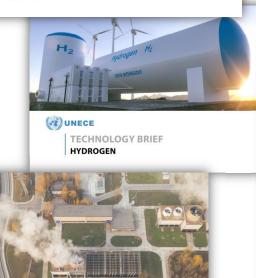


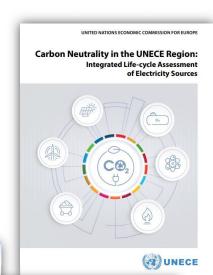
WORLD NUCLEAR ASSOCIATION

Nuclear and Renewables: Integrated Energy Systems

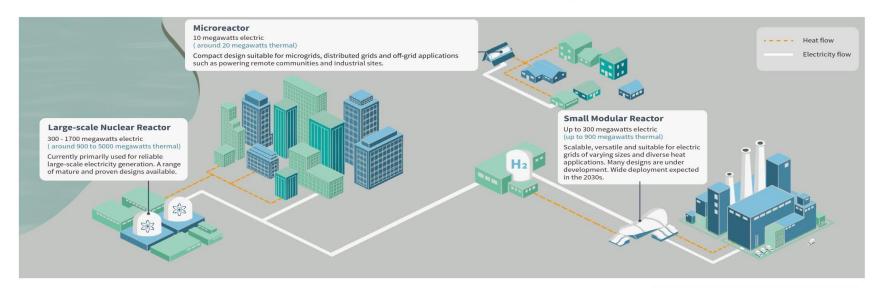
King Lee
Head of Policy and Industry Engagement,
World Nuclear Association


UNECE Group of Experts on Renewable Energy 11-12 September 2023

UNECE Carbon Neutrality Project


Carbon Neutral Energy System of the Future integrated interplay of all low- and zero-carbon technologies.

WORLD NUCLEAR ASSOCIATION



UNECE Nuclear Power Brief

NUCLEAR POWER

ELECTRICITY GENERATION

Nuclear power plants can produce reliable 24/7 electricity or operate flexibly as required. Dispatchable electricity sources are essential for keeping the costs of the overall system low.

PROCESS HEAT FOR INDUSTRY

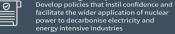
High-temperature heat from nuclear plants can be transformative in decarbonising hard-to-abate sectors.

HYDROGEN

Nuclear power can be used to produce low-carbon hydrogen via several process:

- · Low-temperature electrolysis using nuclear electricity
- Steam electrolysis using nuclear heat and electricity
- · Thermochemical process using nuclear heat at above 600 °C

DISTRIC HEATING


Nuclear plants are a proven source of heat for urban district heating that have operated successfully in a number of countries.

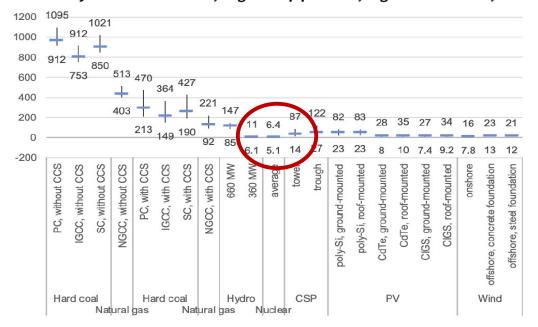
(j)

Raising Awareness

Recognise that nuclear power is a source of low-carbon energy and heat that can help decarbonise energy systems

Promoting Acceptance Develop policies that instil confi

Incentivising Finance


Develop financing frameworks that instil confidence and incentivise affordable public and private investment in support of new nuclear power projects

/ WORLD NUCLEAR ASSOCIATION

■ Life Cycle Assessment – Energy Sources Sustainability

Lifecycle greenhouse gas emission ranges for the assessed technologies

Lifecycle GHG emissions, in g CO₂ eq. per kWh, regional variation, 2020

Life cycle impacts on human health, in points, including climate change. Note on unit: 1 point is equivalent to the impacts (in disability-adjusted life years, DALY) of 1 person (globally) over one year.

Life cycle impacts on human health, per MWh, in pointes

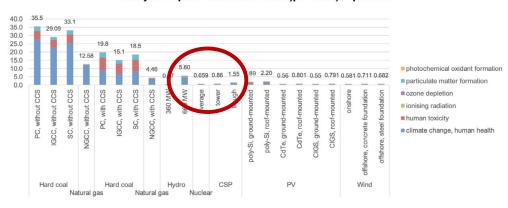
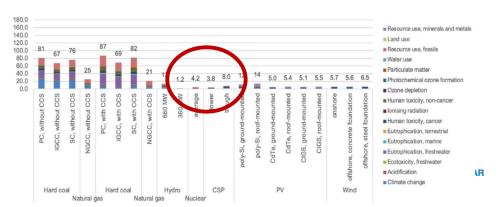



Figure 53 Normalised, weighted, environmental impacts of the generation of 1 TWh of electricity

Normalised lifecycle impacts, weighted, of the production of 1 TWh, per technology, Europe, 2020

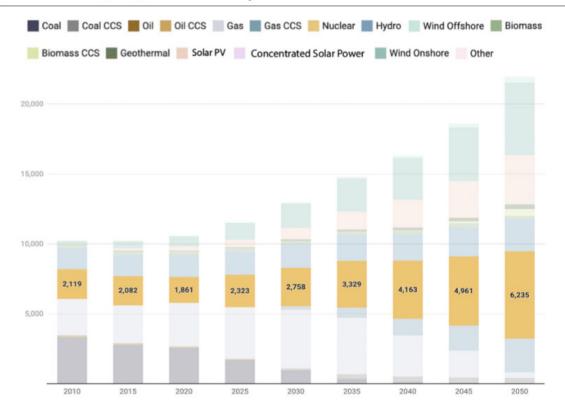

Carbon Neutrality - Electricity Generation Mix

FIGURE 26

Electricity Generation Mix [TWh] Carbon Neutrality Innovation Scenario

Carbon Neutrality Innovation Scenario

For the UNECE region by 2050, the amount of generation from renewables increases by 6 folds (60% supply), and nuclear energy triples (~28% supply)

Source: Carbon Neutrality in the UNECE Region: Technology Interplay under the Carbon Neutrality Concept

UNECE Carbon Neutrality Toolkit Key Takeaways

Diversify Energy

Diversify primary and final energy supply

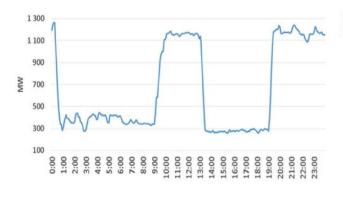
Phase-Out Fossil Fuels

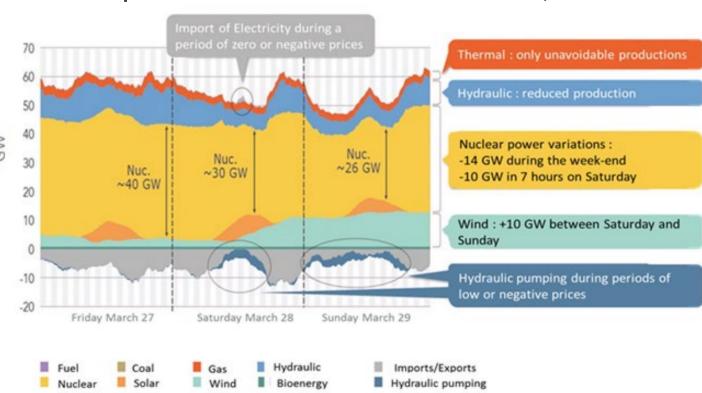
Accelerate phaseout of unabated fossil fuels

Electrification

Electrify all sectors through renewable energy and nuclear power

Innovate

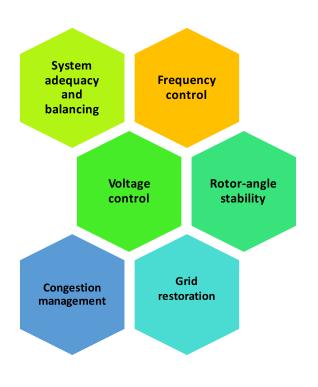

Scale up innovative low- and zero-carbon technologies such as carbon capture, use and storage (CCUS), hydrogen and advanced nuclear power


/ WORLD NUCLEAR ASSOCIATION

Complementarity of Flexible Nuclear and Variable Renewables

France power mix between March 27 and March 29, 2020

Nuclear Flexibility - Example of power variations over 1 day, Golfech 2 nuclear power plant, 1,300 MW


Source: National Renewable Energy Laboratory 2020 Flexible Nuclear Energy for Clean Energy Systems

Low-Carbon Resilient Power System

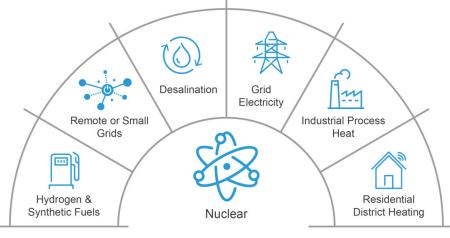
Grid scarcities

Findings:

As we transition to a European power system with a high share of variable renewables significant technical scarcities in flexibility appear.

Enhanced services will be required from a wide range of technologies in order to mitigate the identified technical scarcities and ensure the required system flexibility.

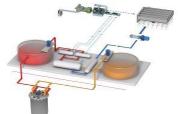
Small Modular Reactors and Advanced Reactors – contributing to decarbonization of the entire economy



Akademik Lomonosov KLT-40S

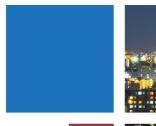
Russia In operation (Co- Generation)

Haiyang- China AP1000 In Operation (District Heating)


Aurora/Oklo, US
1.5 MWe Heatpipe FNR
Under Review

HTR-PM, China, High Temperature Reactor in operation

Nine Mile Point, US, In Operation hydrogen generation


Natrium, US Molten Salt storage, Under Development

GEH BWRX300, US, 300 MWe BWR, Under Review

/ WORLD NUCLEAR ASSOCIATION

deliver 24/7 clean energy for all

Helping the global nuclear industry

king.lee@world-nuclear.org

www.world-nuclear.org info@world-nuclear.org