

Co-operative programme for monitoring and evaluation of the long-range transmissions of air pollutants in Europe

MSC-W: Activities in 2022/2023

Hilde Fagerli, Willem van Caspel, Peter Wind, David Simpson, Yao Ge & rest of the EMEP/MSC-W team

EMEP & WGE Steering Body 11-15th September 2023

Content

- 1. EMEP status report & products 2023
- 2. Ozone impact of future emission policies
- **3.** Country-to-country blame matrixes for ozone with the Local Fraction Methodology
- 4. EMEP MSC-W model & EMEP campaign summer 2022
- 5. Workplan

Convention on Long-range Transboundary Air Pollution

Co-operative programme for monitoring and evaluation of the long-range transmission of air pollutants in Europe STATUS REPORT 1/2023

Transboundary particulate matter, photo-oxidants, acidifying and eutrophying components

Status Report 1/2023

msc-w & ccc & ceip & ciam

- Assessment of air pollution in 2021, source receptor matrixes, country reports done with emissions 'including condensables'
- Overview of assessment, research & technical activities

Norwegian Meteorological Institute

https://emep.int/publ/reports/2023/EMEP_Status_Report_1_2023.pdf

Additional products from reporting 2023

- EMEP MSC-W model runs for 1990-2022 available (33 years!) with updated emissions (by CEIP) and a consistent model version. Available from https://emep.int/mscw/mscw_moddata.html
 NB: 'Condensables' consistent from 2005
- Online model evaluation (and observation assessment) on AeroVal:

https://aeroval.met.no/evaluation.php?proj ect=emep&exp_name=2023-reporting&sta tion=ALL

Ozone - Importance of European, non-European and CH₄ mitigation

- What is it possible to achieve for ozone by 2030/2050 by
 - \circ reducing CH₄ emissions
 - reducing European emissions
 - reducing emissions outside of Europe (ROW)
- What can be achieved compared to 'no further policy' (CLE)?
- What is new compared to TFHTAP/TFMM work:
 - Gothenburg Protocol Review emission scenarios (CLE, LOW)
 - Including new indicators for ozone such as Peak Season MDA8

2050 LOW scenario -Ambitious global action on air pollution and methane, including non-technical measures

How?

- Global EMEP MSC-W model runs for 2015, 2050 (CLE, LOW) and in addition with CH₄ concentrations changed -> Boundary and initial conditions
- European EMEP MSC-W model runs for 2015, 2050 (CLE, LOW) and CH_4 concentrations

Simulated ozone concentrations in the future and the impact of European NOx/VOC, Rest of World (ROW) NOx/VOC and CH4 emission mitigation

Norwegian Meteorological Institute

Potential ozone changes in UNECE (excluding North America) of ozone policies

Ozone mean, population weighted

Peak season MDA8, population weighted

Potential ozone changes in UNECE (excluding North America) of ozone policies

Ozone mean, population weighted

Peak season MDA8, population weighted

- Substantial reductions can be achieved, but WHO AQG levels not attained even in LOW
- CH_4 becomes more important because of its projected increase in CLE.
- Action on methane would only be part of the solution; (UNECE) NOx/VOC emission reductions would still be very important to reduce surface O₃
- Model data can be delivered to WGE/ICP Vegetation (POD)

Peak season MDA8, population weighted

Ozone mean, population weighted

Ozone source receptor calculations using the Local Fraction Methodology

Why use/develop the Local Fraction (LF) method?

- Originally developed for uEMEP downscaling
- Much less CPU demanding
- Offers additional information
- LF gives you the effect of very small emission changes (BF often give you changes due to 15%)
- For linear species Brute Force (BF) and LF are in principle identical

Comparison of LF and BF

• Source receptor calculations for 2021 with EMEP MSC-W model and LF method was set up identically to the Brute Force (BF) calculations done this year

Figure 5.1: Comparison of the impact of a 15% NOx emission reduction from Germany (DE) on peak season MDA8 calculated using the BF (**a**) and LF (**b**) methods.

Country-to-itself contributions to Peak season MDA8 in 2021 (with 15% NOx emis reductions)

• Local Fractions: results (derivatives) calculated at 100% emissions

11

- Local Fractions P15: results (derivatives) calculated at 85% emissions
- BF and LF gives similar results (difference usually smaller than non-linearity Norwegian Meteorological Institute

Blame matrix for peak season MDA8

Numbers: Contributions for a 15% NOx reduction (BF) Colours: Percentage difference

Receptor —

DE to countries 15% NOx reductions (BF15, LF)

Very small absolute differences that can be explained

Peak season MDA8 due to NOx reductions, DE

O₃ concentrations, July, due to NOx/VOC reductions, NL

- Local Fractions allow to compute the concentration/emissions relationship over a large emission range **very efficiently**
- Differences to BF are small, in general within 10%
- Work now and further:
 - Include more indicators (e.g. POD)
 - Investigate non-linearities, e.g. vary levels of emissions
 - Discuss & work with CIAM above inclusion in GAINS
 - Compare methodologies, e.g. TFHTAP
- Working on how to use and present all this information

VOC model measurement comparisons & EMEP IMP

- **Speciation**: explicit emission splits are created for individual VOCs, based on UK NAEI and several other studies
- VOC Tracers: take pure emissions and follow species-specific chemistry to yield pure concentrations
- Large emitting sector: Fugitive, Solvents, Road transport
- Large emitting VOCs: ethane, propane, benzene, toluene

VOC model measurement comparisons

- This tracer method has been used for comparisons in 2018 and during the 2022 campaign
- Mixed results: e.g., aromatics show good agreements, while model underestimates isoprene at urban sites
- Further investigations into the emissions and boundary conditions for some VOCs are in progress.

2018 annual averages comparison

2022 campaign time series comparison

WP elements for MSC-W 2024/2025

- The role of VOC in high ozone episodes. Evaluation EMEP/MSC-W model against in-situ VOC measurements from IMP 2022 and EMEP network (and HCHO from satellites) 1.1.1.1
- **Condensable organics/OC** (make better use of the EMEP/ACTRIS/COLOSSAL campaign and other data to understand sources), (MSC-W, CCC, TFMM) 1.1.1.4
- Review of **methodologies for source receptor calculations**: brute force & local fractions and their applicability, 1.1.1.5
- Inclusion of ozone response to precursor emission reductions in GAINS, 1.1.1.6
- Ozone mitigation options and the role of methane, 1.1.1.7
- Scenario assessment relevant for a potential GP revision using multiscale GAINS and EMEP/uEMEP 1.1.3.1/1.1.3.2/1.1.3.4
- Contribute to TFHTAP multi-model exercises, especially related to scenarios for Gothenburg Protocol 1.1.4.2
- Focus on EECCA and West Balkan countries (trends, spatial distribution, projections, assessments including use of satellite data). Stimulate national integrated application of assessment capacity. 1.2.2
- In addition: Contribution to 1.1.1.3, 1.1.2.3, 1.1.2.6, 1.3.8

Thank you for the attention

Classification: Open, Internal, Confidential, Classified

Evaluation EMEP/MSC-W model against in-situ VOC measurements including 2022 summer Campaign

- Observations of VOC are difficult to use:
 - Varying quality
 - Varying sampling times and duration
 - Not many stations, and many mountain sites
- Detailed data on VOC split from UK
- Implemented an additional chemical scheme in the EMEP model (CRIv2R5) in order to have more detailed VOCs
- Included more VOCs in the EMEP chemical scheme

The first intensive comparisons of VOCs between EMEP model and measurements for many years