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* Assessment of air pollution in 2021, source receptor
matrixes, country reports done with emissions ‘including
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* Overview of assessment, research & technical activities
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Additional products from reporting 2023

* EMEP MSC-W model runs for — :
1990-2022 available (33 years!) with . e

updated emissions (by CEIP) and a

consistent model version. Available from

https.://emep.int/mscw/mscw _moddata.html

NB: ‘Condensables’ consistent from 2005 o

* Online model evaluation (and observatlon sl A/\"\ﬁ
assessment) on AeroVal:

https://aeroval. met.no/evaluation.php?proj . oo oo o o e ¢ 53
ect=emep&exp name=2023-reporting&sta
tion=ALL
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Ozone - Importance of European, non-European and CH, mitigation

e  What is it possible to achieve for ozone by 2030/2050 by
o reducing CH, emissions

o reducing European emissions

o reducing emissions outside of Europe (ROW)

e  What can be achieved compared to ‘no further policy’ (CLE)?

e  What is new compared to TFHTAP/TFMM work:
o Gothenburg Protocol Review emission scenarios (CLE, LOW)
o Including new indicators for ozone such as Peak Season MDAS

How?

*  Global EMEP MSC-W model runs for 2015, 2050 (CLE, LOW) and in addition with CH,
concentrations changed -> Boundary and initial conditions
*  European EMEP MSC-W model runs for 2015, 2050 (CLE, LOW) and CH, concentrations

—

2050 LOW
scenario -
Ambitious global
action on air
pollution and
methane,
including
non-technical

measures

Simulated ozone concentrations in the future and the impact of European
NOx/VOC, Rest of World (ROW) NOx/VOC and CH4 emission mitigation
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UNECE (excl. NA) O3 mean (ug/m?3)

Substantial reductions can be achieved, but WHO AQG levels not attained even in LOW

CH, becomes more important because of its projected increase in CLE.

Action on methane would only be part of the solution; (UNECE) NOx/VOC emission reductions would still be very
important to reduce surface O,

e  Model data can be delivered to WGE/ICP Vegetation (POD)
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Ozone source receptor calculations
using the Local Fraction Methodology

Why use/develop the Local Fraction (LF) method?

Originally developed for uEMEP downscaling
Much less CPU demanding
Offers additional information

LF gives you the effect of very small emission changes (BF often
give you changes due to 15%)
For linear species Brute Force (BF) and LF are in principle identical
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Comparison of LF and BF

e Source receptor calculations for 2021 with EMEP MSC-W model and LF method was
set up identically to the Brute Force (BF) calculations done this year

(a) B (b)

55°N 55°N

50°N 50°N

45°N 45°N

BF DE A peak season MDA8 (ug/m3)

o
LF DE A peak season MDA8 (ug/m3)

5°E 10°E 15°E 5°E 10°E 15°E

Figure 5.1: Comparison of the impact of a 15% NOx emission reduction from Germany (DE) on peak
season MDARS calculated using the BF (a) and LF (b) methods.
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Country-to-itself contributions to Peak season
MDAS in 2021 (with 15% NOx emis reductions)
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Local Fractions: results (derivatives) calculated at 100% emissions
Local Fractions P15: results (derivatives) calculated at 85% emissions
BF and LF gives similar results (difference usually smaller than non-linearity yorwegian Meteorological institute



Blame matrix for peak season MDAS
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DE-to-country peak season MDAS8 (ng/m3)
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Very small absolute differences that can be explained
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Peak season MDAS8 due to NOx reductions, DE
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Could potentially be parametrized and
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O, concentrations, July, due to NOx/VOC reductions,
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Summary

Local Fractions allow to compute the concentration/emissions relationship over a

large emission range very efficiently

Differences to BF are small, in general within 10%

Work now and further:
o Include more indicators (e.g. POD)
o Investigate non-linearities, e.g. vary levels of emissions
o Discuss & work with CIAM above inclusion in GAINS
o Compare methodologies, e.g. TFHTAP

Working on how to use and present all this information
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VOC model measurement comparisons & EMEP IMP

Speciation: explicit emission splits are created for individual VOCs, based on UK NAEI and several other studies

VOC Tracers: take pure emissions and follow species-specific chemistry to yield pure concentrations

Large emitting sector: Fugitive, Solvents, Road transport

Large emitting VOCs: ethane, propane, benzene, toluene

Groups Species

Alkane C2H6 C3H8_T NC4H10 IC4H10_T
Alkene C2H4 C3H6 C4H8_T

Alkyne C2H2_ T

Aromatics C6H6 C6HS5CH3 C6H4(CH3)2

Alcohol CH30H C2H50H N-PrOH_T [-PrOH_T
Aldehyde HCHO CH3CHO C2H5CHO_T

Dialdehyde OCHCHO CH3COCHO

Ketone CH3COCH3_T MEK

Carboxylic acid HCOOH_T CH3COOH_T

Biogenic VOC C5HS8 «-Pinene (3-Pinene_T

Rest! Oth_alkane_T

Notes {: Rest includes alkane and some other species.

Emission profile (%)
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VOC model measurement comparisons
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This tracer method has been used for comparisons in 2018 and during the 2022 campaign
Mixed results: e.g., aromatics show good agreements, while model underestimates isoprene at urban sites

Further investigations into the emissions and boundary conditions for some VOCs are in progress.

2018 annual averages comparison 2022 campaign time series comparison
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WP elements for MSC-W 2024/2025

* The role of VOC in high ozone episodes. Evaluation EMEP/MSC-W model against in-situ VOC measurements
from IMP 2022 and EMEP network (and HCHO from satellites) 1.1.1.1

* Condensable organics/OC (make better use of the EMEP/ACTRIS/COLOSSAL campaign and other data to
understand sources), (MSC-W, CCC, TFMM) 1.1.1.4

* Review of methodologies for source receptor calculations: brute force & local fractions and their applicability,
1.1.1.5

* Inclusion of 0zone response to precursor emission reductions in GAINS, 1.1.1.6
* Ozone mitigation options and the role of methane, 1.1.1.7

* Scenario assessment relevant for a potential GP revision using multiscale GAINS and EMEP/uEMEP
1.1.3.1/1.1.3.2/1.1.3.4

* Contribute to TFHTAP multi-model exercises, especially related to scenarios for Gothenburg Protocol 1.1.4.2

* Focus on EECCA and West Balkan countries (trends, spatial distribution, projections, assessments including use
of satellite data). Stimulate national integrated application of assessment capacity. 1.2.2

* In addition: Contribution to 1.1.1.3, 1.1.2.3, 1.1.2.6, 1.3.8
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Evaluation EMEP/MSC-W model against in-situ VOC measurements
including 2022 summer Campaign

e Observations of VOC are difficult to use:
o Varying quality
o Varying sampling times and duration
o Not many stations, and many mountain sites

e Detailed data on VOC split from UK

e Implemented an additional chemical scheme in the EMEP model
(CRIV2RY5) 1n order to have more detailed VOCs

e Included more VOCs in the EMEP chemical scheme

.

> The first intensive comparisons of VOCs between EMEP model and measurements

ical
for many years




