

Proposal from JSI for relocation of the MSC-E activities

Agenda item #3. Geneva, 11.09.2023

Prof. Milena Horvat
Head, Department of Environmental Sciences
Dean, Jožef Stefan international Postgraduate School

www.environment.si, www.mps.si milena.horvat@ijs.si

Jožef Stefan Institute - JSI

, vozer oteran montute, Ejubijana, otoverna

1949 – Institute of Physics

1959 – Jožef Stefan Nuclear Institute

1969 – Jožef Stefan Institute

Jožef Stefan 1835 – 1893

The Jožef Stefan Institute is named after the distinguished 19th century physicist Jožef Stefan, most famous for his work on the Stefan-Boltzmann law of black-body radiation

The Mission of the Jožef Stefan Institute:

Creation, spread and transfer of knowledge in the fields of natural, life and engineering sciences to the benefit of the society

Research departments of the Jožef Stefan Institute

Human resources:

- 600 researchers
- 250 support staff and administration
- 200 PhD students

PHYSICS AND NUCLEAR TECHNOLOGY

F1 Theoretical Physics

F2 Low and Medium Energy

Physics

F3 Thin Films and Surfaces

F4 Surface Engineering and

Optoelectronics

F5 Solid State Physics

F7 Complex Matter

F8 Reactor Physics

F9 Experimental Particle Physics

R4 Nuclear Engineering

CHEMISTRY, BIOCHEMISTRY, NEW MATERIALS

K1 Inorganic Chemistry and Technology

K3 Physical and Organic Chemistry

K5 Electronic Ceramics

K6 Engineering Ceramics

K7 Nanostructured Materials

K8 Synthesis of Materials

K9 Advanced Materials

B1 –B3 Biochemistry

O2 Environmental Sciences

ELECTRONICS AND INFORMATION TECHNOLOGIES

E1 Automation,

Biocybernetics and Robotics

E2 Systems and Control

E3 Artificial Intelligence

E5 Open Computer Systems and Networks

E6 Communication Systems

E7 Computer Systems

E8 Knowledge Technologies

E9 Intelligent Systems

Jožef Stefan International Postgraduate School

Study programmes:

- Nanotechnologies
- Ecotechnologies
- Information and communication technologies
- Sensor technologies

www.environment.si

DEPARTMENT OF ENVIRONMENTAL SCIENCES

@ JOŽEF STEFAN INSTITUTE

Contacts

Events

ews Accreditations

Intranet

ACTIVITIES

PROJECTS

SERVICES

ORGANISATION AND PEOPLE

INFRASTRUCTURE

PUBLICATIONS

Department of Environmental Sciences

The Department of Environmental Sciences encompasses a broad range of research activities, diverse and varied as the environment itself.

Department of Environmental Sciences

Pillar 1

Cycling of substances under multiple stress conditions

Global C cycle
Water cycle
Earth observation
Biogeochemical
cycling
Pollutant cycles
Nanoparticles

Pillar 2

Food, health and environment

Human exposure and effects Microbiom Nanoparticles Bioimaging Food authenticity and traceability Risk assessement

Pillar 3

Environmental technologies

Waste water treatment Bioremediation Remediation of contaminated soils Reduction of emissions

H1: Analytical methods

Speciation of elements
Visulaization of metals by LA-ICP-MS;
NPs analysis by spICP-MS
Stable isotopes techniques
Target, screening, and non-target analysis

H2: Metrology

H3: Sensor technologies

Low-cost sensors for air and water quality
Biosensors and passive dosimeters
Radon sensors
Food sensors

H4: Modelling, data basis and data management plan

Exploitation, national and international stakehoder engagment (industry

sectors), participatory approach

policy :

Relevant expertise

- Environmental pollution research: toxic substances (metals, POPs, contaminants of emerging concern, etc.)
- Cooperation with international bodies and programmes (e.g. UN Environment, Minamata Convention, GEO, EU projects)
- Reinforced modelling activities for toxic metals and POPs
- Close co-operation with other modelling groups dealing with toxic metals and POPs – MIT (USA), Harvard Univ. (USA), ECCC (Canada), Hereon (Germany), CNR-IIA (Italy), OGS (Italy), IQF-CSIC (Spain)

Substances

Chemical elements and their species:

Speciation: As, Se, Hg, Cr, Sn, Sb, Pb, Cd, Al, Zn, Fe, Pt,

Organic substances:, POPs (PCB-ji, PAH, etc..) CECs (pharmaceuticals, pesticides, Phtalates, PFAS, bisphenols, flame retardants), chemical mixtures (sreeening, non-target)

Nutrients: nitrogen, sulphur, carbon, water cycles

Stable isotopes: δ 2H, δ 13C, δ 15N, δ 18O, δ 34S, and heavy elements (Hg, Sr, Pb, U, etc...)

Nanoparticles: inorganics(metal particles), plastics, etc..

Radionuclides:

Natural: ²³⁵U, ²³⁴U, ²³⁸U, ²²⁸Th, ²³⁰Th, ²³²Th, ²²⁶Ra, ²²⁶Rn, ²¹⁰Po, ²¹⁰Pb, ⁴⁰K

Manmade: ²⁴¹Am, ²³⁸Pu, ²³⁹⁺²⁴⁰Pu, ¹³⁷Cs, ¹³⁴Cs, ^{89/90}Sr

Infrastructure and equipment

- Clean laboratories and laboratories for radiochemistry (3000m² laboratory space, 800 m² office space)
- Isotope ratio mass spectrometry

EA-IRMS, GC-C-IRMS, DI-IRMS, Py-IRMS, MC-ICP-MS

Mass spectrometry

UPLC-qTOF-MS/MS, ICP-MS, ICP-MS QQQ, LA-ICP-MS, LC-ICP-MS, GC-ICP-MS, SP-ICP-MS, GC(IT)MS, GC-MSD, LC-MS/MS, GC-MS/MS, Orbitrap

- Spectrophotometry HG-AFS, CV-AFS
- Nuclear methods

TRIGA MARK II nuclear reactor, alpha, beta and gama counting, NAA

• Access to equipment: JSI departments & infrastructure (microscopy, NMR center, etc..)

Computer resources of Jožef Stefan Institute

- JSI is a member of **SLING** (National Supercomputing Consortium):
 - Over 10 supercomputing/HPC systems
 - o EuroHPC membership and competence centre
- NSC Supercomputer Cluster (JSI, Ljubljana)
 2880 cores, 0.2 PFLOPS
- ARNES National Cluster (Ljubljana)
 4500 cores, 0.5 PFLOPS
- EuroHPC VEGA (IZUM, Maribor)
 122000 cores, 6.9 PFLOPS

International cooperation - current

* The European Institute of Innovation & Technology (EIT) is not part of the Specific Programme

MSCA:

DN GMOS-Train and FoodTranet

IF: STROMASS

RI:

EIRENE and MetroFood

URBANOME, GREENER, THEROS, PARC, Danube Hazard, Agro Serv, Bios ys mo SECURE, INQUIRE, EARLY WARNING... PianoForte, C-CINCH, EURAD

Widening: SurfBio, MERFish, TunTwin, Masstwin, ERAChair Isofood, etc...

Policy relevant activities

2001

Ambio 🐃

UNEP Mercury expert group, **UNEP Mercury Assessment** Report, 2002, 2013, 2018

- WHO; Stocholm Convention
- WGE ICP-Vegetation (lichens/mosses)

Runkel et al., 2022

JSI – Current mercury related international cooperation

- Health related studies
- Mercury remediation and removal from coaluse and waste
- Hg in contaminated sites
- GMOS Global Mercury Observing System (atmosphere, water, soil, biota)

MSC-E activities Main tasks according to the mandate

- Development and updates of the chemical transport model for HMs and POPs
- Research activities aimed at improvement of the modelling tools
- Operational model assessment of HM and POP pollution levels and transboundary transport
 - Preparation of input data for modelling (emissions, wind resuspension, meteorological fields, chemical reactants, etc.)
 - Conducting model simulations (global and regional)
 - Quality assurance and quality control of modelling results
- Annual reporting (status report, country reports, website)
- Outreach activities, cooperation with international bodies and experts

Available resources

- JSI computer resources:
- JSI data storage and network infrastructure
- Chemical transport models:
 - GLEMOS open source v2.2.2 (https://github.com/glemos-model)
 - o GEOS-Chem v14.1.1 (https://geoschem.github.io/)
 - WRF Weather Research & Forecasting Model (v4.5)
 (https://www.mmm.ucar.edu/models/wrf)

Pilot simulations

- Simulated pollutants: Hg and B(a)P •
- HPC cluster: ARNES (Ljubljana)
- Model: GLEMOS open source (v2.2.2)
- Emissions: 2021 (EMEP submission 2023)

Hg⁰ air concentration (June 2021)

B(a)P air concentration (June 2021)

Contribution to EMEP workplan 2024

- Operational modelling of heavy metals (Cd, Pb, Hg) and POP (PAHs)
- Contribution to TFMM activities:
 - Investigate monitoring of chemicals of emerging concern (CEC)
 (1.1.1.2)
- Contribution to TF HTAP activities:
 - Multi-model evaluation and attribution of Hg pollution trends (1.1.4.3)
 - Model intercomparison of multi-pollutant impacts of fires (1.1.4.4)
- Contribution to Minamata Convention's effectiveness evaluation (1.3.4)

Thank you for your attention

Prof. Milena Horvat
Head, Department of Environmental Sciences
Dean, Jožef Stefan international Postgraduate School

www.environment.si, www.mps.si milena.horvat@ijs.si

