator>-<abbreviation>.json
with
<originator> identifying the originator. For UNECE artefacts,
 it SHALL be UNECE.
 <abbreviation> identifying the RDM set of Library ABIE components
If a contextualised business name exists for a message structure, it SHALL be used
instead. If a .json-File with this name already exists, the message model name
SHALL be added, separated by another hyphen.

[R 11|1] The BasicComponents JSON schema file SHALL contain all subschemas for
primitive data types, unqualified data types as well as qualified data types.

[R 12|1] A property is a name/value pair inside a JSON object. The property name is the key
or name part of the property. The property value is the value part of the property.

[R 13|1] JSON property names SHALL be derived from Dictionary Entry Names (DEN).
In e.g. in a BBIE the DEN contains the DEN of the surrounding ABIE, it SHALL be
removed. If by applying the NDR rules words in the DEN are duplicated, the
duplication SHALL be removed.

[R 14|1] Any special characters such full stops . and underscores _ SHALL be removed
from the underlying Dictionary Entry Name. If a digit (0-9) was before and another
digit after the white space, the white space SHALL be replaced by a hyphen -.

[R 15|1] JSON property names SHALL be lower camel-cased ASCII strings and JSON
schema compliant: The character after a white space shall be a capital letter. Capital
letters in the DEN SHALL NOT be kept.

[R 16|1] The abbreviations and acronyms SHALL be used as defined in Table 4.
[R 15|1] SHALL be taken into account.

[R 17|1] The Object Class Term "Identification Scheme" SHALL be represented as
"Scheme". [R 15|1] SHALL be taken into account.

[R 18|1] Primitive data types (PDT) SHALL be represented in JSON schema, as stated in
Table 6. They SHALL be placed under $defs/pdt/.

[R 19|1] Unqualified data types SHALL be represented in subschemas. "Type" as part of the
Dictionary Entry Name SHALL be retained.

[R 20|1]

The CCTS content property SHALL be represented in a subschema with the name
"content". Its data type SHALL use the underlying PDT. The content-property
SHALL be required.

[R 21|1]

Property names of supplementary components SHALL NOT repeat the JSON
subschemas property name.

[R 22|1]

Supplementary components may reference to code lists and/or identification
schemes. In this case, the JSON property SHALL reference the appropriate code list
or identification scheme as defined in section 3.5.5 Other Qualified Data Types.

[R 23|1]

Unqualified data types SHALL be represented in subschemas as shown in Table 7.
The title and description properties are not shown in the following table.
Instead, they are indicated with the placeholder <title and description> as
those can change over time. They SHALL be published in alignment with rules [R
5|1], [R 6|1], and [R 7|1].
They SHALL be placed under $defs/udt.

[R 24|1]

The "Date Mandatory_ Date Time. Type" SHALL be replaced by the
formattedDateTimeType.

JSON Schema Naming and Design Rules V1.0 2022-09-13

 Page 52 of 57

[R 25|1]

The "Time Only_ Formatted_ Date Time. Type" SHALL be replaced
by the formattedDateTimeType.

[R 26|1] The "Formatted_ Date Time. Type" SHALL be represented as follows.
"formattedDateTimeType": {
 <<title and description>>
 "oneOf": [
 { "type": "string", "format": "date-time" },
 { "type": "string", "format": "time" },
 { "type": "string", "format": "date" },
 { "type": "string", "format": "duration" },
 { "type": "object",
 "properties": {
 "content": { "type": "string" },
 "format": { "$ref": "UNECE_UNTDID2379-
JSON.json#/$defs/codeList/untdid2379JsonType" }
 },
 "required": ["content", "format"]
 }
]
}

[R 27|1] Based on the code list "UNTDID 2379" an additional code list "UNTDID 2379
json" SHALL be specified. All format definitions that are already represented in
their meaning by existing JSON date and time formats SHALL be omitted. This code
list SHALL be maintained in accordance with UNTDID 2379. See R27 for details.

[R 28|1] Each QDT that does not fall under section 3.5.4 SHALL be restricted according to its
definition applying the method described in section 3.6.1.

[R 29|1] Each QDT SHALL be represented in a subschema. If code or id values are specified
locally, they SHALL be as an oneOf combination of const definitions. They SHALL
NOT be specified as enum arrays. Each code value SHALL be represented as a
string type. If the values of codes and ids are organised in code and identification
schemes the corresponding JSON schema SHALL refer to the appropriate code list
or identification scheme.

[R 30|1] Each code list and identification scheme SHALL be specified in a separate JSON
schema file.
A JSON schema file SHALL be created for each code list and identification scheme
being used. Its name SHALL represent the name of the code list or identification
scheme and SHALL be unique with the following form:

<Code List Agency Name>_<Code List Name or
Identifier>.json

<Identification Scheme Agency Name>_<Identification
Scheme Name or Identifier>.json

Where:
• All special characters SHALL be removed from the name. A period . in the

version number is replaced by the letter p.
• <Code List Agency Name> – Agency that maintains the code list.
• <Identification Scheme Agency Name> – Agency that maintains the

identification scheme.
• <Code List Name or Identifier> – If a code list identifier exists in the UNTDID,

the identifier is given in the format UNTDID<identifier>. Else, the code list
name is stated as assigned by the publishing agency.

JSON Schema Naming and Design Rules V1.0 2022-09-13

 Page 53 of 57

• <Identification Scheme Name or Identifier> – If an identification scheme
identifier exists in the UNTDID, the identifier is given in the format
UNTDID<identifier>. Else, the identification scheme name is stated as
assigned by the publishing agency.

The file SHALL be placed in a subfolder codelists of the export path. The $id
property SHALL reflect this subfolder structure.

[R 31|2]

It is a clear goal to keep the JSON schema artefacts as compatible with code lists and
identification schemes as possible. For this reason the code list version and
identification scheme version is neither part of the .json filename nor part of the type
name. Nevertheless, it is part of the $id, so that JSON schema files can be used for
differentiating versions if needed. If for some reason more than one version of a code
list or identification scheme needs to be used in a specific scenario, the <Code
List Version> or <Identification Scheme Version> SHOULD be
added to the file name in the following format:

<Code List Agency Name>_<Code List Name or
Identifier>_<Code List Version>.json

<Identification Scheme Agency Name>_<Identification
Scheme Name or Identifier>_<Identification Scheme
Version>.json

[R 32|1]

The description property of the JSON schema specifying a code or identifier list
SHALL list the copyright notice information as defined in the CCL. This includes
the code or identifier list name, code or identifier list agency, code or identifier list
version, and copyright information.

[R 33|2]

The title property of the subschema specifying the const definitions holding the
values of a code or identifier list SHOULD be the code name value in English
language. The description property of the subschema specifying the const
definitions holding the values of a code or identifier list SHOULD be the code
definition value in English language.

[R 34|1]

Code lists SHALL be represented in a subschema of the corresponding schema file
with the following naming convention:
$defs/codeList/<Code List Name or Identifier>Type
with <Code List Name or Identifier> – If a code list identifier exists in the UNTDID,
the identifier is given in the format untdid<identifier>. Else, the code list name is
stated as assigned by the publishing agency with special characters removed.

[R 35|1] Identification schemes SHALL be represented in a subschema of the corresponding
schema file with the following naming convention:
$defs/identificationScheme/<Indentification Scheme Name
or Identifier>Type
with < Identification Scheme Name or Identifier> – If an identification scheme
identifier exists in the UNTDID, the identifier is given in the format
untdid<identifier>. Else, the code or identification scheme name is stated as assigned
by the publishing agency with special characters removed.

[R 36|1]

Restrictions to CCTS objects SHALL be represented in a subschema as follows:
Cardinalities
• From 0..1 to 1..1
• From 0..1 to 0..0 (forbidden)
• From 0..unbounded to 0..n with n < unbounded
• From 0..unbounded to n..unbounded
Restriction of value ranges
Restriction of enums

JSON Schema Naming and Design Rules V1.0 2022-09-13

 Page 54 of 57

[R 37|1]

The BasicComponents SHALL define a JSON subschema for extension as follows:

 "$defs": {
 "extensibleType": {
 "patternProperties": { "^x-": true}
 }
}

[R 38|1] The base of all JSON schema exports SHALL be the RDM level. This means that
each underlying CCL basic data type SHALL be profiled and contextualised
according to the RDM definition. Only data types that are used in an RDM SHALL
be exported.

[R 39|2] A user community may decide to create "snapshot" JSON schema artefacts for a
specific subset of the CCL. A "snapshot" JSON schema artefact SHALL contain all
relevant data types that are needed to define the subset. The "snapshot" JSON
schema artefact MAY contain additional restrictions and extensions.

[R 40|1] A UNECE publication SHALL provide a library export on a server being able to
handle the necessary requirements for a global community accessing the published
artefacts.
In addition, UNECE SHOULD provide an additional snapshot export for each
contextualised document ABIE.

[R 41|1] Each ABIE SHALL be represented in a JSON subschema. ABIEs that are marked as
deprecated from a former version SHALL NOT be represented in a JSON
subschema.

[R 42|1]

All ABIE representations in JSON subschemas SHALL include a reference to the
extensibleType.

[R 43|2]

Extension property names SHOULD follow the same naming conventions as defined
in this technical specification.

[R 44|1]

The BasicComponents SHALL define a JSON subschema for resource based data
exchange as follows:
"$defs": {
 "resourceType": {
 "type": "string",
 "format": "uri"
 }
}

[R 45|1]

All ASBIEs whose ABIEs contain an identifier SHALL be modelled using an
oneOf choice between the resourceType and the associated ABIE.
All other ASBIEs SHALL be referenced directly.
In both cases, the defined cardinality SHALL be observed.

[R 46|2] This rule can be applied transitionally up to and including the publication of library
version D25A. Thereafter, modelling according to this rule is no longer conform to
this NDR. It shall be applied to the following rules:

[R 29|1]:
A list of coded values or identifiers SHALL be modelled using enum, and Not as
const. The description of each coded value or identifier SHALL be put in the
description of the corresponding type as well as a comment after each enum
value as shown in the example.
[R 27|1] SHALL be modelled accordingly.

[R 47|2] This rule can be applied transitionally up to and including the publication of library
version D25A. Thereafter, modelling according to this rule is no longer conform to
this NDR. It shall be applied to the following rules:

JSON Schema Naming and Design Rules V1.0 2022-09-13

 Page 55 of 57

[R 42|1]:
The reference to the extensibleType in an ASBIE relationship SHALL be
embedded in an allOf.

JSON Schema Naming and Design Rules V1.0 2022-09-13

 Page 56 of 57

6 Appendix C: Glossary
Term Definition
ASCII American Standard Code for Information Interchange
ABIE Aggregate Business Information Entity – a term from CCTS that

describes an information class such as “consignment”
API Application Programming Interface – a term that references a machine-

to-machine interface.
ASBIE Association Business Information Entity – a term from CCTS that

defines a directed relationship from source ABIE to target ABIE – e.g.
“consignee” as a relationship between “consignment” and “party”

B2A Business-to-Administration
B2B Business to Business
BBIE Basic Business Information Entity – a term from CCTS that describes

a property of a class such as party.name
BIE Business Information Entity
CCL Core Component Library
CCT Core Component Type
CCTS Core Component Technical Specification – a UN/CEFACT

specification document that described the information management
metamodel.

CDT Core Data Type. A value domain for a BBIE that is a simple type such
as “text” or “code”

DEN Dictionary Entry Name
EN16931 Semantic data model of the core elements of an electronic invoice (the

European Norm).
IETF Internet Engineering Task Force
JSON JavaScript Object Notation – an IETF document syntax standard in

common use by web developers for APIs.
JSON-LD JSON-Linked Data – a JSON standard for linked data graphs /

semantic vocabularies.
NDR Naming & Design Rules – a set of rules for mapping one

representation (e.g. RDM) to another (e.g. JSON-LD)
OpenAPI An open source standard, language-agnostic interface to RESTful

APIs.
OWL Web Ontology Language
PDT Primitive data types
PHP Hypertext Pre-processor
QDT Qualified Data Type. A value domain for a BBIE that is a constrained

version of a CDT. Most often used with the “code” type – for example
“country code”

RDF Resource Description Framework – a W3C semantic web standard
RDM Reference Data Model- a UN/CEFACT semantic output.
RESTful API See REST API
REST API Representation State Transfer Application Programming Interface,

a.k.a. RESTful API
RFC Request for Comments
SDO Standards Development Organisation
UDT Unqualified data type

JSON Schema Naming and Design Rules V1.0 2022-09-13

 Page 57 of 57

Term Definition
UN/CEFACT United Nations Centre for Trade Facilitation and Electronic Business
UNECE United Nations Economic Commission for Europe
URI Uniform Resource Identifier – a namespace qualified string of

characters that unambiguously identify a resource. AURL is one type
of URI.

URL Uniform Resource Locator – the web address of a resource.
UNTDID United Nations Trade Data Interchange Directory
XML Extensible Mark-up Language
XMI Xml Metadata Interchange - a well-established OMG standard for

exchange of UML models between different tools.
Table 9 - Glossary

	Abstract
	1.1 Document History
	1.2 Change Log
	1.3 JSON Schema Naming and Design Rules Project Team
	1.4 Acknowledgements
	1.5 Contact information
	1.6 Notation
	1.7 Audience
	2 Introduction
	2.1 Objectives
	2.2 Requirements
	2.3 Dependencies
	2.4 Caveats and Assumptions
	2.5 Guiding Principles
	2.6 Conformance

	3 JSON Schema Architecture
	3.1 Basic architecture
	3.1.1 JSON serialization in a RESTful context
	3.1.2 Overall JSON Schema Structure

	3.2 Versioning and "$id"
	3.3 General naming rules moving from CCTS to JSON
	3.4 JSON schema landscape
	3.5 Data types
	3.5.1 Primitive Data Types
	3.5.2 Approved Core Component Types
	3.5.3 Unqualified Data Types
	3.5.4 Qualified Data Types for Date and Time
	3.5.5 Other Qualified Data Types

	3.6 Restriction and Extension
	3.6.1 Restriction
	3.6.2 Extension
	3.6.3 Publication and reusing contextualization

	3.7 ABIE and BBIE representation in JSON Schema
	3.7.1 General handling of ABIEs and BBIEs
	3.7.2 ASBIE representation in JSON Schema supporting document based and resource-based information

	3.8 Fostering implementation
	3.8.1 Compatibility with JSON schema draft before version 2020-12
	3.8.2 Hints for tool developers and designers when specifying real-life guidelines
	3.8.3 Referencing the Github Repository in an OpenAPI specification

	4 Appendix A: Examples
	5 Appendix B: Naming and Design Rules List
	6 Appendix C: Glossary

