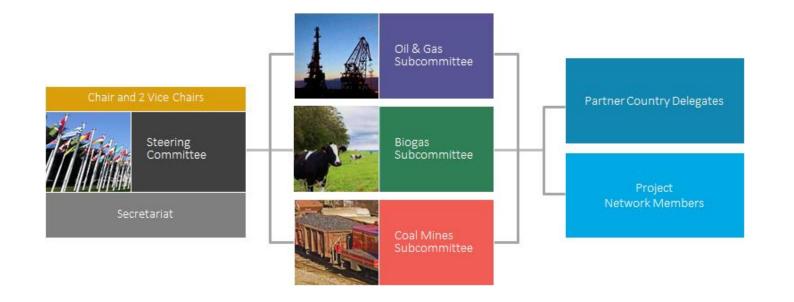
Best practices and technologies to reduce methane emissions from coal mining

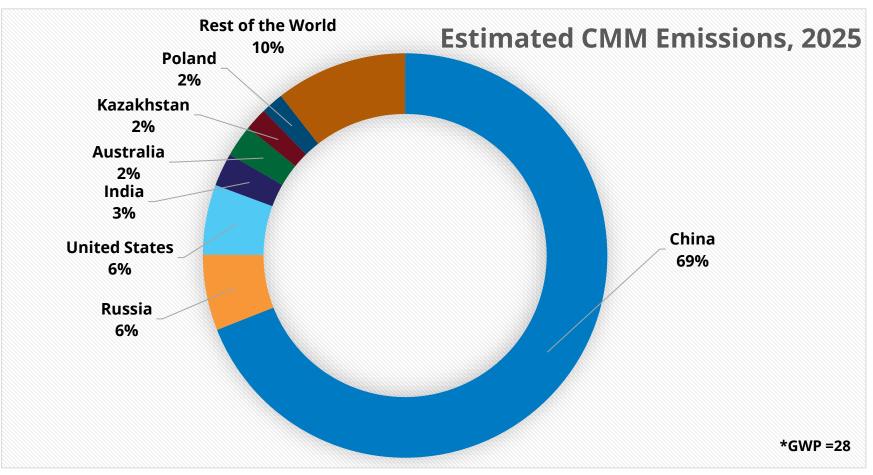
VII GREEN ENERGY & WASTE RECYCLING July 4-5, 2023 / Nur-Sultan, Kazakhstan


> Volha Roshchanka U.S. Environmental Protection Agency Co-chair, Global Methane Initiative Coal Mines Subcommittee

GMI Structure and Participants

GMI is an international public-private partnership focused on reducing barriers to the recovery and use of methane as a valuable energy source.

- 46 Partner Countries
- 700+ Project Network members
- Alliances with international organizations focused on methane recovery and use



GMI Partner Countries represent approximately 75% of methane emissions from human activities.

Global Methane Emissions from Coal Mining

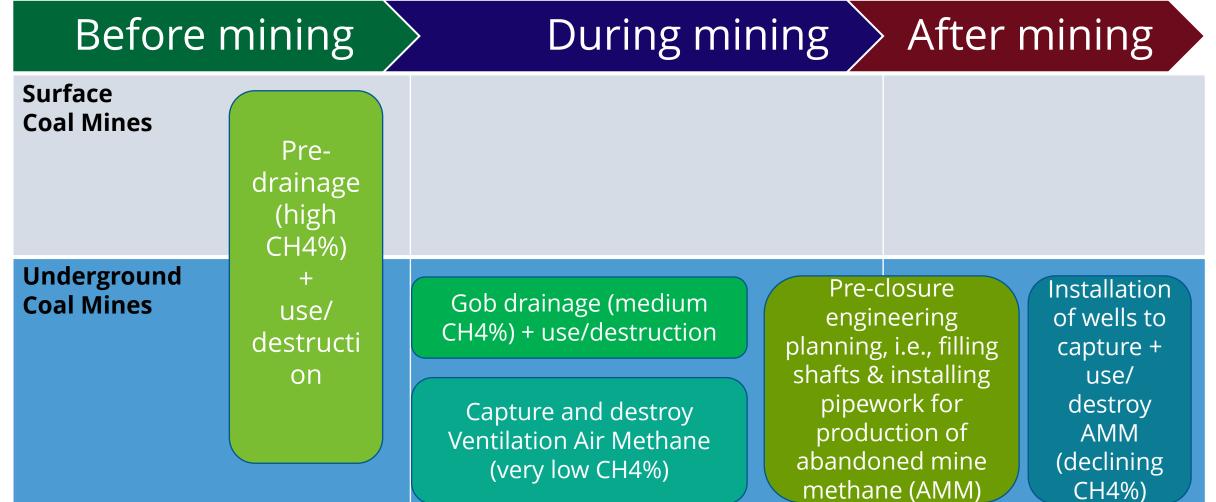
Global estimated CMM emissions for 2025: 1,055 MMT CO2e* Methane Initiative

REFERENCE: U.S. Environmental Protection Agency. (2019). Global Non-CO2 Greenhouse Gas Emission Projections & Mitigation: 2015 - 2050. U.S. Environmental Protection Agency, Office of Air & Radiation. EPA 430-R-19-010, October 2019

Sources of Coal Mine Methane

Underground mines

Abandoned mines.



Surface mines

Technologies and Practices for Methane Capture and Use/Destruction at Coal Mines

More Opportunities to Mitigate Methane at Underground Coal Mines

- Mines deploy ventilation systems to dilute methane in mine workings to create safe working conditions (typically to less than 1% methane in air concentration)
 - Ventilation air methane (VAM) accounts for the largest share (60-80%) of methane emissions released from underground coal mines and the industry as a whole.
 - Because this form of emissions contains methane in very dilute concentrations, combustion of VAM is not possible. Destroying such low-concentration methane requires a thermal or catalytic oxidation process. Technologies for VAM destruction can become cost-effective through policy and carbon market support.
- If coal mines are gassy, mines can drain methane through drainage systems at higher concentrations (before or during mining).
 - Such methane is more concentrated and is easier and cheaper to utilize or destroy.
 - Coal mines can opt to capture and remove more methane out of underground coal mines through drainage.

Flaring

Abandoned Mine Methane Flare Colorado, USA

Industrial Use

Chemical Feedstock

Methanol Production Plant

Ventilation Air Methane Oxidation

VAM destruction plant with 25 MW steam turbine to generate electricity Working Mine, Yangquan, Shanxi, China

Power Generation w/ Internal Combustion (IC) Engines

Gas-fired Generator - Working Mine, Pingdingshan, China

Transportation Fuel

CNG Refueling Station for Taxis China

Industrial Burner at a Fertilizer Plant Shanxi Province. China

Commercially Demonstrated Options for Use of Coal Mine Methane

Cooling

Working Mine Upper Silesian Basin, Poland

Regional and Export Gas Sales

Gas Conditioning & Upgrading System for Gas Pipeline Sales Abandoned Mine, Illinois, USA

Gas-fired Turbine Power Plant Combined Heat & Power w/ IC

Working Mine Virginia, USA

Resources Available for Mitigation

Prefeasibility studies:

Over 50 studies in 11 countries, including Kazakhstan

Online trainings:

- Basics of CMM
- <u>Conducting Pre-Feasibility Studies for CMM Projects</u>
- Conducting Pre-Feasibility Studies for Abandoned Mine Methane (AMM) Projects

Other tools and resources:

Available on GMI website: <u>Resource Library</u>

Pre-Feasibility Study for Methane Drainage and Utilization at the TengHui Coal Mine, Shanxi Province, China

Joint GMI/UNECE Resources

Three Best Practice Guidance reports:

- <u>Best Practice Guidance on Effective Methane</u>
 <u>Drainage and Use in Coal Mines</u> (2010 and 2016 editions)
- <u>Best Practice Guidance for Effective Methane</u> <u>Recovery and Use from Abandoned Coal Mines</u> (2019)
- Best Practice Guidance for Effective Management of Coal Mine Methane at National Level: Monitoring, Reporting, Verification and Mitigation (2022)

UNECE

Best Practice Guidance for Effective Management of Coal Mine Methane at National Level: Monitoring, Reporting, Verification and Mitigation

UNITED NATIONS ECONOMIC COMMISSION FOR EUROPE

Thank you!

Volha Roshchanka

Co-Chair GMI Coal Mines Subcommittee

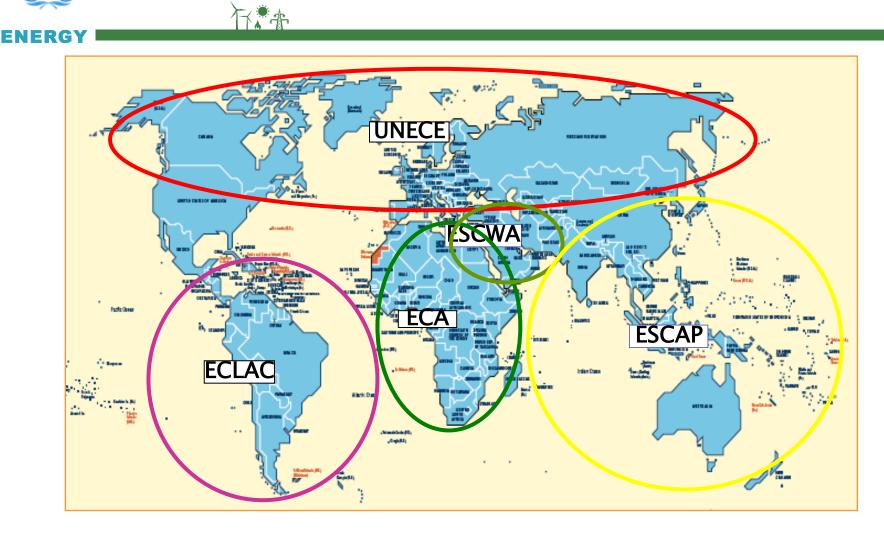
roshchanka.volha@epa.gov

Global Methane Initiative

globalmethane.org

10

f y in


Michal Drabik, Secretary Raymond C. Pilcher, Chair

United Nations

Regional Commissions

UNECE The Structure

The Executive Committee comprised of representatives chosen from 56 member states directs the activities of eight sectoral committees that work on behalf of the UNECE

Committee on Sustainable Energy

- Develops normative instruments (best practices, standards) that facilitate cooperation and enables needed investments.
- > Provides countries with a platform for a dialogue.
- Leads and oversees Sustainable Energy Division's work on implementation of the UN Sustainable Development Goals.

Group of Experts on CMM & JT

Overview

➤ Rests on 4 pillars:

Environment, Economy, Working Safety, and Social Justice.

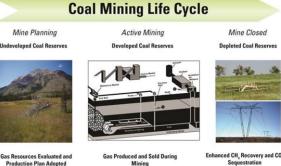
>Has 3 Task Forces:


- Safe Operations and Closure of Coal Mines
- Methane Emissions Reduction
- Just Transition

Focuses on:

 \blacktriangleright the coal value chain and mine life cycle.

Developed 3 Best Practice Guidance documents:


>On (1) active and (2) abandoned mines, and on (3) MRV.

Exploration

Pre-mine and Gob Drainage Post-mining Gas Productio

Gas Production Life Cycle

Group of Experts on CMM & JT

Transition

- > Modernization of the energy economy cannot be avoided.
- >It is in best interest of industry and communities to undertake the process in a planned, efficient, and cost-effective manner.
- >UNECE develops tools to facilitate an effective transition to low-carbon economy.
 - > Plans must incorporate social and cultural dimensions to ensure sustainability of outcomes
- >One objective is to explore a great potential that lies in transformation of large industrial complexes that exist throughout our region.

> Development of a project that addresses modernization encompasses

- > Phase I: mapping readiness for just transition in coal mining areas
- >Phase II: a plan for modernization reorientation towards modern and lower carbon technologies more efficient management of available resources, reclaiming and repurposing abandoned sites,
- Phase III: a robust and flexible business models for efficient industrial site's transition toward carbon neutrality and is replicable in other industrial sites in similar countries or regions.

Proposed Projects

Energy Transition in Kazakhstan

Components of industrial modernization and energy transition

- Industrial energy efficiency to reduce, substitute and compensate for carbon emissions through higher efficiency, installation of heating control system and waste heat recovery.
- Electrification of heat coupled with renewable energy or nuclear power to power furnaces by electricity instead of burning fossil fuels.
- Carbon capture, use and storage (CCUS) is a solution to capture CO2 and either store it underground or transform it into something useful such ethanol or raw materials to be used in the chemical or cement sector.
- Hydrogen carbon neutral can be used as a fuel in a furnace, feedstock in production of chemicals or as a reactant in industrial chemical processes.
- Circularity by embracing innovative solutions that encourage reuse and recycling of materials and resources across the whole value chain.

Michal Drabik

Chief of Section, Economic Affairs, UNECE Secretary of the GoE on CMM and JT Tel: +41 (0) 22 917 3966 Email: michal.drabik@unece.org http://www.unece.org/energy/se/cmm.html Ray Pilcher

> Chair of the GoE on CMM and JT Email: pilcher@ravenridge.com