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Summary 

The energy sector has experienced a shift towards disruptive trends such as 
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creates a major impact on the utility industry worldwide. These ambitions drive the 

imperative for Artificial Intelligence in general and more specifically, Data Analytics. 

Deployment of Big Data analytics, machine learning, and Artificial Intelligence in 

utilities and energy providers is growing at a rate that may outpace the maturity of the 

organizations. In fact, organizations may have already engaged in advanced algorithmic 

deployment. Yet, without a strategy, organizations may not have developed workable plans 

for the curation of data, training datasets, or analytics results. 
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 I. Introduction 

1. Technologies that are driving digitalization of the utility sector include integrated 

energy systems via distributed energy generation and consumption in the form of distributed 

solar photovoltaics (PV) and wind, utility-scale energy generation and storage, electric 

vehicles (EVs) and EV charging infrastructure, and the proliferation of smart grid with 

integrated advanced smart metering and other digitally controlled infrastructure and 

equipment. 

2. All these new technologies generate data. The proliferation of these digital 

technologies indicates there will be an increase in the amount of data to be collected, managed 

and analysed. This trend towards Big Data creates new opportunities for expansive and robust 

decision support systems. Big Data and Artificial Intelligence (AI), however, are still nascent 

research areas in the energy utility industry due to a lack of resources and expertise, whilst 

in other industries, such as online commerce and telecommunications, Big Data and AI 

research are developing as fast as the technology that supports them. To start the integration 

of AI in the energy sector, the algorithms need historic datasets, at least of a couple of years’ 

worth. Hence to make use of AI in the main, utilities need to start collecting data very early 

in the analysis process. 

3. As a result, new business models, new smart integrated energy systems, utility 

capabilities and consumer commitments and behaviour, especially on the demand side, will 

be enabled by these emerging technologies. The upcoming new integrated energy systems 

with abundance of renewable energy sources (RES) and variable generation will meet the 

supply-demand balance only by the help of Big Data and AI. With proper research, funding, 

and policy support, the utility industry can realize international collaboration and fair 

competition in this technology space. 

 II. Context 

4. Beginning when the term, ‘Business Intelligence’ was coined, the term Data Analytics 

grew out of that work and has been a core part of the last century of evolution in the 

computing field (see Annex). Today, the term Data Analytics is used in nearly every 

industrial and commercial sector. Several factors have led to the current focus on Data 

Analytics in the energy sector. The declining costs of information and communications 

technologies as well as advances in computing power all lead to an increasing availability of 

data and new opportunities for analysis (push factors). Additionally, the increasing transitory 

nature of renewable energy sources, and the dynamic nature of the offerings due to new actors 

constantly entering the market, increase the complexity and create new needs for Data 

Analytics (pull factors).1  

5. Since 2005, AI is a topic that has seen a significant publication growth across all topics 

including Energy and Computer Science, until 2010 when Data Analytics in the electricity 

sector as a field of research surpassed even the AI-related literature. 

6. AI has as many definitions as applications for its use. In this context, it is the leading 

technology that uses data analytics to automate the decision-making process around customer 

engagement strategies, optimize forecasts on energy use and energy flows for local 

generation and storage, enhance theft detection and fraud, trade commodities with higher 

prediction accuracy, and efficiently manage and secure the energy grid against cyberattacks 

before they happen. 

7. An implementation of AI is Big Data analytics. This requires skills to curate, manage, 

and analyze the data. The role of a Big Data analyst typically goes further than those of 

traditional business intelligence analysts. In this context, Big Data Analytics is the 

examination of a set of data using algorithms and other sophisticated modelling and statical 

analysis techniques to produce actionable insights from this data. A related term ‘advanced 

  

 1 Frederik vom Scheidt and others, “Data analytics in the electricity sector – A quantitative and qualitative literature review”, Energy 

and AI, Vol. 1 (2020).  
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analytics’ is often described as the use of predictive and prescriptive approaches (sometimes 

also referred to as AI) to advance those insights into action. The use of advanced analytics in 

the context of this document is around the measurement and management of grid events and 

customer demand. However, it is interesting to note that advanced analytics used in corporate 

settings can provide a return between 8 and 9 per cent reduction in operating costs (aspects 

of people analytics such as improvements in work-related accident investigations, 

management and prevention, recruitment, training, performance management, and employee 

retention). 

8. As the capabilities of computers and computing power have grown, the amount of 

data collected, stored, and processed on a daily basis has increased. The growth of data 

centres, advent of the internet (and the world-wide-web) means that 2.5 quintillion bytes (2.5 

trillion gigabytes, GB) of data are created every day. 

9. Although the scientific community has no standard definition for Big Data, indeed, 

there are between 3 and 10 characteristics. The term Big Data is not only about the volume 

of data, but also refers to the high speed of transmission and the wide variety of information 

that is difficult to collect, store and process using the available classical technologies. In this 

context, the term ‘Big Data’ is defined as extremely large, heterogenous data sets from a 

variety of new data sources that traditional data processing software cannot handle on a 

timely (near real-time) basis. 

 III. Identified challenges 

 A. Data sharing and democratization of data 

10. Being connected online is increasingly becoming a daily necessity. Not only for the 

convenience, but also for access to necessary data and information needed to progress 

business ambitions. Connectivity, as a technology, is only the starting point, and in worse-

case situations may exacerbate existing barriers or create new ones. 

11. Data sharing and democratization of data are fundamental to the concept of digital 

inclusion that is defined as “equitable, meaningful, and safe access to use, lead, and design 

of digital technologies, services, and associated opportunities for everyone, everywhere”.2 In 

order for people to embrace new technologies and get the full benefit of them, these 

technologies, and their associated data sets, need to be useful and authentic. 

12. For data to be made widely available it must be shared amongst many stakeholders, 

including those at the margins of an industry or society. Issues of cybersecurity, 

confidentiality, ownership, and privacy concerns need to be resolved for this to be realized. 

Translations between countries and regions are also an issue, namely language relevance. It 

is worth noting that access to training for the necessary digitalization skills is closely related 

to the proliferation of the local language on the world-wide-web. The main benefactor of 

these cross-cutting skills are the utilities and energy providers, whether or not the energy 

provider is the generator or the owner of the grid asset. 

13. Timely and complete access of relevant consumption and customer data is a challenge 

not yet resolved, especially in areas where digitalization is declared as ‘the next engine of 

growth’. The economies of Central and European countries are good examples where 

digitalization (and data sharing) can make global-level impacts, and indeed with the 2016 

actualization of the European General Data Protection Regulation (GDPR) there are specific 

guidelines for how to handle various types of data. Yet, without greater cooperation and 

policy coordination amongst regions, securing and realizing the full benefits of digitalization 

and Big Data is still only an ambition. 

14. Starting with the understanding that ‘Democratization of Data’ is the ongoing process 

of enabling all stakeholders, regardless of their level of technical knowledge, to work with 

  

 2 See: https://www.un.org/techenvoy/sites/www.un.org.techenvoy/files/general/Definition_Digital-Inclusion.pdf (accessed 7 May 

2023).  

https://www.un.org/techenvoy/sites/www.un.org.techenvoy/files/general/Definition_Digital-Inclusion.pdf
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data effectively, and to make informed decisions based on that data, there are still challenges 

that require deliberate consideration. 

Data curation 

15. Data curation is the process of collecting, organizing, characterizing, cleaning, 

enhancing, optimizing, and preserving data. Data that is optimized for analytics use, needs a 

structure which focuses on leveragability of that data and the algorithms.  

16. As one of the most prominent Internet-of-Things (IoT) applications for utilities, 

Advanced Metering Infrastructure (AMI) provide benefits to utilities in both operational- and 

customer-focused areas. Even during the COVID-19 pandemic, global deployment of AMI 

systems and digital meters has continued and even increased. The number of installed meters 

is expected to exceed 227 million units in 2026 in the European Union (from 150 million 

units in 2020) and yearly shipments of smart electricity meters in North America will grow 

from 8.8 million units in 2019 to 19.9 million units in 2024.3 The penetration of smart meters 

in Asia-Pacific stood at 69 per cent in 2019 and is expected to grow to 82 per cent in 2025. 

The 10 fastest growing markets during 2020-2026 will all be in Central, Eastern and South-

Eastern Europe.4 

17. Smart meter deployments are not restricted to electricity, however. For example: 

(a) Regions that experience high water stress need innovative ways to manage and 

control water usage.5 It is argued that 700 million water smart meters connections are 

expected by 2030, up from 196 million as at the end of 2021. Geographies with the largest 

expected deployments by 2030 include China (31 per cent of total share), North America (29 

per cent) and Europe (28 per cent);6 

(b) Smart gas meter deployments are also increasing as connection and 

connectivity technologies improve across commodities, as well as to support governmental 

policies to build infrastructure for the efficient distribution and use of both residential and 

industrial natural gas. Providing different readings than their water and electric counterparts, 

natural gas meters provide pressure, volume, and temperature of gas giving another 

perspective of usage within the connected premise. Common to the other commodities, 

natural gas meters can give readings on unexpected meter events, which can be correlated 

with the other commodity meter readings to give a holistic view of usage and status of the 

premise (and potentially for customer health and safety);7 

(c) Connected technologies of phasor measurement units (PMUs), supervisory 

control and data acquisition (SCADA) systems concurrent with AMI are core enabling 

technologies for the smart grid and provide invaluable meta-data (‘data-about-the-data’). 

New connectivity technologies, including 5G massive Machine-Type Communications 

(mMTC), non-mMTC Low Power Wide Area (LPWA) technologies, and 4G Cellular are 

expected to replace RF mesh networks, the current primary communication technology. 

18. Deployment of these systems means that utilities can harness the power of remote 

metering for connection and disconnection services, outage avoidance, and energy usage 

monitoring with a highly granular view on grid infrastructure and asset status and operations. 

Whilst installation of these systems can have relatively low initial costs, there are high 

maintenance costs; not the least of which are the properly skilled (experience) and trained 

(education) personnel. 

19. The sheer volume of data created by these smart meters (and other IoT devices) creates 

an expanded attack surface that is increasingly challenging to monitor and secure. As an 

example, personally identifiable information (PII) is defined as “Any representation of 

information that permits the identify of an individual to whom the information applies to be 

  

 3 Nicholas Nhede, “Smart meter penetration in North America will reach 81% by 2024”, Smart Energy International, 5 July 2019.  

 4 Berg Insight AB, “Smart Metering in Europe - 17th Edition”, October 2021.  

 5 World Resources Institute, “17 Countries, Home to One-Quarter of The World’s Population, Face Extremely High Water Stress”, 6 

August 2019.  

 6 Transforma Insights, “Water Smart Meters: 700 million connections by 2030 to solve issues related to water scarcity and loss”, 17 

August 2022.  

 7 Reports and Data, “Smart Gas Meter Market […] Forecast to 2028”, July 2023.  
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reasonably inferred by either direct or indirect means.”8 Whilst there is agreement across the 

industry on the general definition of PII, there are a variety of ways to secure, handle and use 

PII. Today’s customers are keenly aware of the importance of data privacy and the need for 

personal protection as they move closer to their role in the transformation of the smart grid. 

Motivated by the need for public protection, multiple privacy regulations have recently been 

enacted, including GDPR and the California Consumer Protection Act (CCPA). These 

actions join longstanding data security provisions from other sectors such as health, finance 

and commerce. 

20. In addition, data that organizations gather, process, and store as part of routine 

business operations but do not use for other purposes, also referred to as ‘dark data’,9 

represents an untapped potential for businesses. By applying the principles of making data 

findable, accessible, interoperable, and reusable (FAIR principles)10 into the data curation 

practice, organizations can turn dark data into valuable assets that could be used to enhance 

grid efficiency and improve forecasting of energy supply and demand. 

21. Within the context of energy customer demand analytics, customer segmentation, 

energy clustering and other demand-profiling efforts, analytics models require as much 

information as possible for discernment within the confusion matrix. The challenge remains 

on how customer analytics can be truly actionable if information is limited due to regulatory 

constraints over potentially sensitive data. As the energy sector moves along its digitalization 

trajectory, a balance needs to be struck between access to the necessary data for identifying 

and discerning energy demand needs across various demographic segments, and the privacy 

of data required to keep sensitive information from going public. 

Data availability 

22. When it comes to the utility sector, data availability refers to the process where utility 

companies (both distribution systems operators and supply companies, in geographies with 

unbundled services) and their users have continuous, secure, and readily usable data, 

associated with their electricity or energy use. Whilst the energy sector has had a high inertia 

in adopting digital technologies, as well as in harvesting and managing the data output, data 

availability is relatively poor. In other words, although new power plants built on the 

principles from digitalization guarantee greater efficiency and higher availability of services, 

and with the rise of digital twins which can help with modelling, forecasting, and testing for 

optimal performance, there is still a significant lack in cross-discipline and cross-sectoral data 

access. 

23. If Big Data is not readily available, and not accompanied by power system data, the 

opportunity for advanced data analytics is dramatically reduced and often made infeasible. A 

variety of meter data management vendors exist as do customer-oriented usage data 

technologies. Often these systems are incompatible due to proprietary software and data 

formats. 

24. The FAIR Guiding principles for scientific data management and stewardship intend 

to provide guidelines to improve the machine-actionability of data for increasing reuse and 

useability of data and to deal with increasing attributes of data volume, velocity, and 

variability. 

Data integration and smart energy management 

25. When data is created, collected, and curated it generates a history or a provenance. 

Data provenance describes its origin, how that dataset came to be, what operations were 

performed on it, who performed them, when they were performed, and why those operations 

were performed.  

  

 8 NIST Special Publication 800-79-2, “Guidelines for the Authorization of Personal Identity Verification Card Issuers (PCI) and 

Derived PIV Credential Issuers (DPCI)”, July 2015.  

 9 Gartner, “Dark Data”, Information Technology Glossary. Available at: https://www.gartner.com/en/information-

technology/glossary/dark-data (accessed on 27 May 2023).  

 10 GO FAIR Initiative. Available at: https://www.go-fair.org/fair-principles/ (accessed 29 May 2023).  

https://www.gartner.com/en/information-technology/glossary/dark-data
https://www.gartner.com/en/information-technology/glossary/dark-data
https://www.go-fair.org/fair-principles/
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26. As data management systems and technologies are deployed heterogeneously, on a 

time-forward schedule and with different software architectures, data integration between 

energy systems is often constrained. Often it is due to problems of provenance. 

27. Additionally, utility companies are still using outdated hardware and software that are 

often functioning on the edge of obsolescence. That leaves older technologies isolated from 

new platforms, as they are unable to interact with new generation of hardware and software. 

The utility sector, in particular, faces these issues, as the investments in digitalization are 

mainly direct toward new grid systems and technologies (e.g., poles, cables, transformers, 

PMUs), rather than upgrading older data management systems. 

28. Looking deeper at the technology, integrated data platforms must support decision-

making in a hybrid environment. This is the one in which there is integration with the 

applications that reside internal to the organization as well as potentially working with public 

cloud environments. The data lifecycle is complex and diverse, starting at the point of 

collection and continuing through to its end-use consumer. These aspects of hybridization 

and governance require a thoughtful, appropriately implemented, and unified data 

management solution. 

29. Smart energy management systems combine end-use devices, distributed energy 

resources and advance control and communication systems with standardized data 

management models. Setting up data architectures to optimize systems integration and 

analysis is an on-going challenge. Innovative approaches towards Big Data analytics and AI 

as an organic process within the smart energy management systems are still needed to ensure 

future proofing of systems and robust data integration. 

30. When considering the potential drivers of data integration, for the utility sector these 

use cases can range from failure probability modelling to enhancing customer experience. 

Whilst the various operational and customer-oriented use cases have their unique challenges, 

having a standardized data architecture and data management processes which are optimized 

for analytics can expedite breakthroughs on cutting-edge solutions.11  

31. Several standardized data models are available as reference: 

(a) In the United States, the Electric Power Research Institute (EPRI) published a 

utility-centric synthesized framework for large organization data management assessment. 

The purpose of this framework is for senior management to holistically evaluate the people, 

processes and technologies in their organizations that support data management and data 

analytics;12 

(b) The Common Information Model (CIM), developed and maintained by DMTF 

(formerly known as the Distributed Management Task Force13), is an international standard 

schema that provides a common way to represent computational and networking elements in 

a system and their relationships to other systems and elements, a large and robust framework 

for data and equipment communications management. The information model, the use of 

which requires a cross-disciplined set of skills and an extensive experience, defines and 

organizes common and consistent semantics for equipment and services. This is done through 

object-oriented class abstractions, inheritance, and connection associations. Management of 

services such as fault diagnostics, system configuration, accountancy, performance, and 

security are provided by the CIM model. Access to the standards documents, binary libraries 

for object class definitions and relationship hierarchies are available through membership. 

 B. Utility analytics sector skills availability 

32. Within the context of a distribution network, the data is generated and collected from 

AMI and smart meters, weather stations, SCADA systems, and transportation (for example, 

  

 11 Brad Gall, Chad Tucker, Beth Massey, “Shared Services Common Data Model to Deliver Advanced Analytics”, Proceedings of 

2022 IEEE International Smart Cities Conference (Pafos, Cyprus), 2022, pp. 1-5. 

 12 Electric Power Research Institute, “Data Governance and Utility Analytics Best Practices”, 30 April 2014. 

 13 DMTF, “Common Information Model”, https://www.dmtf.org/standards/cim (accessed on 23 May 2023).  

https://www.dmtf.org/standards/cim
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EV charging) systems. For each of these types of systems, there are a plethora of vendors to 

choose from, each with their own proprietary method to store and share data.  

33. High resolution data provided by technologies such as AMI meters is determined by 

the ‘flags’ selected within the meter. One might believe it is important to collect as much data 

as possible. However, it is more valuable to collect the interval data with the most built-in 

information. For example, smart meters report voltage readings which can also give 

information about the health and loading of the associated transformer. Vendor depending, 

the number of chosen flags in the meter can increase the amount of data collected and 

subsequent costs to store. The cost-benefit analysis for how much and which data types 

contain the most value, is a worthwhile effort that needs to be developed early in the process. 

Such a cost-benefit analysis should also consider the lack of standardization among vendors, 

the skills needed to navigate the various and heterogenous systems from which the data is 

collected, the environments required to optimally format and manage the data needed for 

analytics, and allow for the additional work required for environmental setup and 

commissioning. 

34. Many utilities do not have their own analytics department, and there is a growing need 

to collaborate among utility departments to determine whether algorithms are reaching the 

right conclusions. There is a gap between utilities operations personnel that know the day-to-

day business and data analysts that know the algorithms. All utility segments would benefit 

from working together so that redundancy in algorithms and datasets is limited. 

35. It is noted that, “Remarkably little is settled around the wise use of technology. For 

example, for products that can be controlled by their manufacturer – like smart home devices 

and new cards – [it is] unclear what the manufacturer’s responsibilities are.”14 Expertise and 

supporting policies around concerns on privacy and responsibility to the consumer for device 

failure whether malicious or not and whether fatal or not are currently lacking in both design 

and implementation.  

36. Challenges around the upskilling of the current workforce to effectively use tools and 

techniques currently available and drive improvements in education require further research 

into other key areas including data translation into operational needs, data monetization and 

cybersecurity. 

Data translation into operational needs 

37. Data translation can be defined as the process of converting volumes of data from one 

syntax to another and performing value lookups or substitutions from the data during the 

process. Translation can include data validation as well. One example of data translation is 

to convert vendor specific time series data or even Geographic Information System (GIS) 

data and customer flat files while performing data validation on the source data. Translating 

data into operational ambitions requires a strategic vision on which objectives can be 

established as measurable objectives can create actionable insights. 

38. In the utility sector, organizations working in traditional energy generation (i.e., fossil-

based) have to adjust their cost margins by improving the efficiency of the plants. Some 

studies project that proper use of advanced analytics can bring about savings of between 5 

and 7.5 per cent.15 This can be due to an improvement in uptime, predictive maintenance 

based on failure rate forecasting, and optimization of fuel consumption coupled with a focus 

on performance monitoring to reduce (or eliminate) over-production. 

39. It was estimated in 2018, that data-directed technologies can drive up operations and 

maintenance cost savings to more than 12 per cent. The costs of sensors and data capture 

devices have significantly decreased as much as one-tenth the price from ten years’ ago. As 

more communication improvements such as 5G or the future 6G technologies continue to 

boost transmission speeds of 1,000 Gbps for 6G compared to the 600 Mbps of 5G, data from 

IoT solutions can be analyzed, and decision-making support given in real-time. 

  

 14 Jonathan L. Zittrain, The Future of the Internet -- And How to Stop It (Yale University Press & Penguin UK, 2008). 

 15 McKinsey & Company, “The Digital Utility: New challenges, capabilities and opportunities”, June 2018.  
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40. The dynamic nature of this level of data analysis brings a step change to the definition 

of strategic use cases. Use cases such as failure probability monitoring, outage detection and 

prediction, smart grid security and theft detection, transactive energy management, 

preventive maintenance for equipment, optimizing asset performance, demand response 

management, real-time customer rates and billing, and enhanced customer experience seem 

to rise to top of the list among utilities that have advanced their high-resolution data capture 

programmes. 

41. The challenge remains on whether a utility can take advantage of the data collected to 

formulate a strategy around known (or unknown) needs. 

Data monetization 

42. To a large extent, data monetization is the ideal goal in achieving widespread 

deployment of data analytics. Utilities and energy service unknowingly possess a wealth of 

extensive and very valuable customer and operational datasets of information with more data 

becoming increasingly available through the deployment of smart devices.  

43. Data monetization is the stage of data maturity where utilities and other energy 

supplier companies leverage Big Data for new revenue opportunities. For example, 

leveraging actionable insights from user data and customer behaviours can drive a utility to 

upscale their customer relationship and rethink their customer experience. Using methods 

such as 360-degree customer profiles can address the increase in churn rates, which is as 

much as 25% in some markets.16 Solutions such as automated voice analytics in call centers, 

integrated with communications systems (e.g., mobile applications in the field) and corporate 

websites, along with consumption analysis and dynamic rate pricing, will allow companies 

to meet their customers where they are. This holistic level of integration increases lifetime 

value for customers and reduces churn for the utility. 

44. Especially for those utilities that are distribution-only providers, increasing the 

efficiency of their retail portfolio through better assessment of customer creditworthiness and 

consumption variation can help to minimize defaults and avoid fraud. Studies show that the 

impact of an integrated strategy for customer analytics increases the profit margins of 

companies by 5-10 per cent in addition to increasing customer satisfaction. 

45. Additionally, there is a significant quantity of data gathered for regular business 

activities which is not used for any other reason; this dark data could be important to other 

businesses and could be a new revenue source. Using insights based on experiences, utilities 

can provide new revenue generating products and services and enhance product and 

operational performance to create a more compelling and sustained customer relationship. 

Cybersecurity and grid resiliency 

46. As the utility sector is gradually increasing its level of digitalization, increasing risks 

related to cybersecurity emerge, both operationally and commercially. In this context and 

considering high risks of cyberwarfare, utility companies must set proper prevention and 

mitigation strategies, while also developing business continuity plans after cybersecurity 

breaches. 

47. It was argued that “by the end of 2023, modern privacy laws will cover the personal 

information of 75 [per cent] of the world’s population.”17 As modern-day customers become 

more knowledgeable about their role in the digital grid journey, they will want to know what 

kind of data is being collected and the intended (and actual) uses. Utilities and energy 

providers, especially those that cover multiple geopolitical boundaries in various 

jurisdictions, will need a strategic customer education programme focused on cybersecurity 

and how the applications are fit for the local jurisdiction. 

48. The same analysis concludes that by 2024, “organizations that adopt a cybersecurity 

mesh architecture will reduce the financial impact of security incidents by an average of 90 

[per cent].” This type of architecture can be extended to cover identities outside the traditional 

  

 16 Pablo Boixeda, “Optimizing the Energy Sector with Data Analytics”, Cloudera, 20 December 2022.  

 17 Gartner, “The Top 8 Cybersecurity Predictions for 2021-2022”, 20 October 2021.  
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security perimeter. The increase of remote working across organizations will drive adoption 

of these architectures in the coming years. 

49. It is also argued in the report that by 2025, ever-increasing percentages of 

organizations will adopt strategies around: cybersecurity risk policies for third-party 

transactions (60 per cent), legislation for regulating ransomware negotiations (30 per cent; 

up from 1 per cent in 2021), a dedicated cybersecurity committee representative on the board 

of directors (40 per cent), and create a culture of organizational resilience to survive 

coincident threats from cybercrime, severe weather, civil unrest and political instability (70 

per cent). 

50. Further analysis and additional information on impacts of cybersecurity to the digital 

landscape of the energy sector, is contained in the document “Key considerations and 

solutions to ensure cyber resiliency in the smart integrated energy systems” 

(ECE/ENERGY/GE.6/2023/3−ECE/ENERGY/GE.5/2023/3). 

 C. Big Data analytics modelling research and development efforts 

51. Access to on-going research and application efforts for utility-scale data analytics in 

the utility industry is a key pillar to progressing Big Data analytics and indeed digitalization 

of the energy sector as a whole. At the same time, access to and use of the results from the 

research efforts of responsible national bodies, is often difficult. 

52. Data maturity is an important concept for energy providers. As utilities find that data 

is evermore central to all enterprise strategies, helping to drive innovation, and continues to 

be integrated across departments, it is a necessary priority to develop and implement a 

strategy for a data maturity roadmap. In this way utilities can drive optimization in their 

internal processes as well as innovate over and provide reliable services for their customers. 

53. The below Table shows a maturity curve of data capabilities. Progressing along the 

levels of this curve, an organization increases its data management, algorithm development 

and delivery capabilities. Studies show that companies with mature data management and 

robust (i.e., repeatable, verifiable) analytics processes can boost their profitability by an 

average of 12.5 per cent of total gross profit.18 Advancing up the levels of the curve, 

demonstrates a maturity in an organizations’ data analytics strategy and implementation. As 

more investments are made into the analytics capabilities, the faster an organization can 

progress along this curve. Studies show that even conservative investments yield good 

movement and most utilities and energy provider organizations transition between phases 

fairly quickly even with modest investments in their data analytics.19 

Table 

Data and analytics maturity 

Level Data and analytics 

maturity 

Analytics capability Commentary 

1 

Much data and 

too many data 

warehouses 

Reactive reporting – concerned 

with current issues 

• Transactional lists and 

printouts 

• Historical and cost 

monitoring focus  

• No integration of data or 

operational applications 

• Data is scattered in 

heterogenous storage 

platforms 

An organization has made 

some investment in analytics 

infrastructure; however, it 

may be outdated or there was 

no data management strategy 

to start from. The result is 

that data is managed in an ad 

hoc way and decision-making 

is often reactive based on 

today’s priority rather than 

based on empirical value-

driven evidence. 

2 

Basic 

reporting and 

minimal 

automation 

  

 18 Richard Carufel, “What’s your data really worth? It depends on your data maturity level”, Agility PR Solutions, 26 March 2020.  

 19 Electricity Advisory Committee, “Big Data Analytics: Recommendations for the U.S. Department of Energy”, February 2021.  
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Level Data and analytics 

maturity 

Analytics capability Commentary 

3 

Business 

intelligence 

with statistical 

analysis 

Planned analysis – short-term 

planning 

• Diagnostic reporting 

• Data storage and access are 

automated 

• Cross-operational 

integration 

• Uneven analytics 

competencies 

A growing maturing within 

departments and across the 

organization, as operational 

planning turns more strategic 

and analytics competencies 

increase. 

4 

Predictive / 

prescriptive 

modelling 

Strategic analysis – consistent 

delivery 

• Departmental scorecards, 

dashboards 

• Maturing analytic capability 

• Consistent and effortless 

production 

• Insight to action 

5 

Model and 

process 

Optimization 

Process optimization – foresight 

• Actions based on future 

planning  

• Full integration and use of 

external data 

• Real-time analytics as a 

differentiator 

• Organizational scorecards, 

dashboards 

• Widespread analytic 

capability 

Processes across the 

organization are optimized 

and integrated. Decisions are 

based on future planning and 

deep insights from empirical 

and robust forecasting. Real-

time analytics using advanced 

capabilities are consistently 

and organically deployed, and 

organizational dashboards 

have been standardized, for 

example with agreed data-

oriented nomenclatures. 

54. Moving along the curve means that organizations need to change their paradigm for 

decision-making. This requires integrated thinking, cross-functional applications, and cross-

operational team collaboration.  

Big Data, advanced analytics model research, development, and deployment efforts, 

and outreach 

55. The declining costs of information and communication technology, as well as 

advances in computing power, lead to an increasing availability of data and new opportunities 

for its analysis. Data availability is about the timeliness and reliability of access to and use 

of relevant data. At the same time, the number of RES and other distributed energy resources 

continue to increase penetration into the grid globally, increasing complexity across the 

electricity system and create new needs for data analytics and optimized analytics models. 

Data and data analytics model availability typically have a time limit. 

56. Utilities must ensure that their analytics models follow the rules of validity, 

reproducibility, and transparency. Industry standards can offer an organized method for 

planning and implementing data mining initiatives, such as the Cross-industry standard 

process for data mining (CRISP-DM) framework, as described in the Figure below. It 

consists of phases for business comprehension, data comprehension, data preparation, 

modelling, evaluation, and deployment. Utilities should also think about combining machine 

learning and AI techniques to handle complicated, high-volume data on cloud-based 

platforms for scalability.  
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Figure 

CRISP-DM framework 

 

Source: adapted from https://www.ibm.com/docs/en/spss-modeler/saas?topic=dm-crisp-help-overview  

57. It is essential in today’s world of growing demand for highly skilled technical 

engineers, that businesses prioritize training and development of their current teams. 

Continuous training and skill development, focusing on a culture of data-driven decision-

making, hiring for a blend of technical (data science, machine learning, statistics) and sector-

specific (energy systems, regulation) expertise, and fostering collaboration and knowledge-

sharing among team members are key practices to building an effective in-house analytics 

team. 

58. Models that have the potential to benefit others, such as those that anticipate energy 

consumption, forecast load and the output of RES, or those that analyze grid stability, should 

be shared either open-source or for revenue reasons. In addition, there are numerous 

techniques, including regression, time-series analysis, machine learning (including neural 

networks), and simulation models, that could serve as the foundation for these models. Most 

importantly, though, is publicly accessible datasets and open-source software, which can 

promote standardization and transparency among various parties. Shared models, data 

science techniques, data and open-source software can significantly encourage greater use 

and collaboration. 

59. As research, development, and deployment in Big Data analytics in the energy sector 

is growing in breadth and diversity, it is essential to integrate and structure the fragmented 

body of scientific work. Currently, data analytics activities span the areas along the entire 

value chain, from generation and trading to transmission, distribution, and consumption. 

Activities also range over different applications such as forecasting or clustering using 

various approaches such as artificial neural networks and the establishment of regional 

innovation hubs that focus on specific technologies. 

60. Worldwide efforts are being made to create communities that share best practices for 

using advanced analytics models. For instance, the “Digital Europe Programme” of the 

European Commission highlights the necessity of creating high-impact projects using AI and 

data analytics. Similar to this, the United States Department of Energy launched the Grid 

Modernization Initiative to work on revolutionary reforms utilizing data analytics. In order 

to share information and promote innovation, governments are increasingly forming cross-

border collaborations regionally.  

61. The gathering of thorough, varied, and high-quality granular data from many sources, 

such as IoT devices, smart meters, weather stations, etc., is crucial to improving the accuracy 

of data analytics models. In addition, the incorporation of real-time data streams, the use of 

feature engineering strategies, and the application of sophisticated machine learning 

algorithms all have the potential to enhance model performance. 

62. The selection of demand-side analytics models frequently entails a trade-off between 

granularity and privacy, speed and accuracy, and complexity and interpretability. The 

accuracy, interpretability, and responsiveness of the results are all directly impacted by these 

compromises. For instance, a very complicated model could produce findings that are more 

accurate but may be more difficult to understand and take longer to run than a simpler model. 

Business 
understanding 

Modelling 

Data understanding 

Data preparation Evaluation 

Deployment 

https://www.ibm.com/docs/en/spss-modeler/saas?topic=dm-crisp-help-overview
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63. One key consideration is the existence of hidden biases which can lead to elements 

like skewed data, false assumptions, or biased algorithm design. These biases might result in 

unfair treatment, biased behavior, or misleading insights. This highlights the crucial need for 

effective data governance procedures, which also include rigorous data gathering, cleaning, 

auditing, and validation. 

64. While some types of biases can be reduced through automation, it is important to 

understand that algorithms themselves can contain and reinforce biases, especially if they are 

developed using biased data or deployed without enough control. Therefore, it is essential to 

have open and accountable methods which are included to the automation of any decision-

making processes. Algorithmic biases can be reduced by the use of explicable AI approaches 

and adherence to AI ethics principles. 

Example of advanced analytics and AI application for heat meter failure identification 

65. Whilst the synergy between Big Data and AI have not utilized its full potential, there 

are some pilot programmes that showcase best practices for advanced analytics and provide 

a pathway that others could follow. 

66. In the city of Vilnius, Lithuania the heat provider wanted to establish a programme 

that analyzed customer heat usage over time to identify anomalous readings which may 

indicate a malfunctioning heat meter. Statistically, 0.5 per cent of heat meters are identified 

as ‘broken’ and may send false interval readings. For a service territory of 100,000 customer, 

this amounts to 500 meters sending false readings. This can create erroneous calculations of 

actual demand which results in inaccurate billing. 

67. Using smart heat meters, interval data was collected over two heating seasons. 

Considering customer behaviour (based on past historical demand) and seasonality, a Big 

Data statistical analysis was performed to clean unreliable data and remove external factors 

such as outliers for off-season heating days and unseasonable temperatures, and to identify 

the parameters for a business-as-usual scenario. This training dataset was used to train an AI 

system and then used for utility billing purposes and to identify any heat meter failures. 

68. The AI system was tested on monthly heat demand data, the data was cleaned and 

updated to reflect the number of heating days and the outside temperature for the current 

month. An Interactive Actual Energy Consumption Map was created using the heat energy 

customer profiles, and then normalized for influencing factors such as season duration and 

temperature and apartment size. In this way, the AI system could compare all data for any 

customer of any year. 

69. The data were presented on a GIS map using a color range from green to red, and 

actual energy performance class from 1 to 10. This map was made publicly available to 

customers at the utility website, and allowed comparison of similar buildings, thus bringing 

sharp attention to buildings’ operation, maintenance, and facility management activities, in 

order to find and fix potential problems. This also supports the measurement and verification 

process for energy conservation measures such as insulation of buildings and their 

refurbishment, as customers can compare the actual energy consumption after buildings’ 

improvements.  

70. Although this approach is different from the mandatory Energy Performance Class A-

E, which shows only theoretical consumption data, it shows that without Big Data and AI 

analytics utilities will struggle to properly identify energy consumption issues to provide 

actual energy consumption information to their customers and make longer-term decisions 

for capital and operational expenditures on grid assets. 

 IV. Conclusions and policy recommendations 

71. Based on the discussions above, the following conclusions and policy 

recommendations are presented for consideration:  

(a) On data sharing and democratization of data: 

(i) Data curation: 
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• Need for clearly defined, easy to understand national and 

international standards for handling sensitive data 

• Need for cybersecurity and cyber-physical security standards and 

turnkey operations for residential data owners. 

(ii) Data availability: there is still a significant lack of access to cross-

discipline and cross-sectoral data. More research into applications of FAIR 

principles for data is needed, notably ‘dark data’; 

(iii) Data integration and smart energy management: 

• Need for systems integration to allow for expedited data integration 

from heterogenous systems 

• Need for unified data management standards 

• Need for standards and/or protocols for smart energy management 

architectures 

• Need for building strategic use cases 

• Need for easy-to-understand and quick-to-use data architectures that 

can be analytics- and utility-oriented. 

(b) On utility analytics sector skills availability: 

(i) Data translation into operational needs: 

• High-resolution data capture through the proliferation of sensors and 

smart devices, drive the need for advanced analytics 

• New skills are needed for the existing workforce and incoming new 

hires, to take advantage of greater computing power and robust data 

architectures for standardization of data sets across departments 

• Large-scale test beds are needed to evaluate various solutions with 

the continued proliferation of smart and connected IoT devices, 

adding to the education and skills concerns for utilities 

• Expertise and supporting policies around concerns on privacy and 

responsibility to the consumer are needed for both design and 

implementation 

• Challenges around the upskilling of the current workforce to more 

effectively use tools and techniques that are currently available and 

to drive improvements in education, require further research. 

(ii) Data monetization: 

• Dynamic rate pricing for increased customer value 

• Potential model of providing value to consumers in exchange for 

data. 

(iii) Cybersecurity and grid resiliency: utilities will need a strategic 

customer education programme focused on cybersecurity and how the 

applications are fit for the local jurisdiction. 

(c) On Big Data analytics and maturity: 

(i) Big Data, advanced analytics model research, development, and 

deployment efforts, and outreach: 

• The establishment of local and regional innovation hubs is needed to 

fully test and secure digital and data technologies 

• Education of energy communities’ stakeholders is necessary to help 

consumers understand and acquire agency for their role in the digital 

transition 
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• There needs to be greater actionable incentives for the energy sector 

stakeholders, specifically utilities and energy provider segments to 

care about leveraging Big Data 

• The use cases that justify large investments in data collection, 

management, analytics, and AI infrastructure need to be 

demonstrated to ensure clear returns on investments 

• The cost recovery model must be considered so that justifiable 

investments in data analytics can be considered as capital investments 

with clearly defined customer benefits. 

72. The Task Force on Digitalization in Energy further suggests the follow-on activities: 

(a) Investigate the above conclusions and carry out comprehensive work and 

deeper analysis of each, preferably in collaboration with the subsidiary bodies of the 

Committee on Sustainable Energy, which might accordingly extend the mandate of the Task 

Force on Digitalization in Energy; 

(b) Conduct focused research on funding models for those areas in greatest need 

of attention, such as: Big Data technology advancement (e.g., natural language processing, 

digital twin modelling, demand / load forecasting, optimized machine learning, progression 

of AI capabilities), grid resiliency, infrastructure investment (particularly as it relates to data 

access, storage, management, and real-time analytics), in accordance with the 2024-2025 

mandate of the Task Force on Digitalization in Energy. 
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Annex 

Table 

Evolution of data analytics 

Year Milestone event Description 

1865 Business 

Intelligence 

Term 

Richard Miller Devens uses the word 'business intelligence" in his Encyclopaedia 

of commercial and business stories. This is believed to be the first study of a 

company using data analysis for commercial goals. 

1928 Magnetic 

Storage 

Fritz Pfleumer, a German-Austrian engineer, invents a way of magnetically 

storing information on tape. His methods are still used today, with the vast bulk 

of digital data being stored magnetically on computer hard drives. 

1928 Data 

Processing 

Computers 

IBM introduced the 305 and 650 RAMAC (Random Access Memory 

Accounting) 'data processing computers' in 1956, which included the first-ever 

disk storage device. 

1965 First 

Government 

Data Centre 

The US government Intends to build the world's first data center, which will hold 

742 million tax records and 175 million fingerprint sets on magnetic tape. 

1989 “Big Data” 

Term 

The term ‘Big Data’ was first used in a magazine article by fiction novelist Erik 

Larson, who was remarking on advertisers' exploitation of data to target 

customers. 

1996 Digital 

Storage Cost-

Efficient 

According to RJT Morris and BJ Truskowski's 2003 book The Evolution or 

Storage Systems, digital storage is becoming less expensive than paper storage. 

1998 Next Wave of 

Infostress 

SGI Chief Scientist, John R. Mashey, gives a paper titled Big Data ... and the 

Next Wave of Infostress at a USENIX convention. 

2001 “3 V’s” Term Doug Laney defines the three -Vs' of Big Data: volume, velocity, and variety. 

2005 Web 2.0 This year marks the debut of Hadoop, an open-source Big Data platform 

presently developed by Apache. The user-generated web, known as Web 2.0, is 

developed the same year. 

2008 14.7 Exabyte 

of Fresh Data 

The world's servers handle 9.57 zenabytes (9.57 trillion gigabytes) of data every 

day, which is comparable to 12 gigabytes of data per person per day. This year, 

an estimated 14.7 exabyte of data is created. 

2009 CIO (Data 

Oriented 

Title) 

According to Gartner, the top priority for CIOs Is business intelligence. As 

businesses suffer economic instability and uncertainty as a result of the Great 

Recession, extracting value from data becomes critical. 

2011 Analytical 

Skills 

Scarcity 

There is a shortage of between 140,000 and 1190,000 professionals with 

profound analytical abilities, as well as 1.5 million analysts and managers who 

can make appropriate data-driven judgments. 

2012 Big Data 

Research and 

Development 

The Obama administration announces the Big Data Research and Development 

Initiative, which improves the ability to extract insights from data, accelerate the 

pace of science, technology, engineering, and mathematics (STEM). 

2014 Next Wave of 

Infostress 

In the United States, mobile devices outnumber desktop personal computers for 

the first time. Two years later, in 2016, the rest of the globe follows suit. 

2020 Edge 

Computing 

The next frontier for Big Data is edge computing, which refers to computation 

done near the source of data gathering, rather than in the cloud or a centralized 

data center. 
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