
OpenAPI Naming and Design Rules V1.0 2022-09-13

 Page 1 of 59

UN/CEFACT

UNITED NATIONS

Centre for Trade Facilitation and Electronic Business

(UN/CEFACT)

METHODOLOGY AND TECHNOLOGY PROGRAMME DEVELOPMENT AREA 1

SPECIFICATIONS DOMAIN 2

OPENAPI NAMING AND DESIGN RULES 3

TECHNICAL SPECIFICATION 4

SOURCE: API TechSpec Project Team

ACTION: Ready for publication

DATE: 13 September 2022

STATUS: v1.0

Disclaimer (Updated UN/CEFACT Intellectual Property Rights Policy – ECE/TRADE/C/CEFACT/ 2010/20/Rev.2)

ECE draws attention to the possibility that the practice or implementation of its outputs (which include but are not limited to

Recommendations, norms, standards, guidelines and technical specifications) may involve the use of a claimed intellectual property right.

Each output is based on the contributions of participants in the UN/CEFACT process, who have agreed to waive enforcement of their

intellectual property rights pursuant to the UN/CEFACT IPR Policy (document ECE/TRADE/C/CEFACT/2010/20/Rev.2 available at

http://www.unece.org/cefact/cf_docs.html or from the ECE secretariat). ECE takes no position concerning the evidence, validity or

applicability of any claimed intellectual property right or any other right that might be claimed by any third parties related to the

implementation of its outputs. ECE makes no representation that it has made any investigation or effort to evaluate any such rights.

Implementers of UN/CEFACT outputs are cautioned that any third-party intellectual property rights claims related to their use of a

UN/CEFACT output will be their responsibility and are urged to ensure that their use of UN/CEFACT outputs does not infringe on an

intellectual property right of a third party.

ECE does not accept any liability for any possible infringement of a claimed intellectual property right or any other right that might be 5
claimed to relate to the implementation of any of its outputs. 6

OpenAPI Naming and Design Rules V1.0 2022-09-13

 Page 2 of 59

Abstract 7

This OpenAPI Naming and Design Rules technical specification defines an architecture and 8

a set of rules necessary to specify, describe and implement APIs based on an OpenAPI 9

specification to consistently express business information. It is based on the OpenAPI 10

specification and the UN/CEFACT Core Components Technical Specification. This 11

specification describes the requirements that UN/CEFACT compliant APIs should fulfil. It 12

will be used by other organisations who are interested in maximizing inter- and intra-13

industry interoperability. 14

 15

OpenAPI Naming and Design Rules V1.0 2022-09-13

 Page 3 of 59

Abstract ... 2 16

1.1 DOCUMENT HISTORY .. 5

1.2 CHANGE LOG ... 5

1.3 OPENAPI NAMING AND DESIGN RULES PROJECT TEAM .. 6

1.4 ACKNOWLEDGEMENTS .. 6

1.5 CONTACT INFORMATION ... 6

1.6 NOTATION ... 6

1.7 AUDIENCE .. 7

2 INTRODUCTION... 8 17

2.1 OBJECTIVES ... 8

2.2 REQUIREMENTS ... 8

2.3 DEPENDENCIES .. 8

2.4 CAVEATS AND ASSUMPTIONS ... 8

2.5 GUIDING PRINCIPLES ... 9

2.6 INTEROPERABILITY.. 10

3 API NAMING AND DESIGN RULES ... 13 18

3.1 CONFORMANCE AND COMPLIANCE ... 13

3.2 DESIGN RULES ... 14

3.2.1 Media type for structured data exchange ... 14 19

3.2.2 Endpoints .. 14 20

3.2.3 Discoverability .. 16 21

3.2.4 Date and Time ... 16 22

3.2.5 Using the UN/CEFACT semantics .. 16 23

3.2.6 Operations... 21 24

3.2.7 Pagination ... 23 25

3.2.8 Filtering .. 26 26

3.2.9 Sorting ... 27 27

3.2.10 API Responses and error handling ... 28 28

3.2.11 Error Response Payload ... 33 29

3.2.12 Design rule examples .. 35 30

4 WELL-DOCUMENTED APIS .. 36 31

4.1 GENERAL CONSIDERATIONS .. 36

OpenAPI Naming and Design Rules V1.0 2022-09-13

 Page 4 of 59

4.2 API VERSIONING ... 36

4.2.1 Versioning Scheme .. 36 32

4.2.2 URI Versioning ... 37 33

4.2.3 Providing version information .. 37 34

4.2.4 Robustness... 39 35

4.2.5 Deprecation and End of Life Policy.. 40 36

4.3 HYPERMEDIA ... 43

4.3.1 Hypermedia - Linked Data.. 43 37

4.3.2 HATEOAS ... 43 38

4.3.3 Hypermedia Compliant API .. 44 39

5 API SECURITY .. 46 40

6 EVENT DRIVEN DATA EXCHANGE.. 48 41

6.1 CALLBACKS ... 48

6.2 WEBHOOKS .. 49

6.3 SECURITY GUIDELINE FOR CALLBACKS (INFORMATIVE)... 49

6.3.1 Subscription setup (informative) ... 50 42

6.3.2 Performing a subscription call (informative) ... 51 43

7 APPENDIX A: EXAMPLES ... 53 44

8 APPENDIX B: NAMING AND DESIGN RULES LIST (NORMATIVE) 54 45

9 APPENDIX C: GLOSSARY .. 58 46

 47

OpenAPI Naming and Design Rules V1.0 2022-09-13

 Page 5 of 59

1.1 Document History 48

 49

Phase Status Date Last Modified

Draft development First draft 06 September 2022

Ready for approval First version 13 September 2022

Table 1 – Document history 50

1.2 Change Log 51

The change log is designed to alert users about significant changes that occurred during the 52

development of this document. 53

 54

Date of Change Version Paragraph
Changed

Summary of Changes

30 May 2022 0.3 First draft TOC

07 June 2022 0.4 Drafted up to chapter 3.2.7

 0.5 Drafted up to chapter 3.2.9

20 June 2022 0.6 Completion up to chapter 6

05 Sept 2022 0.7 1.6
2.6
R 1
R 16
6.3
7
Appendix A
Appendix B
Appendix C

Considering public review comments

13 Sept 2022 1.0 Minor corrections

Table 2 - Document change log 55

OpenAPI Naming and Design Rules V1.0 2022-09-13

 Page 6 of 59

1.3 OpenAPI Naming and Design Rules Project Team 56

We would like to recognize the following for their significant participation in the 57

development of this Unites Nations Centre for Trade Facilitation and Electronic Business 58

(UN/CEFACT) OpenAPI Naming and Design Rules technical specification. 59

ATG2 Chair

Marek Laskowski

Project Lead

Jörg Walther

Lead editors

Andreas Pelekies Gerhard Heemskerk

1.4 Acknowledgements 60

This version of UN/CEFACT OpenAPI Naming and Design Rules Technical Specification 61

has been created to foster convergence among Standards Development Organisations 62

(SDOs). It has been developed in close coordination with these organisations: 63

• Digital Container Shipping Association 64

• GS1 65

• Odette 66

1.5 Contact information 67

ATG2 – Marek Laskowski, Marek.laskowski@gmail.com 68

NDR Project Lead – Jörg Walther, jwalther@odette.org 69

Editor – Andreas Pelekies, Andreas@pelekies.de 70

Editor – Gerhard Heemskerk, Gerhard.heemskerk@kpnmail.nl 71

1.6 Notation 72

The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, 73

SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this 74

specification, are to be interpreted as described in Internet Engineering Task Force (IETF) 75

Request For Comments (RFC) 21191. 76

Example A representation of a definition or a rule. Examples are informative. 77

1 Key words for use in RFCs to Indicate Requirement Levels - Internet Engineering Task Force, Request For

Comments 2119, March 1997, http://www.ietf.org/rfc/rfc2119.txt?number=2119

mailto:Marek.laskowski@gmail.com
mailto:jwalther@odette.org
mailto:Andreas@pelekies.de
mailto:Gerhard.heemskerk@kpnmail.nl
http://www.ietf.org/rfc/rfc2119.txt?number=2119

OpenAPI Naming and Design Rules V1.0 2022-09-13

 Page 7 of 59

 [Note] Explanatory information. Notes are informative. 78

 [R n|c] Identification of a rule that requires conformance. Rules are normative. In 79

order to ensure continuity across versions of the specification, rule numbers 80

“n” are randomly generated. The number of a rule that is deleted will not be 81

re-issued. Rules that are added will be assigned a previously unused random 82

number. 83

The second number “c” after the pipe symbol | identifies the conformance 84

category of the given rule as defined in section 3.1. A +Inf may be added to 85

identify rules that are informative and not normative. 86

Courier All words appearing in bolded courier font are values, objects or keywords. 87

Representation of non-printable characters like white space are surrounded 88

by double-quotes, e.g. " ". 89

<<var>> All placeholders are surrounded by double less-than and greater-than 90

characters. The meaning of the placeholder is described in the text. 91

1.7 Audience 92

The audience for this UN/CEFACT OpenAPI Schema Naming and Design Rules Technical 93

Specification is: 94

• Members of the UN/CEFACT Applied Technologies Groups who are responsible for 95

development and maintenance of UN/CEFACT OpenAPI specifications and 96

recommendations. 97

• The wider membership of the other UN/CEFACT Groups who participate in the 98

process of creating and maintaining UN/CEFACT OpenAPI specifications. 99

• Designers of tools who need to design OpenAPI specifications adhering to the rules 100

defined in this document. 101

• Designers of OpenAPI specifications outside of the UN/CEFACT Forum community. 102

These include designers from other organisations that have found these rules suitable 103

for their own organisations. 104

OpenAPI Naming and Design Rules V1.0 2022-09-13

 Page 8 of 59

2 Introduction 105

2.1 Objectives 106

This OpenAPI NDR technical specification document forms part of a suite of documents 107

that aim to support modern web developers to make use of UN/CEFACT semantics. 108

Taking any layer of the UN/CEFACT Reference Data Models to create conformant 109

OpenAPI specifications in accordance with the UN/CEFACT Core Components Technical 110

Specification Version 2.01. This includes comprehensive RDMs like Buy-Ship-Pay, or 111

Accounting as well as their contextualization like the Supply-Chain-Reference-Data-Model 112

(SC-RDM), Multi-Modal-Transport-Reference-Data-Model (MMT-RDM) down to single 113

message implementation like the Road Consignment Note (eCMR) or the certificate of 114

origin (COO). 115

2.2 Requirements 116

Users of this specification should have an understanding of basic data modelling concepts, 117

basic business information exchange concepts and basic (REST) API concepts. 118

2.3 Dependencies 119

This document depends on 120

1. UN/CEFACT Core Components Technical Specification Version 2.01. 121

2. JSON Schema Naming and Design Rules Technical Specification. 122

2.4 Caveats and Assumptions 123

Specifications created as a result of employing this specification should be made publicly 124

available as OpenAPI specification documents in a universally free, accessible, and 125

searchable library. UN/CEFACT will make its contents freely available to any government, 126

individual or organisation who wishes access. 127

Although this specification defines the data structures used in an OpenAPI specification as 128

expressions of Reference Data Models, non-CCTS developers can also use it for other 129

logical data models and information exchanges. 130

This specification does not address transformations via scripts or any other means. It does 131

not address any other representation of CCTS artefacts – such as XML, JSON-LD, OWL, 132

and XMI. 133

Standards foster interoperability. In the creation of this specification and definition of 134

design principles, several sources were taken into account in the following order: 135

1. The OpenAPI 3.1.0 specification 136

OpenAPI Naming and Design Rules V1.0 2022-09-13

 Page 9 of 59

2. Standards defined by internet standard organisations as RFCs 137

3. The DCSA API Design Principles 1.0 138

4. The json:api specification 139

5. Experts experience 140

2.5 Guiding Principles 141

3. OpenAPI Creation 142

UN/CEFACT OpenAPI design rules support OpenAPI specification creation through 143

handcrafting as well as automatic generation. 144

4. Tool Use and Support 145

The design of UN/CEFACT OpenAPI will not make any assumptions about 146

sophisticated tools for creation, management, storage, or presentation being available. 147

5. Technical Specifications 148

UN/CEFACT OpenAPI Naming and Design Rules will be based on technical 149

specifications holding the equivalent of OpenAPI recommendation status. 150

6. OpenAPI Specification 151

UN/CEFACT OpenAPI Naming and Design Rules will be fully conformant with the 152

OpenAPI specification recommendation. 153

7. Interoperability 154

The number of ways to express the same information in a UN/CEFACT OpenAPI 155

specification is to be kept as close to one as possible. 156

8. Maintenance 157

The design of an UN/CEFACT OpenAPI specification must facilitate maintenance. 158

9. Context Sensitivity 159

The design of an UN/CEFACT OpenAPI specification must ensure that context-160

sensitive document types are not precluded. 161

10. Ease of implementation 162

An UN/CEFACT OpenAPI specification should be intuitive and reasonably clear in the 163

context for which they are designed. They should allow an intuitive implementation in 164

REST APIs, a.k.a. RESTful API, as well as other interchange appliances. 165

 166

OpenAPI Naming and Design Rules V1.0 2022-09-13

 Page 10 of 59

2.6 Interoperability 167

Decades of cross-industry and cross-national harmonisation of B2B and B2A processes 168

have gone into the development of the semantic UN/CEFACT reference data models by 169

thousands of experts. This tremendous achievement does not exist a second time in this 170

scope and depth. The clear path from semantic definition to syntax - and not vice versa - 171

means that these semantic data models are syntax-neutral and can thus be used not only 172

with current syntaxes but also with future ones. For this purpose, either they are mapped 173

directly into a (UN/CEFACT) syntax via NDR specifications, or they can be mapped to data 174

models and syntaxes of other sectors. 175

The ideal of a REST API envisages the fully automatable connection of an API consumer to 176

an API provider. In practice, this is often not the case today, as the corresponding standards 177

for the design of an API, the scope and depth of the documentation and the modelling of 178

processes and data in B2B and B2A communication via WebAPIs are still in their infancy. 179

The keyword here is interoperability. 180

In classic EDI implementations (e.g. EDIFACT or XML), a variety of industry standards 181

exist. With their help, the following dimensions of interoperability are promoted: 182

1. Business process interoperability: the business partners have the same understanding 183

of the basic process flow, for example in the Order2Cash - process. 184

2. Semantic interoperability: the business partners have the same understanding of the 185

technical terms. For example, the definition of consignment and shipment is the same 186

for all business partners. 187

3. Syntax interoperability: a uniform syntax (e.g. UN/CEFACT XML) is used. 188

4. Contextualisation interoperability: Industry standards define how individual 189

requirements are to be handled. Ideally, it is agreed that as few different 190

contextualisations (consideration of individual requirements) as possible should take 191

place. This means that information that is only required by some recipients will be 192

read over by the remaining recipients instead of carrying out an individual 193

implementation. 194

5. Interoperability of transmission: Business partners agree on uniform transmission 195

methods as well as associated security measurements such as SFTP, OFTP2 or AS2. 196

This dimension often plays a lesser role in classic EDI implementations, as the 197

transmission of data usually takes place from one sender to one recipient at a time. 198

EDI is usually optimised for mass data. 199

When implementing a WebAPI, the same requirements for interoperability exist in 200

principle. An essential difference of previous WebAPIs is the approach to connect mass 201

users to an API. For example, a map, route or booking service should be used by as many 202

users as possible at the same time. The REST principle of composability also means that 203

OpenAPI Naming and Design Rules V1.0 2022-09-13

 Page 11 of 59

different services (possibly from different providers) are often combined into an overall 204

solution for processing with WebAPIs. For example, in a flight booking service, the 205

capacities, conditions and tickets are allocated by the airlines, payment service providers are 206

connected, and often a specialised billing service that correctly calculates the different tax 207

constellations for cross-border flights. The aspect that many consumers have to use one API 208

(billing service) as well as one consumer has to use many APIs with the same processes 209

(contingent with airlines) extends the interoperability requirements for WebAPIs. 210

6. Interoperability of API design: This specification deals with the aspect of API design 211

interoperability. Uniform methods and rules in API design simplify the 212

understanding of APIs, errors during implementation are minimised, the handling of 213

error messages is standardised and the implication of similar APIs in a cross-214

organisational (B2B) network is promoted. 215

7. Service interoperability: uniform endpoints in mapping the same process 216

requirements promote B2B communication via WebAPIs. 217

The following table shows how the seven dimensions of interoperability can be achieved in 218

WebAPIs: 219

Dimension of

interoperability

Guideline

Business process
interoperability

Within UN/CEFACT, business process interoperability is achieved
by implementing the harmonised business requirement
specifications (BRS).

Semantic

interoperability

The CCTS and its derived semantic Reference Data Models
(RDMs) are the basis for this dimension for UN/CEFACT users.
The UN/CEFACT Vocabulary, the JSON Schema artefacts, and
the UN/CEFACT XML standards implement these semantic
requirements in the respective syntax.

Syntax
interoperability

When a user group agrees on the use of a uniform data exchange
syntax, this dimension is achieved. When creating an OpenAPI
specification, it should be noted that the syntax to be used must
always be modelled as a JSON schema, even if the later exchange
syntax is an XML format, for example. It is defined in an OpenAPI
specification.

Contextualisation
interoperability

An implementation guideline (for example, of a particular industry)
defines how contextualisations are to be applied to the data or
message structures to be exchanged.

Interoperability of
transmission

This dimension is also specified in an implementation guideline. In
particular, it also includes security aspects including authorisation
and authentication.

Interoperability of
API design

This NDR specification defines the interoperability of API design.
Among others, it includes rules for filtering, pagination and error
handling.

Service
interoperability

A good OpenAPI specification especially focuses on service
interoperability. The interoperability of APIs designed to be
implemented by several business partners can be fostered if the
services are well designed. For instance, a user group agrees on a

OpenAPI Naming and Design Rules V1.0 2022-09-13

 Page 12 of 59

set of services with a minimum subset. If a provider does not
support a specific service it is still implemented, but always
responds with a 501 Method not implemented HTTP response
code that includes a HTTP Link Header to the corresponding
documentation

Table 3: Interoperability of WebAPIs 220

 221

OpenAPI Naming and Design Rules V1.0 2022-09-13

 Page 13 of 59

3 API Naming and Design Rules 222

3.1 Conformance and Compliance 223

Designers of OpenAPI specifications in governments, private sector, and other standards 224

organisations external to the UN/CEFACT community have found this specification 225

suitable for adoption. To maximize reuse and interoperability across this wide user 226

community, the rules in this specification have been categorised to allow these other 227

organisations to create conformant OpenAPI specifications while allowing for discretion or 228

extensibility in areas that have minimal impact on overall interoperability. 229

Accordingly, applications will be considered to be in full conformance with this technical 230

specification if they comply with the content of normative sections, rules and definitions. 231

[R 1|1] 232

Compliance and conformance SHALL be determined through adherence to the content of 233
the normative sections and rules. Furthermore, each rule is categorised to indicate the 234
intended audience for the rule by the following: 235

 236

Category Description

1 Rules, which must not be violated. Else, compliance and interoperability are
lost.

2 Rules, which may be modified, while still conformant to the NDR structure. If
all rules of categories 1 and 2 are followed, the API is fully compliant. If rules
of category 2 are modified the API is not compliant anymore, but still
conformant.

Inf Rules that are informative only. If a different implementation is chosen this
does not have any impact on the compliance and conformance of the
implementation towards this specification.

Table 4 - Conformance categories 237

[R 2|1] 238

All API specifications based on this OpenAPI Naming and Design Rules technical 239
specification SHALL be compliant to the OpenAPI 3.1.x specification. 240

 241

[R 3|1] 242

An API specification claiming conformance to this specification SHALL define schema 243
components as described in the JSON Schema Naming and Design Rules Technical 244
Specification. 245

 246

OpenAPI Naming and Design Rules V1.0 2022-09-13

 Page 14 of 59

3.2 Design Rules 247

3.2.1 Media type for structured data exchange 248

[R 4|1] 249

Request body content and Response content used to transfer structured data information 250
SHALL use the application/json media type for JavaScript Object Notation (JSON). This 251
rule MAY only be deviated from, if the API implements a conversion service from or to 252
JSON in another media type. 253
 254
Additional media types (e.g. text/xml) to transfer structured data information MAY be 255
used. If non-structured information is transferred any valid media type MAY be used. 256

 257

[R 5|1] 258

Encoding SHALL be UTF-8. 259

3.2.2 Endpoints 260

[R 6|2] 261

The structure of the paths defined within APIs SHOULD be meaningful to the consumers. 262
Paths SHOULD follow a predictable, hierarchical structure to enhance understandability 263
and therefore usability. 264

 265

[R 7|1] 266

The API URLs SHOULD follow the standard naming convention as described below: 267
 268

https://{env}.api.{dnsdomain}/v{m}/{service}/{resource}/{id}/{sub-269

resource}?{query} 270

The components are described as follows. If a rule is mandatory for a specific component of 271

the URL it SHALL be applied to any conformant API specification, even if the basic URL 272

structure is different from the one described above (e.g. if api is not used as a prefix to the 273

dnsdomain). 274

• https:// SHALL be used as the web protocol. 275

• {env} indicates the environment (e.g. test, sandbox or dev) and is usually omitted for 276

production environment. 277

• {dnsdomain} is the DNS domain of the API implementer (e.g. unece.org) 278

• {service} is a logical grouping of API functions that represent a business service domain 279
(e.g. transport). The {service} component is optional. 280

• v{m} is the major version number of the API specification. This component SHALL be 281
stated in the URL. It MAY be provided at a different place in the URL (e.g. as a prefix 282
to the domain). 283

• {resource} is the plural noun representing an API resource (e.g. consignments) 284

OpenAPI Naming and Design Rules V1.0 2022-09-13

 Page 15 of 59

• {id} is the unique identifier for the resource defined as a path parameter. Path 285
parameters SHALL be used to identify a resource. This component is not part of the 286
path if an operation is performed on a collection of the resource. 287

• {sub-resource} is an optional sub-resource. Only used when there are contained 288
collections or actions on a main resource (e.g. consignmentItem). 289

• {query} is a list of additional parameters like filters that determine the results of a 290
search (e.g. consignments?loadingPort=AUSYD). 291

 292

 293

[R 8|1] 294

The total number of characters in the URL, including the path and the query, SHALL NOT 295
exceed 2000 characters in length including any formatting codes such as commas, 296
underscores, question marks, hyphens, plus or slashes. 297

 298

[R 9|1] 299

Endpoints SHALL NOT be actions. Services and resources SHALL consist of nouns. HTTP 300
verbs SHALL be used for actions (See chapter 3.2.6). 301

 302

[R 10|1] 303

Kebab-case2 SHALL be used in services. 304

 305

[R 11|1] 306

Lower camelCase3 SHALL be used in resources, path parameters and query parameters. 307

 308

[R 12|1] 309

Path parameters and query parameters with a relation to property names SHALL be 310
consistent with property names. 311

 312

 313

 314

[R 13|1] 315

2 Kebab-case is a naming rule for a technical representation of identifiers consisting of several words. Hyphens

are used to connect words. Example: this identifier is written as this-identifier in kebap-case.
3 CamelCase is a naming rule for a technical representation of identifiers consisting of several words. White

spaces are removed and every new word begins with a capital letter. Example: this identifier is written

as thisIdentifier in camelCase. Lower camelCase means that the identifier must start with a small letter.

OpenAPI Naming and Design Rules V1.0 2022-09-13

 Page 16 of 59

Query parameters SHALL be URL safe4. 316

 317

[R 14|1] 318

Resource names SHALL be pluralised. Resource names SHOULD be consistent with 319
schemas. If a schema is defined in singular, nevertheless the resource SHALL be pluralized. 320
If the plural of a resource is non-standard, you MAY choose a more appropriate noun in its 321
plural form. 322

 323

Examples for good endpoints: 324

• /employees 325

• /customers 326

• /products 327

3.2.3 Discoverability 328

One of the REST design principles is service discoverability. The OpenAPI specification 329

supports them via links. They SHALL be implemented via HTTP headers. 330

3.2.4 Date and Time 331

The date and time representation in the CCL supports an ISO8601 subset with only a few 332

exceptions. Those exceptions may be present in the content body of a request or a response. 333

[R 15|1] 334

Query parameters SHALL use ISO8601 compliant date and time representations that are 335
defined in UNTDID 2379 json as defined in the JSON schema NDR technical specification. 336
To represent a specific date, time or date-time the format SHALL comply with the JSON 337
schema definition for date, time or date-time. 338

3.2.5 Using the UN/CEFACT semantics 339

Decades of harmonisation and standardisation of business requirements resulted in the 340

UN/CEFACT reference data models (RDM). These exist across different domains like Buy-341

Ship-Pay, Agriculture, Regulatory or Audit and Accounting. 342

As one example the Buy-Ship-Pay RDM contains subsets e.g. for multimodal transport 343

(MMT-RDM) and the supply chain (SC-RDM). Over time, hundreds of business document 344

structures were harmonised and standardised on a semantic model level. Different Syntax 345

Naming and Design rules allow an automated creation and mapping of those semantic 346

models to certain syntaxes such as XML. 347

4 See https://www.w3schools.com/tags/ref_urlencode.ASP Example: https://unece.org/this url is

invalid because of the space. Correct it looks like https://unece.org/this%20url

https://www.w3schools.com/tags/ref_urlencode.ASP

OpenAPI Naming and Design Rules V1.0 2022-09-13

 Page 17 of 59

In the world of web APIs, the transmission of document structures is considered obsolete. If 348

the limitations of REST principles are to be applied to a web API, business document 349

structures are unsuitable for a RESTful implementation. These structures contradict the 350

basic principle of loose coupling of resources. Instead, the exchange of information should 351

be resource-based, where resources are information blocks leading in their combination to 352

the complete information (e.g. business document). 353

Nevertheless, there are often limitations in B2B information exchange that make it difficult 354

to completely move away from document structures. This includes technical reasons, 355

procedural reasons, but also legal reasons. If the basic processes of communication between 356

organisations are not changed, a shift purely to resource-based information exchange leads 357

to a new level of media disruption and consistency challenges. If both the sending and 358

receiving systems work on the basis of document structures (e.g. an invoice), then an 359

intermediate, purely resource-based transmission leads to a number of challenges, such as 360

the archiving obligation of such documents that exists in many countries to ensure 361

subsequent verification. 362

On the other hand, if networks of platforms (e.g. for logistics) are established, a resource-363

based exchange can still be useful for certain purposes. For example, a platform could exist 364

for a marketplace where free delivery capacities by carriers can be offered and booked. The 365

division by resources usually leads to the need for identity providers and the clarification of 366

the question of the single source of trust for individual resources. 367

At UN/CEFACT, there are two basic JSON-based publications of semantic data models: the 368

UN/CEFACT vocabulary, and the UN/CEFACT JSON schema publication. 369

3.2.5.1 Using the UN/CEFACT JSON schema publication 370

JSON schema is the natural partner of an OpenAPI specification, as OpenAPI relies on 371

JSON schema. The UN/CEFACT JSON schemas are published in two variants: 372

8. Streamlined stand-alone JSON schemas for the individual business documents. 373

Those schemas contain every definition relevant for a specific business document 374

and its applied contextualisation. 375

9. A JSON schema library of the different RDMs and their related business document 376

structures. This variant uses an inheritance and validation technique supported by 377

JSON schema. The basic data structures define the information blocks needed 378

together in the reference data model. Subsets and contextualisation for the individual 379

applications (e.g. MMT-RDM, SC-RDM, Invoice ...) are then formed on this basis. 380

The JSON schemas are published in the official UN/CEFACT repository. They can be used 381

in two different ways: 382

OpenAPI Naming and Design Rules V1.0 2022-09-13

 Page 18 of 59

First by referencing the needed data types directly from the repository. This leads to a 383

maximum on interoperability. In an OpenAPI specification, it is easily possible to further 384

contextualise (including extension) the JSON subschemas to the needed requirements of the 385

specific process. This explicitly lets the users "tick off" unneeded optional attributes or 386

supplementary components, restrict code lists or add user defined properties in a 387

standardised and transparent way. 388

Additionally, maintenance becomes quite easy. If the API is to be updated to a newer 389

version of the JSON schema publication, only the reference needs to be updated. 390

Alternatively, the JSON schemas can be downloaded to a local system or repository. In that 391

case it is needed to update or remove the "$id" properties of the schemas, as they link to the 392

official UN/CEFACT repository. 393

The way in which the JSON schemas are defined allow a very simple transmission from 394

using document-based structures to resource-based structures. On the RDM level, all ABIEs 395

(data classes) are defined. For every RDM exists a master document structure. All of the 396

business documents are derived from this. The hierarchic structure connects the different 397

ABIEs through ASBIEs including cardinality information. At every single ASBIE node, the 398

JSON schema publication allows to replace the provision of a substructure by the URN of 399

the corresponding resource: 400

Let us assume you want to define an API to manage transport capacity booking. In a classic 401

message-based scenario, you would define how those messages are interchanged. In many 402

case you would design a POST and GET or POST, subscribe and GET scenario. Those scenarios 403

need envelope-information around the message information in order to tell the API who the 404

ultimate receiver is, who the sender is etc. In addition the message is quite complex and 405

contains many sub-resources with details. Those include for instance "requester", "shipTo", 406

"receiver", "carrier", "consignment-items" etc. If this scenario is planned to move towards a 407

(more) resource-based information exchange it is very easy to do so. First, you have to 408

identify which of your sub-resources should become stand-alone. Let us assume you want to 409

manage trade party information master data as a single resource. In that case, you can 410

specify a schema under components/schemas named tradePartyType and simply define it as 411

a reference to the contextualised data type of the corresponding RDM or even the 412

corresponding business document structure. The following example shows, how the 413

document structure can be restricted to resource usage as well. 414

Example for a tradePartyType under components/schemas: 415

"tradePartyType": { 416

 "description": "Trade party definition according to MMT-RDM", 417

 "$ref": "https://raw.githubusercontent.com/uncefact/spec-418

JSONschema/main/JSONschema2020-12/library/BuyShipPay/D22A/UNECE-419

OpenAPI Naming and Design Rules V1.0 2022-09-13

 Page 19 of 59

MMTContextCCL.json#/$defs/tradePartyType" 420

} 421

"tradePartyType": { 422

 "description": "Trade party definition according to the Multimodal 423

 Transport Booking Recipient", 424

 "$ref": "https://raw.githubusercontent.com/uncefact/spec-425

JSONschema/main/JSONschema2020-12/library/BuyShipPay/D22A/UNECE-426

MultimodalTransportBooking.json#/exchangedDocument/recipient" 427

} 428

"multimodalTransportBooking": { 429

 "title": "Multimodal Transport Booking", 430

 "description": "Restrict business document to resource usage for 431

 recipient", 432

 "allOf": [433

 { "$ref": "https://raw.githubusercontent.com/uncefact/spec-434

JSONschema/main/JSONschema2020-12/library/BuyShipPay/D22A/UNECE-435

MultimodalTransportBooking.json/#" }, 436

 { 437

 "properties": { 438

 "exchangedDocument": { 439

 "properties": { 440

 "recipient": { "type": "string", "format": "uri" } 441

 } 442

 } 443

 } 444

 } 445

] 446

} 447

3.2.5.2 Using the UN/CEFACT vocabulary 448

The UN/CEFACT vocabulary uses the JSON-LD format in order to be conformant with the 449

publication on schema.org. 450

The publication in JSON-LD follows a different approach. JSON-LD is a graph 451

representation of context-enhanced semantic ABIE-representations derived from the 452

combination of the corresponding RDMs. By applying the appropriate context, the subset of 453

the defined graph can be used. 454

JSON-LD cannot directly be used and linked to in an OpenAPI specification. According to 455

the maintenance body of the OpenAPI specification, this is not intended to change in the 456

near future. In addition, the JSON-LD does not specify the cardinalities and subsets for the 457

different contexts of business document structure definitions. Therefore, a web developer 458

implementing an API for business related intra-organisational information exchange needs a 459

reasonable knowledge of the underlying processes. On the other hand, JSON-LD unfolds 460

OpenAPI Naming and Design Rules V1.0 2022-09-13

 Page 20 of 59

immense power wherever (publicly) available data is to be automatically crawled, filtered 461

and evaluated. Examples of this are applications such as flight-radar, online search for 462

recipes or searches for goods over the boundaries of online shops with specific criteria. In 463

those scenarios, the individual resources get into focus, as well as their relationships (links) 464

to other resources. The business-related-interdependencies are not part of the definitions 465

themselves. Adding state machines in definitions could help with this. Unfortunately, 466

currently there does not exist a widely supported exchange format for this kind of 467

information5. 468

In order to use the JSON-LD vocabulary, additional tooling must be used, as there does not 469

exist a direct support in OpenAPI specifications. As a proof-of-concept, in the JSON-LD 470

vocabulary publication, a sample implementation is included to import the vocabulary into a 471

UML design tool. Here the first conversion from JSON-LD to UML is performed. Now the 472

designing of the API can be performed within the UML-Tool. Some assumptions are made 473

how to define which operations should be supported for each of the specified endpoints. 474

Having defined this a second conversion from the UML-Tool to the OpenAPI specification 475

format is performed. 476

3.2.5.3 Using other (standardised) data structures 477

In chapter 2.6 seven dimension of interoperability for WebAPIs are defined. From a global 478

cross-industry perspective, full interoperability can only be achieved if for all of the 479

dimensions the implementation rules are clearly defined. In the context of UN/CEFACT, 480

this means that the UN/CEFACT semantic definitions as well as the UN/CEFACT syntaxes 481

must be used to be fully compliant. 482

However, this NDR specification is syntax-neutral, as it defines basic requirements for the 483

design of an OpenAPI specification in a B2B context. The stipulations in this specification 484

can thus also promote interoperability between APIs that use a different syntax or divergent 485

semantic specifications within a (closed) user group. Therefore, the following rule is 486

defined as a conformance criterion: 487

[R 16|1] 488

A prerequisite for an OpenAPI specification and its implementation to be fully compliant 489

with this NDR TS is the use of UN/CEFACT semantics and UN/CEFACT syntax (e.g. 490

UN/CEFACT XML, UN/CEFACT JSON Schema, and UN/CEFACT Vocabulary). 491

An OpenAPI specification that does not use UN/CEFACT syntax or UN/CEFACT 492

semantics may still be conformant to this NDR TS if it meets the criteria specified in [R 493

1|1]. 494

5 See for example the JSON Finite State Machine in JSON schema format at https://github.com/ryankurte/jfsm

OpenAPI Naming and Design Rules V1.0 2022-09-13

 Page 21 of 59

3.2.6 Operations 495

[R 17|1] 496

Endpoints are RECOMMENDED to support CRUD operations. (Create, Read, Update, 497
Delete). If an endpoint is not intended to support e.g. a delete operation, it SHALL return 498
the HTTP response codes as defined in chapter 3.2.10. 499

HTTP Method Description

GET To retrieve/read a resource.

POST To create a new resource or to execute an operation on a resource

that changes the state of the system e.g. send a message.

PUT To replace a resource with another supplied in the request.

PATCH To perform a partial update to a resource.

DELETE To delete a resource.

HEAD For retrieving metadata about the request, e.g. how many

results would a query return? (Without actually performing the

query). This can be used to follow a link-chain in an HATEOS

implementation as well. An example is shown in chapter 4.3.2.

OPTIONS Used to determine if a CORS (cross-origin resource sharing)

request can be made. This is primarily used in front-end web

applications to determine if they can use APIs directly.

3.2.6.1 Collection of Resources 500

The following operations are applicable for a collection of resources: 501

HTTP

method

Resource

Path
Operation Examples

GET /resources Get a collection of the

resource

GET /employees or

GET /employees?status=open

HEAD /resources Get header and link

information of the

resource collection, e.g.

for pagination

HEAD /employees or

HEAD /employees?birthday=2022-04-16

OpenAPI Naming and Design Rules V1.0 2022-09-13

 Page 22 of 59

Note 502

Creating or updating multiple resource instances in the same request is not standardised and 503

thus should be avoided. There are factors such as receipt acknowledgement and how to 504

handle partial success in a set of batches that must be considered on a case-by-case basis. 505

3.2.6.2 Single Resource 506

The following operations are applicable for a single resource: 507

HTTP method Resource Path Operation

GET /resources/{id} Get the instance corresponding to the resource ID

PUT /resources/{id} To update a resource instance by replacing it –

"Take this new thing and _ put _ it there"

DELETE /resources/{id} To delete the resource instance based on the

resource e.g. id

HEAD /resources/{id} Get header and link information of the resource.

PATCH /resources/{id} Perform changes such as add, update, and delete to

the specified attribute(s). Is used often to perform

partial updates on a resource

3.2.6.3 Idempotency 508

An idempotent HTTP method is an HTTP method that can be called many times without 509

different outcomes. In some cases, secondary calls will result in a different response code, 510

but there will be no change of state of the resource. 511

As an example, when you invoke N similar DELETE requests, the first request will delete 512

the resource and the response will be 200 (OK) or 204 (No Content). Further requests will 513

return 404 (Not Found). Clearly, the response is different from first request, but there is no 514

change of state for any resource on server side because the original resource is already 515

deleted. 516

HTTP Method Is Idempotent

GET True

POST False

OpenAPI Naming and Design Rules V1.0 2022-09-13

 Page 23 of 59

HTTP Method Is Idempotent

PUT True

PATCH False

DELETE True

HEAD True

OPTIONS True

Table 5 – Idempotency of operations 517

 518

[R 18|1] 519

APIs SHALL adhere to the idempotency of operations specified in the list above. 520

 521

[R 19|1] 522

APIs SHOULD implement the Idempotency-Key6 HTTP header field and the corresponding 523

implementation advice in order to make non-idempotent operations like POST and PATCH 524
fault-tolerant. 525

3.2.7 Pagination 526

Querying an API with a GET can theoretically result in a huge return collection. Image 527

querying the API of one of the big internet search engines without pagination. Hundreds of 528

millions of results would have to be downloaded and displayed on a single page. That API 529

would be unusable. Pagination helps to keep the data load to a reasonable amount and at the 530

same time supports security aspects. 531

Historically, many APIs use offset pagination. A maximum page size (e.g. 20) is specified 532

and the clients requests the starting record or the page number. However, this approach 533

leads to fuzzy results: Suppose an API is supposed to return a list of all planned transport 534

movements of a certain carrier ordered by destination. The first page of results is returned 535

accurately. Before the client requests the next page or set of records, three possible things 536

can happen. 537

• The databank does not change at all. Then the next page of records is accurate. 538

6 https://www.ietf.org/archive/id/draft-ietf-httpapi-idempotency-key-header-01.txt

OpenAPI Naming and Design Rules V1.0 2022-09-13

 Page 24 of 59

• A record is added to the database, which falls under the result list of the first page, which 539

the client already received. In that case, the last result of the previous page is returned as 540

the first result of the second page. The list therefore contains a duplicate. 541

• In the opposite case, a planned transport movement that has already been returned to the 542

client on the first page is deleted. The first data record of the second page therefore moves 543

to the previous page. If the client now queries the next page, this data record is not 544

transmitted at all. 545

As an inter-organisational data exchange cannot accept this type of results, an alternative 546

solution for pagination is needed. The solution to this problem is the so called keyset-based 547

or cursor-pagination7. In addition, cursor-pagination is much more time-efficient on large 548

datasets than offset-pagination. 549

[R 20|1] 550

If pagination is used in an API, keyset-based pagination (cursor-pagination) SHALL be 551
used. This means that the consumer cannot request a specific page, instead the consumer 552
has to select a page-link provided by the server. The server SHALL provide links in the 553
HTTP response header to the previous and next page and SHOULD provide links to the 554
first and last page. More links MAY be provided. 555
The cursor-value is a string, created by the server using whatever method it likes. It 556
identifies a point in a list of results for a query containing filters and sorting parameters for 557
a specific moment in time. Therefore, it divides the list into those that fall before the cursor 558
and those that fall after the cursor. There may optionally be one result that falls "on" the 559
cursor. 560

Cursor-pagination assures a consistent data set for a query with filtering/sorting criteria at a 561

specific moment in time. If another consumer performs the same query a moment later, he 562

may get a different data set. 563

[R 21|1] 564

GET requests on collection results SHOULD implement pagination. The default and 565
maximum page size SHOULD be 100, if not specified on the endpoint. If SHOULD be 566
smaller, if the resulting page load is large. The default page size MAY be changed per 567
endpoint. A consumer SHOULD be able to override the default page size. 568
If the filter, sorting and/or page size used is changed when getting a result, the pagination 569
SHALL BE reset to the first page. 570
The query parameters described in the following table SHALL be used, rules SHALL be 571
applied. 572

7 https://jsonapi.org/profiles/ethanresnick/cursor-pagination/, https://medium.com/swlh/how-to-implement-

cursor-pagination-like-a-pro-513140b65f32

https://jsonapi.org/profiles/ethanresnick/cursor-pagination/

OpenAPI Naming and Design Rules V1.0 2022-09-13

 Page 25 of 59

Type Explanation Example

Page size Overrides the default page size

defined by the server /

specification.

Example for the first query:

GET /transportMovements?

 carrier=ABC

 &status=PLANNED

 &sort=estimatedTimeOfArrival

 &pageSize=50

Current page A link to the current page. Link: <https://api.unece.org/

 transportMovements?

 cursor=XXX>;

 rel="current"

First page A link to the first page. If it is the

first page the link MAY be

omitted.

Link: <https://api.unece.org/

 transportMovements?

 cursor=XXX>; rel="first"

Next page A link to the next page. If it is the

last page, the link to the next page

MAY be omitted. Otherwise, a

null link shall be provided.

Link: <https://api.unece.org/

 transportMovements?

 cursor=XXX>; rel="next"

Link: <null>; rel="next"

Previous page A link to the previous page. If it is

the first page, the link to the

previous page MAY be omitted.

Otherwise, a null link shall be

provided.

Link: <https://api.unece.org/

 transportMovements?

 cursor=XXX>; rel="prev"

Last page A link to the last page. If it is the

last page, the link to the last page

MAY be omitted. Otherwise, a

null link shall be provided.

Link: <https://api.unece.org/

 transportMovements?

 cursor=XXX>; rel="last"

When multiple links are given, they are separated by comma. 573

Example for a combination of Links: 574

Link: 575

 <https://api.unece.org/transportMovements?cursor=XXX>; rel="current", 576

 <https://api.unece.org/transportMovements?cursor=YYY>; rel="first", 577

OpenAPI Naming and Design Rules V1.0 2022-09-13

 Page 26 of 59

 <https://api.unece.org/transportMovements?cursor=ZZZ>; rel="next", 578

 <https://api.unece.org/transportMovements?cursor=LLL>; rel="last" 579

 580

3.2.8 Filtering 581

Providing the ability to filter and sort collections in an API allows your consumers greater 582

flexibility and controls on how they choose to consume a conformant API. 583

[R 22|1] 584

Sorting and filtering SHALL be done using query parameters. Using a path parameter is 585

only allowed to identify a specific resource. 586

3.2.8.1 Output Selection 587

Consumers can specify the attributes they wish to return in the response payload by 588

specifying the attributes in the query parameters 589

Example that returns only the first_name and last_name fields in the response: 590

?attributes=first_name,last_name 591

3.2.8.2 Simple Filtering 592

Attributes can be used to filter a collection of resources. 593

?last_name=Citizen will filter out the collection of resources with the 594

attribute last_name that matches Citizen. 595

?last_name=Citizen&date_of_birth=1999-12-31 will filter out the 596

collection of resources with the attribute last_name that 597

matches Citizen and date_of_birth that matches 31st of December 1999. 598

[R 23|1] 599

As a general guide, filtering SHOULD be done with case insensitivity. Whether you choose 600

to filter with case insensitivity or not SHALL be clearly documented. 601

The equal = operator is the only supported operator when used in this technique. For other 602

operators and conditions next section. 603

3.2.8.3 Advanced filtering with LHS Operators 604

There are situations where simple filtering does not meet the needs and a more 605

comprehensive approach is required. Use the reserved keyword filters to define a more 606

complex filtering logic. The general pattern is 607

/path?property[operator]=value&property[operator]=value 608

OpenAPI Naming and Design Rules V1.0 2022-09-13

 Page 27 of 59

The = sign in this case is there to maintain URL query string compatibility with RFC 3986. 609

However, the API service will use the operator inside the brackets for the actual 610

comparison. A logical AND combines all query conditions. 611

The following operators are supported: 612

• [gte] Greater than or equalled to 613

• [egt] Equalled to or greater than 614

• [gt] Greater than 615

• [lt] Less than 616

• [lte] Less than or equalled to 617

• [elt] Equalled to or less than 618

• [ne] Not equalled 619

Example for filtering with LHS attributes: 620

/path?creation_date[gt]=2020-11-30 621

3.2.8.4 Rich Query with Lucene Syntax 622

[R 24|1] 623

If an application needs to support a richer search and filter capability that includes logical 624

operators, fuzzy search, grouping, and so on, API MAY apply a query string according to 625

lucene query syntax8. In that case, the filtering and query parameters normally are 626

transmitted in the request body. 627

3.2.8.5 GraphQL 628

When API implementers would like to allow their clients rich flexibility to define response 629

data sets that might include data from multiple APIs with rich filtering capability then a 630

GraphQL query interface could be provided. GraphQL is a different architecture to 631

RESTful APIs, is especially tailored to queries across multiple entities, and allows clients to 632

specify exactly which data elements they would like in the response. If you find yourself 633

building very complex RESTful queries then you should consider GraphQL as an 634

alternative. 635

GraphQL is not discussed further in this RESTful API design guide. 636

3.2.9 Sorting 637

Providing data in specific order is often the requirement from client applications and hence 638

it is important to provide the flexibility for clients to retrieve the data in the order they need 639

it. 640

[R 25|1] 641

8 https://lucene.apache.org/core/2_9_4/queryparsersyntax.html

https://lucene.apache.org/core/2_9_4/queryparsersyntax.html

OpenAPI Naming and Design Rules V1.0 2022-09-13

 Page 28 of 59

Sorting SHOULD be limited to specified fields. The sort direction MAY be omitted. The 642

default sort direction is ascending. A colon : is used to separate the field name and the sort 643

direction. Multiple sort fields are separated by comma , . 644

Query Parameter Description

sort=name

sort=name:asc

Sort by the name field in ascending order.

sort=name:desc Sort by the name field in descending order.

sort=yearOfBirth,name:dec Sort by year of birth in ascending order. If two equal

years exist, sort the names by birth year in descending

order.

Table 6: Sort examples 645

3.2.10 API Responses and error handling 646

[R 26|1] 647

HTTP response codes SHALL be used. 648

The following table defines HTTP response codes supported by conformant APIs. The 649

column Response indicates whether an additional error response payload is 650

RECOMMENDED to be returned as described in chapter 0. 651

 652

Code Status Response When to use

200 OK No The request was successfully processed

201 Created No The resource was created. The Location HTTP response

header SHALL be returned to indicate where the newly

created resource is accessible.

202 Accepted No The request was accepted, and is processed

asynchronously.

204 No content No The server successfully processed the request and is not

returning any content. There is no need for the client to

move to a different location.

400 Bad Request Yes The server cannot process the request (such as malformed

request syntax, size too large, invalid request message

OpenAPI Naming and Design Rules V1.0 2022-09-13

 Page 29 of 59

Code Status Response When to use

framing, or deceptive request routing, invalid values in

the request). For sensitive information, a code 404 Not

found MAY be returned instead.

401 Unauthorised Yes The request could not be authenticated. For sensitive

information, a code 404 Not found MAY be returned

instead.

403 Forbidden Yes The request was authenticated but is not authorised to

access the resource. For sensitive information, a code 404

Not found MAY be returned instead.

404 Not found Yes The resource was not found.

405 Not Allowed

The method is not implemented for this resource. The

response MAY include an Allow HTTP response header

containing a list of valid methods for the resource.

408 Request

Timeout

No The request timed out before a response was received. A

Retry-After HTTP response header is

RECOMMENDED to be returned.

415 Unsupported

Media Type

Yes This status code indicates that the server refuses to accept

the request because the content type specified in the

request is not supported by the server

422 Unprocessable

Entity

 This status code indicates that the server understands the

content type of the request entity, and the syntax of the

request entity is correct, but it was unable to process the

contained instructions.

429 Too Many

Requests

 There have been too many requests (by the consumer). A

Retry-After HTTP response header is

RECOMMENDED to be returned. A response body

MAY be returned containing information about the

reason for the response code. A possible reason may be if

a quota of requests for the day / hour / month etc. was

exceeded.

OpenAPI Naming and Design Rules V1.0 2022-09-13

 Page 30 of 59

Code Status Response When to use

500 Internal Server

error

 An internal server error. The response body may contain

error messages. The response body SHALL not reveal

any server configuration information (e.g. version, paths,

database used, etc.).

501 Method Not

Implemented

 It indicates that the request method is not supported by

the server and cannot be handled for the requested

resource. Implementing this response code allows a

higher interoperability between API implementations

based on the same specification, if a specific server does

not support one of the specified methods (yet). A Link

HTTP response header is RECOMMENDED to point to

the specific documentation.

503 Service

unavailable

It indicates that the service is unavailable (e.g. due to

maintenance reasons). A Retry-After HTTP response

header is RECOMMENDED to be returned.

Table 7: HTTP response codes 653

[R 27|1] 654

The following table defines which HTTP response codes SHALL be supported for a 655

specific HTTP request method by conformant APIs. Column Use indicates how a 656

conformant API supports the specified http response code: 657

- M the code SHALL be supported 658

- MA SHALL be supported for requests where the response is handled asynchronous, for 659

instance due to forwarding or processing time. In that case, a Location HTTP response 660

header SHALL be gives that points to the respective resource. In addition, a Retry-661

After HTTP response header is RECOMMENDED to be returned. 662

- R the code is recommended to be supported. 663

The default response code for a positive response is marked in bold. 664

 665

HTTP

Request method Code Status Use

GET

200 OK M

 202 Accepted MA

 400 Bad Request R

OpenAPI Naming and Design Rules V1.0 2022-09-13

 Page 31 of 59

HTTP

Request method Code Status Use

 401 Unauthorised M

 403 Forbidden M

 404 Not found M

 405 Not Allowed M

 408 Request Timeout R

 415 Unsupported Media Type M

 429 Too Many Requests R

 500 Internal Server error M

 503 Service unavailable R

POST

201 Created M

 202 Accepted MA

 400 Bad Request M

 401 Unauthorised M

 403 Forbidden M

 408 Request Timeout R

 415 Unsupported Media Type M

 422 Unprocessable Entity R

 429 Too Many Requests R

 500 Internal Server error M

 503 Service unavailable R

PATCH

202 Accepted MA

 204 No content M

 400 Bad Request M

 401 Unauthorised M

 403 Forbidden M

 404 Not found M

 405 Not Allowed M

 408 Request timeout R

 415 Unsupported Media Type M

 422 Unprocessable Entity M

 429 Too Many Requests R

 500 Internal Server error M

 503 Service unavailable R

PUT

202 Accepted MA

 204 No content M

 400 Bad Request M

 401 Unauthorised M

 403 Forbidden M

OpenAPI Naming and Design Rules V1.0 2022-09-13

 Page 32 of 59

HTTP

Request method Code Status Use

 404 Not found M

 405 Not Allowed M

 408 Request Timeout R

 415 Unsupported Media Type M

 422 Unprocessable Entity M

 429 Too Many Requests R

 500 Internal Server error M

 503 Service unavailable R

DELETE

202 Accepted MA

 204 No content M

 400 Bad Request M

 401 Unauthorised M

 403 Forbidden M

 404 Not found M

 405 Not Allowed M

 408 Request timeout R

 415 Unsupported Media Type M

 422 Unprocessable Entity M

 429 Too Many Requests R

 500 Internal Server error M

 503 Service unavailable R

 666

OpenAPI Naming and Design Rules V1.0 2022-09-13

 Page 33 of 59

3.2.11 Error Response Payload 667

For some errors, returning the HTTP status code is enough to convey the response. 668

Additional error information can be supplemented in the response body. For example; 669

HTTP 400 Bad request is considered too generic for a validation error and more information 670

must be provided in the response body. 671

[R 28|1] 672

An API SHALL implement an error response schema to allow a standardised error 673

handling. The response SHALL use the following JSON Schema. The JSON Schema MAY 674

be extended. 675

{ 676

 "$schema": "https://json-schema.org/draft/2020-12/schema", 677

 "type": "object", 678

 "properties": { 679

 "errors": { 680

 "type": "array", 681

 "items": { 682

 "type": "object", 683

 "properties": { 684

 "id": { "type": "string", 685

 "format": "uuid" }, 686

 "code": { "type": "string" }, 687

 "detail": { "type": "string" }, 688

 "source": { 689

 "type": "object", 690

 "properties": { 691

 "parameter": { "type": "string" }, 692

 "pointer": { "type": "string", 693

 "format": "json-pointer" } 694

 }, 695

 "unevaluatedProperties": false 696

 }, 697

 "sourcePointer": { "type": "string", 698

 "format":"json-pointer"} 699

 }, 700

 "required": ["code", "detail"], 701

 "patternProperties": { "^x-": true }, 702

 "unevaluatedProperties": false 703

 }, 704

 "minItems": 1 705

 } 706

 }, 707

 "required": ["errors"], 708

 "patternProperties": { "^x-": true }, 709

 "unevaluatedProperties": false 710

} 711

OpenAPI Naming and Design Rules V1.0 2022-09-13

 Page 34 of 59

The following definitions are applied: 712

Error response

attributes Description

id Identifier of the specific error

detail A human-readable explanation specific to this occurrence of the

problem.

code An application-specific error code

source An object containing computer processable information about

the origin of the error.

 parameter The (query) parameter where the error was caused.

 pointer JSON Pointer [RFC6901] to the associated entity in the request

document [e.g. "/data" for a primary data object, or

"/data/attributes/title" for a specific attribute].

Table 8: Error response attributes 713

Example for a 400 Bad Request error response: 714

{ 715

 "errors": [716

 { 717

 "id": "86032cbe-a804-4c3b-86ce-ec3041e3effc", 718

 "code": "19283", 719

 "detail": "Invalid value(s) in request input", 720

 "source": { 721

 "parameter": "id" 722

 } 723

 } 724

] 725

} 726

Example for a 503 Service unavailable error response: 727

Retry-After: Sat, 16 Apr 2022 15:00:00 GMT 728

{ 729

 "errors": [730

 { 731

 "id": "45786a8f-452e-492f-a779-801b5d0bd0a7", 732

 "code": "19284", 733

OpenAPI Naming and Design Rules V1.0 2022-09-13

 Page 35 of 59

 "detail": "The service is unavailable due to maintenance. Come back 734

at 15:00 GMT.", 735

 "source": { 736

 "pointer": "#/resources/12345" 737

 } 738

 } 739

] 740

} 741

3.2.12 Design rule examples 742

Good examples 743

Get a list of voyages: 744
GET https://api.logistics.io/v1/transport/voyages 745

Filtering in a query: 746
GET https://api.logistics.io/v1/transport/voyages?departure_location=AUBN747

E&date=2022-04-16 748

Get a single voyage: 749
GET https://api.logistics.io/v1/transport/voyages/N234 750

Create a new voyage: 751
POST https://api.logistics.io/v1/transport/voyages 752

{content body with voyage data in JSON format} 753

Update a voyage status: 754
PATCH https://api.logistics.io/v1/transport/voyages/N234/status 755

{content body status data in JSON format} 756

OpenAPI Naming and Design Rules V1.0 2022-09-13

 Page 36 of 59

4 Well-documented APIs 757

4.1 General considerations 758

[R 29|1] 759

The following rules are RECOMMENDED: 760

- The definitions in a conformant OpenAPI specification SHALL be considered as 761

technical contracts between designers and developers and between consumers and 762

providers. 763

- Mock APIs SHOULD be created using the API description to allow early code 764

integration for development. 765

- The behaviour and intent of the API SHOULD be described with as much information 766

as possible. 767

- Operations SHOULD provide examples for request and response bodies. 768

- Expected response codes and error messages SHOULD be provided in full. 769

- Known issues or limitations SHOULD be clearly documented. 770

- Expected performance, uptime and SLA/OLA SHOULD be clearly documented. 771

- Although YAML is a supported file format of an OpenAPI specification, the JSON 772

format SHOULD be used as the OpenAPI specification format. 773

4.2 API Versioning 774

4.2.1 Versioning Scheme 775

[R 30|1] 776

All APIs SHALL apply Semantic versioning 2.0.09: 777

MAJOR.MINOR.PATCH 778

The first version of an API SHALL start with a MAJOR version of 1. 779

Pre-release version10 information and build metadata11 version information SHALL NOT be 780

used in API versioning. 781

Use the following guidelines when incrementing the API version number: 782

9 https://semver.org/spec/v2.0.0.html
10 https://semver.org/spec/v2.0.0.html#spec-item-9
11 https://semver.org/spec/v2.0.0.html#spec-item-10

OpenAPI Naming and Design Rules V1.0 2022-09-13

 Page 37 of 59

• MAJOR version when you make API changes that break backwards-compatibility, 783
• MINOR version when you add functionality in a backwards-compatible manner, 784

and 785
• PATCH version when you make backwards-compatible bug fixes. A PATCH does 786

not include new functionality. 787

4.2.2 URI Versioning 788

[R 31|1] 789

All APIs SHALL use URI versioning. They SHALL include the MAJOR version as part of 790
the URI in the format of 'v{MAJOR}' 791

Example: 792

https://api.logistics.io/transport/v1/voyages 793

The minor and patch version SHALL NOT be used in the URI. 794

4.2.3 Providing version information 795

APIs conforming to this technical specification are intended to be used with REST 796

principles. Those mandate HATEOS (see chapter 4.3.2) support. On major aspect is the 797

self-descriptiveness of an API. Although a support of HATEOS is not required, providing 798

basic metadata about the called API including version information is useful even in not 799

RESTful scenarios. 800

[R 32|1] 801

A custom header named API-Version SHALL be added to any response of the API. It 802

SHALL be aligned with the URI version and SHALL state all three levels: 803

API-Version: 1.21.5 804

 805

[R 33|1] 806

An API-Version custom header MAY be added to a request. If added, it SHALL only 807

contain the MAJOR version. 808

API-Version: 1 809

In order to easily provide information about an API in a standardised way, the following 810

information can be retrieved from any conformant API: 811

[R 34|1] 812

An API SHALL implement a response to a GET request to the base URI of the API. The 813

response SHALL use the following JSON Schema: 814

{ 815

 "$schema": "https://json-schema.org/draft/2020-12/schema", 816

 "type": "object", 817

 "properties": { 818

 "title": { "type": "string" }, 819

OpenAPI Naming and Design Rules V1.0 2022-09-13

 Page 38 of 59

 "version": { 820

 "type": "string", 821

 "pattern": "^\\d+(-.+)?\\.\\d+(-.+)?\\.\\d+(-.+)?$" 822

 }, 823

 "status": { 824

 "type": "string", 825

 "enum": ["DRAFT", "ACTIVE", "DEPRECATED", "RETIRED"] 826

 }, 827

 "effective": { 828

 "type": "string", 829

 "format": "date-time" 830

 }, 831

 "specification": { 832

 "type": "string", 833

 "format": "uri" 834

 } 835

 }, 836

 "required": [837

 "title", "version", "status", "effective", "specification" 838

], 839

 "$comment" : "Allow extensions to the API metadata", 840

 "patternProperties": { 841

 "^x-": true 842

 }, 843

 "unevaluatedProperties": false 844

} 845

The following definitions are applied: 846

• title: The name of the API. It SHALL be identical to the API title defined in the 847
OpenAPI specification 848

• version: The API version 849
• status: The operation status of the API. The following values are used: 850

o ACTIVE: The API is in its productive phase. Maintenance or deprecation of 851
specific services SHALL be indicated at the service level. The effective 852
defines the moment in the past since when API is in its productive phase. 853

o DEPRECATED: The complete API is going to its end-of-life phase. The 854
effective defines the moment in the future when the API is intended to 855
switch to RETIRED. The rules of deprecation (see chapter 4.2.5) are applied 856
additionally. 857

o RETIRED: The complete API is to its end-of-life phase. The effective defines 858
the moment in the past when the API was set to RETIRED. The rules of 859
deprecation (see chapter 4.2.5) are applied additionally. 860

• effective: The moment in time corresponding to the status. 861
• specification: A valid URI to the OpenAPI specification of the current API. This 862

way the available services and data types become self-descriptive from their basic 863
structure. The OpenAPI specification SHOULD be public where possible and easily 864
accessible to those that require it. 865

Additional metadata can be added to the response if required. 866

OpenAPI Naming and Design Rules V1.0 2022-09-13

 Page 39 of 59

Example: 867

GET https://api.uncefact.unece.org/v1/ 868

HTTP 200 OK 869

content-type: application/json; charset=utf-8 870

API-Version: 1.0.0 871

{ 872

 "title": "UN/CEFACT Demo API", 873

 "version": "1.0.0", 874

 "status": "ACTIVE", 875

 "effective": "2022-06-02T23:00:00Z", 876

 "specification": "https://service.unece.org/demo/demoAPI.json", 877

 "x-info" : "Additional information" 878

} 879

During the draft, development or testing phase of an API sandbox environments are used to 880

validate the intended functionality. For those kinds of APIs in development no additional 881

state like DRAFT is provided. 882

[R 35|2] 883

APIs that are still in a DRAFT status SHOULD be placed in a sandbox environment. This 884

could be done by changing the basis URL accordingly. 885

Example for a productive base URL: 886

https://api.uncefact.unece.org/v1/ 887

Examples for a development base URL: 888

https://sandbox.api.uncefact.unece.org/v1/ 889

https://staging.api.uncefact.unece.org/v1/ 890

4.2.4 Robustness12 891

It is critical that APIs are developed with loose coupling in mind to ensure backwards 892

compatibility for consumers. 893

[R 36|1] 894

Within a major release backward compatibility SHALL NOT be broken. 895

The following changes are deemed backwards compatible: 896

• Addition of a new optional field to a representation 897
• Addition of a new link to the _links array of a representation 898
• Addition of a new endpoint to an API 899
• Additional support of a new media type (e.g. Accept: application/pdf) 900

12 https://en.wikipedia.org/wiki/Robustness_principle

https://api.uncefact.unece.org/v1/

OpenAPI Naming and Design Rules V1.0 2022-09-13

 Page 40 of 59

The following changes are NOT deemed backwards compatible: 901

• Removal of fields from representations 902
• Changes of data types on fields (e.g. string to boolean) 903
• Changing semantic definitions 904
• Removal of endpoints or functions 905
• Removal of media type support 906

 907

[R 37|1] 908

API clients and subscribers SHOULD be robust: 909

- Be conservative with API requests and data passed as input. 910

- Be tolerant with unknown fields in the payload, but do not eliminate them from payload 911

if needed for subsequent PUT requests. 912

4.2.5 Deprecation and End of Life Policy 913

When designing new APIs one of the most important dates to consider is when the API will 914

be retired. APIs are not intended to last forever. Some APIs are retired after a short time as 915

they may be proving a use-case; others may be removed when better options are available 916

for users. 917

The End-of-Life (EOL) policy determines the process that APIs go through to move 918

through their workflow from ACTIVE to the RETIRED state. The EOL policy is designed to 919

ensure a consistent and reasonable transition period for API customers who need to migrate 920

from the old API version to the new API version while enabling a healthy process to retire 921

technical debt. 922

Major API Version EOL 923

Major API versions MAY be backwards compatible with preceding major versions. The 924

following rules apply when retiring a major API version. 925

[R 38|1] 926

An API SHALL NOT be set to DEPRECATED until a replacement service is running with 927

status ACTIVE. 928

The root service of the API SHALL provide the Deprecation Header Field13 and the Sunset 929

HTTP Response Header Field14. 930

A Link header SHALL be added in combination with the Deprecation header. It SHALL 931

provide a link to the documentation. A second Link header SHALL be added linking to the 932

replacement version of the API. 933

Additionally, the following thoughts should be considered: 934

13 https://tools.ietf.org/html/draft-dalal-deprecation-header-02
14 https://tools.ietf.org/html/rfc8594#section-3

OpenAPI Naming and Design Rules V1.0 2022-09-13

 Page 41 of 59

1. A minimum transition period of 60 days should be planned to give users adequate 935
notice to migrate. 936

2. Deprecation of API versions with external users should be considered on a case-by-937
case basis and may require additional deprecation time and/or constraints to 938
minimise impact to users. 939

3. If a versioned API is ACTIVE or DEPRECATED state has no registered users, it may move 940
to the RETIRED state immediately. 941

 942

[R 39|1] 943

Deprecated endpoints SHALL be documented in the OpenAPI specification using the 944

DEPRECATED property introduces since OpenAPI 3.0.0. 945

Deprecated endpoints SHOULD provide the Deprecation Header Field and the Sunset 946

HTTP Response Header Field. 947

A Link header SHALL be added in combination with the Deprecation header. It SHALL 948

provide a link to the documentation. 949

Where possible, communication SHOULD be sent to consumers of deprecated endpoints. 950

 951

[R 40|1] 952

The introduction of a major version SHOULD be avoided, whenever possible. This MAY 953

be achieved as follows: 954

- Create a new service endpoint, if the process is changed. 955

Duplicate and Deprecate: add a Deprecation Header to the old service including a Link 956

Header to documentation and to the new service. Eventually add a Sunset Header. 957

- Create a new resource (a variant of the old) in addition to the old. 958

Minor API Version EOL 959

Due to the specified URL versioning the URL does not change if the minor version of an 960

API changes. Minor API versions are backwards compatible with preceding minor versions 961

within the same major version. 962

Therefore, the status before, during or after a minor API version update does not change. 963

The change should have no impact on existing subscribers so there is no need to transition 964

through a DEPRECATED state to facilitate client migration. 965

[R 41|2] 966

New resources or service endpoints can be added during a minor release. In order to support 967

the implementation of those new services a sandbox environment SHOULD be provided to 968

the interested or affected consumers. 969

 970

[R 42|1] 971

OpenAPI Naming and Design Rules V1.0 2022-09-13

 Page 42 of 59

It is RECOMMENDED that no more than 3 parallel MAJOR versions are available. 972

Implementers of the API SHALL NOT be more than 1 major version behind the latest 973

version. 974

Example 975

Version 1 is RETIRED 976

Version 2 is DEPRECATED 977

Version 3 is ACTIVE 978

OpenAPI Naming and Design Rules V1.0 2022-09-13

 Page 43 of 59

4.3 Hypermedia 979

4.3.1 Hypermedia - Linked Data 980

An API becomes RESTful by meeting the requirements of the REST principles. A key 981

principle is the discoverability of the API. Ideally, this is achieved by an API being 982

completely self-describing. According to the inventor of REST, Roy Fielding15, the use of 983

hypermedia is a prerequisite for designing a RESTful API. 984

Hypermedia means that links are provided together with the response payload. They inform 985

the consumers what options are available according to their original request. Though simple 986

in concept hypermedia links in APIs, allow consumers to locate resource without the need 987

to have an upfront understanding of the resource and its relationship. 988

This is similar to the navigation of a web page. The user is not expected to know the 989

structure of the web page prior to visiting. They can simply browse to the home page and 990

the navigation lets them browse the site as required. 991

APIs that do not provide links are more difficult to use and expect the consumer to refer to 992

the documentation. 993

4.3.2 HATEOAS 994

Hypermedia As The Engine Of Application State is the concept of representing allowable 995

actions as hyperlinks associated with resource. Similar to Hypermedia Linked Data concept 996

the links defined in the response data represents state transitions that are available from that 997

current state to adjacent states. 998

Example: 999

HEAD /v1/accounts/4711 1000

HTTP/1.1 200 OK 1001

Link: <https://api.unece.org/v1/accounts/4711>; rel="self", 1002

 <https://api.unece.org/v1/accounts/4711/deposit>; rel="deposit", 1003

 <https://api.unece.org/v1/accounts/4711/withdraw>; rel="withdraw", 1004

 <https://api.unece.org/v1/accounts/4711/transfer>; rel="transfer" 1005

If the same account is overdrawn, the only allowed action could be to deposit: 1006

 1007

15 https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation_2up.pdf

OpenAPI Naming and Design Rules V1.0 2022-09-13

 Page 44 of 59

Example: 1008

GET /v1/accounts/4711 1009

HTTP/1.1 200 OK 1010

Link: <https://api.unece.org/v1/accounts/4711>; rel="self", 1011

 <https://api.unece.org/v1/accounts/4711/deposit>; rel="deposit" 1012

Content-Type: application/json 1013

Content-Length: ... 1014

{ 1015

 "accountId": "4711", 1016

 "balance": { 1017

 "currency": "EUR", 1018

 "value": -25 1019

 } 1020

} 1021

4.3.3 Hypermedia Compliant API 1022

In APIs, request methods such as DELETE, PATCH, POST and PUT initiate a transition in 1023

the state of a resource. A GET request never changes the state of the resource that is 1024

retrieved. 1025

[R 43|1] 1026

In order to provide a better experience for API consumers, APIs SHOULD provide a list of 1027

state transitions that are available for each resource. As possible values for link relation 1028

types the official IANA registry list16 SHALL be used. It MAY be extended. Any extension 1029

SHALL be documented in the API specification. 1030

An example of an API that exposes a set of operations to manage a user account lifecycle 1031

and implements the HATEOAS interface constraint is as follows: 1032

A client starts their interaction with a service through the URI /users. This fixed URI 1033

supports both GET and POST operations. The client decides to do a POST operation to 1034

create a user in the system. 1035

Request 1036

POST https://api.unece.org/v1/v1/users 1037

{ 1038

 "firstName": "John", 1039

 "lastName" : "Smith", 1040

16 https://www.iana.org/assignments/link-relations/link-relations.xhtml

OpenAPI Naming and Design Rules V1.0 2022-09-13

 Page 45 of 59

 ... 1041

} 1042

The API creates a new user from the input and returns the following links to the client in the 1043

response. 1044

• A link to the created resource in the Location header (to comply with the 201 response 1045

spec) 1046

• A link to retrieve the complete representation of the user (a.k.a. self-link) (GET). 1047

• A link to update the user (PUT). 1048

• A link to partially update the user (PATCH). 1049

• A link to delete the user (DELETE). 1050

HTTP/1.1 201 CREATED 1051

Location: https://api.unece.org/v1/users/JFWXHGUV7VI 1052

Link: <https://api.unece.org/v1/users/JFWXHGUV7VI>, rel="self", 1053

 <https://api.unece.org/v1/users/JFWXHGUV7VI>, rel="delete", 1054

 <https://api.unece.org/v1/users/JFWXHGUV7VI>, rel="replace", 1055

 <https://api.unece.org/v1/users/JFWXHGUV7VI>, rel="edit" 1056

A client can store these links in its database for later use. 1057

In summary: 1058

• There is a well-defined index or navigation entry point for every API, which a client 1059
navigates to in order to access all other resources. 1060

• The client does not need to build the logic of composing URIs to execute different 1061
requests or code any kind of business rule by looking into the response details that 1062
may be associated with the URIs and state changes. 1063

• The client acknowledges the fact that the process of creating URIs belongs to the 1064
server. 1065

• Client treats URIs as opaque identifiers. 1066
• APIs using hypermedia in representations could be extended seamlessly. As new 1067

methods are, introduced responses could be extended with relevant HATEOAS 1068
links. These way clients could take advantage of the functionality in incremental 1069
fashion. For example, if the API starts supporting a new PATCH operation then 1070
clients could use it to do partial updates. 1071

The mere presence of links does not decouple a client from having to learn the data required 1072

making requests for a transition and all associated link semantics particularly 1073

for POST/PUT/PATCH operations. 1074

OpenAPI Naming and Design Rules V1.0 2022-09-13

 Page 46 of 59

5 API Security 1075

[R 44|1] 1076

All API endpoints SHALL be secured. HTTPS SHALL be used. The OAUTH2 security 1077

scheme is RECOMMENDED. Other security schemes MAY be used. 1078

The receivers’ endpoints of subscription callbacks MAY be designed with different security 1079

measures like those described in chapter 6.3. 1080

The following aspects of API security are RECOMMENDED to be implemented: 1081

Rate Limiting 1082

Rate limiting and throttling policies are introduced to prevent abuse of your API. 1083

Appropriate alerts should be implemented and respond with informative errors when 1084

thresholds are nearing or have been exceeded. See https://greenbytes.de/tech/webdav/draft-1085

ietf-httpapi-ratelimit-headers-latest.html for implementation details. 1086

Error Handling 1087

When your application displays error messages, it should not expose information that could 1088

be used to attack your system. You should establish the following controls when providing 1089

error messages: 1090

• Your API MUST mask any system related errors behind standard HTTP status 1091
responses and error messages e.g. do not expose system level information in your 1092
error response 1093

• Your API MUST NOT pass technical details (e.g. call stacks or other internal hints) 1094
to the client 1095

Audit Logs 1096

An important aspect of security is to be notified when something wrong occurs, and to be 1097

able to investigate it. It is RECOMMENDED to implement logging. 1098

• Write audit logs before and after security related events which can trigger the alerts 1099
• Sanitizing the log data to prevent log injection attacks 1100

Input Validation 1101

Input validation is performed to ensure only properly formed data is received by your 1102

system, this helps to prevent malicious attacks 1103

• Input validation should happen as early as possible, preferably as soon as the data is 1104
received from the external party 1105

• Define an appropriate request size limit and reject requests exceeding the limit 1106
• Validate input: e.g. length / range / format and type 1107
• Consider logging input validation failures. Assume that someone who is performing 1108

hundreds of failed input validations per second has a malicious intent. 1109
• Constrain string inputs with regular expression where appropriate 1110

Content Type Validation 1111

https://greenbytes.de/tech/webdav/draft-ietf-httpapi-ratelimit-headers-latest.html
https://greenbytes.de/tech/webdav/draft-ietf-httpapi-ratelimit-headers-latest.html

OpenAPI Naming and Design Rules V1.0 2022-09-13

 Page 47 of 59

Honour the specified content-type. Reject requests containing unexpected or missing 1112

content type headers with HTTP response status 415 Unsupported Media Type. 1113

Gateway Security Features 1114

It is RECOMMENDED to use the security policy features available in the gateway rather 1115

than to implement the policies in your back-end API. 1116

 1117

OpenAPI Naming and Design Rules V1.0 2022-09-13

 Page 48 of 59

6 Event driven data exchange 1118

Classic B2B data exchange scenarios reach their limits especially when it comes to 1119

processing real-time data. For example, one of the most important pieces of information in 1120

just-in-time production is the expected arrival time (ETA) at the factory. PULL scenarios 1121

are often implemented, where the consumer periodically asks the data sender for the current 1122

status of the delivery. Alternatively, the carrier sends a status message at regular but short 1123

intervals on the current status of the delivery with detailed information for each 1124

consignment item. This leads to tremendous amounts of data, so that in practice the 1125

minimum interval of such updates is about 15 minutes. Thus, in such scenarios, real-time 1126

information is a long way off. 1127

One approach to solving this problem is now to define events when they occur and 1128

exchange the data instead of constantly exchanging (less relevant) information. This could 1129

be the case, for example, if a geo-fence is crossed, a temperature is exceeded or not reached, 1130

or a clearance takes longer than it is intended. In the consumer space, such scenarios are 1131

already familiar, for example, when the buyer of an online delivery is notified that the 1132

package is only 10 stops away from delivery. 1133

 1134

Figure 1: Event driven data exchange – pull versus push method 1135

6.1 Callbacks 1136

In OpenAPI, you can define callbacks. Those are asynchronous requests to a consumer 1137

specified URL that are called in response to a specific event. An example is that a carrier is 1138

informed if a specific vessel approaches a port. 1139

Subscription

Push-Method Pull-Method

Client Server

Geo-fence reached?

No

Geo-fence reached?

Yes

Geo-fence reached?

No

Client Server

Geo-fence reached!

Feedback

OpenAPI Naming and Design Rules V1.0 2022-09-13

 Page 49 of 59

In order to be able to receive this information, the receiver first needs to subscribe to this 1140

event information in the API. When subscribing, he may pass filter criteria that define the 1141

conditions under which the consumer will be informed. Examples are a specific journey 1142

where the consumer wants to get informed if it approaches a specific port. 1143

The basic principle is that a consumer subscribes for an event, supplies a (callback) URL 1144

and stands by for incoming HTTP requests to that URL. 1145

6.2 Webhooks 1146

Since OpenAPI 3.1, webhooks are supported as well. The main difference between 1147

callbacks and webhooks is that webhooks are synchronous to the process flow handled by 1148

the APIs. This means that a consumer can directly hook into the process and thus, if 1149

necessary, change the processed information before it is further processed. A webhook is 1150

used to extend the functionality of the API. 1151

A webhook defines a clear point in the process where the consumer is enabled to react on, 1152

for example based on some external event. An example is if you want to react immediately 1153

on any incoming order/payment etc. The payload itself is given with the webhook and often 1154

allows modifications. Examples are the option to link to a GitHub push event or to define a 1155

plugin for the WordPress content management system. The latter modifies for example the 1156

displayed HTML page directly by adding new functionalities like images, tables, videos or 1157

similar to the HTML page. Such modifications would not be possible with an asynchronous 1158

callback. 1159

6.3 Security guideline for callbacks (informative) 1160

Since webhooks work synchronously, the same security rules apply to them as to the entire 1161

API. In contrast, the call direction is reversed for asynchronous callbacks. This makes it 1162

important to ensure that the callback URL is only called from the authorized API. 1163

The following rules are based on the current approach of the DCSA. They are in the trial 1164

phase at the time of publication of this document. As soon as sufficient practicality has been 1165

demonstrated, this specification will be updated accordingly. Against this background, the 1166

following rules are purely informative and not normative. 1167

 1168

[R 45|1+Inf] 1169

All event subscriptions SHALL be secured via a Shared Secret that is used to sign every 1170

callback message as described in this section. The secret SHALL be provided BASE64 1171

encoded. The provider SHALL NOT expose the secret in any endpoint. It is write-only. 1172

The provider SHALL assure that the secret fulfils the security requirements of the applied 1173

algorithm. 1174

OpenAPI Naming and Design Rules V1.0 2022-09-13

 Page 50 of 59

[R 46|2+Inf] 1175

A sha256 signature SHALL be used computed as an HMAC-SHA246 over the request 1176

body17. The subscriber provided Shared Secret SHALL be of at least 32-byte length. It 1177

SHOULD not be longer than 64 byte, as longer keys do not provide additional security to 1178

that algorithm. 1179

To improve security, it is RECOMMENDED to update the secret (and together with it the 1180

callbackURL) on a regular basis. 1181

[R 47|1+Inf] 1182

The publisher API SHALL provide the following endpoints for subscriptions: 1183

• POST …/subscriptions to create a new subscription 1184

• GET …/subscriptions to list all subscriptions the subscriber has access to 1185

• GET …/subscriptions/{subscriptionId} to get details about a specific subscription 1186

• PUT …/subscriptions/{subscriptionId} to update a specific subscription 1187

• PUT …/subscriptions/{subscriptionId}/secret to update the secret of a specific 1188

subscription 1189

• DELETE …/subscriptions/{subscriptionId} to cancel a specific subscription 1190

6.3.1 Subscription setup (informative) 1191

The setup of a subscription follows the following steps: 1192

1. The subscriber defines a Shared Secret and registers with the secret and a 1193

callbackURL in the publisher's system. It is recommended to use a not-easy-to-guess18 1194

callback URL and to update it when the secret is changed. 1195

2. The publisher confirms the subscription and returns the subscriptionId to the 1196

subscriber. 1197

3. The subscriber records the subscriptionId associated with the shared secret. 1198

 1199

Example for a subscription setup 1200

1. Initiating the subscription 1201

POST https://api.unece.org/v1/events/subscribe 1202

Content-Type: application/json 1203

Content-Length: ... 1204

{ 1205

 "callbackURL" : "https://callback.example.com/callback/Ujh4kkQ9A", 1206

17 Compare https://docs.github.com/en/developers/webhooks-and-events/webhooks/securing-your-webhooks
18 https://callback.example.com/callback/$RANDOM_STRING

OpenAPI Naming and Design Rules V1.0 2022-09-13

 Page 51 of 59

 "secret": 1207

"MDEyMzQ1Njc4OWFiY2RlZjAxMjM0NTY3ODlhYmNkZWYwMTIzNDU2Nzg5YWJjZGVmMDEyMzQz1208

NjU3ODlhYmNkZQ", 1209

 ... additional filter parameters etc. ... 1210

} 1211

2.a Confirmation of the publisher if the callbackURL is valid 1212

Remark: As the subscription is not setup yet, not additional headers are provided. 1213

HEAD https://callback.example.com/callback/Ujh4kkQ9A 1214

2.b Response of the subscriber that the callbackURL is valid 1215

 1216

HTTP/1.1 204 No Content 1217

3. Response from the publisher 1218

HTTP/1.1 201 Created 1219

Content-Type: application/json 1220

Content-Length: ... 1221

{ 1222

 "subscriptionId": "936DA01F-9ABD-4D9D-80C7-02AF85C822A8", 1223

 "callbackURL": "https://callback.example.com/callback/Ujh4kkQ9A", 1224

 ... additional optional content ... 1225

} 1226

6.3.2 Performing a subscription call (informative) 1227

A subscription call follows the following steps: 1228

1. The publisher SHALL perform a POST to the callbackURL of the subscriber. 1229

• A Subscription-ID HTTP header containing the subscriptionId is added. 1230

• A Notification-Signature HTTP header containing the computed 1231

signature of the request body is added. 1232

• The request-body is sent using the application/json format. 1233

2. The subscriber SHALL validate the POST request. It SHOULD be done in the 1234

following order. If any of the validation steps fail, the message SHALL be rejected. 1235

• It is RECOMMENDED to start message parsing only if all of the validation 1236

steps are performed without an error. 1237

• The Notification-Signature HTTP header MUST be provided. 1238

• The Subscription-ID HTTP header MUST be included. It MUST be a GUID. 1239

• Additional provided custom information is RECOMMENDED to be 1240

validated. (e.g. in the callbackURL) 1241

OpenAPI Naming and Design Rules V1.0 2022-09-13

 Page 52 of 59

• The subscriber uses the stored Shared Secret to compute the signature of the 1242

request body. The signature SHALL equal the provided signature. 1243

• In case the callback was performed due to a a subscription of an event, the 1244

occurrence time of the event MUST be in the past. It MAY be a few seconds 1245

in the future to account for minor time synchronization issues. 1246

3. A successful callback is responded by the 204 No Content response code. 1247

Example for a subscription call using the secret from the example above 1248

POST https://callback.example.com/callback/Ujh4kkQ9A 1249

Subscription-ID: 936DA01F-9ABD-4D9D-80C7-02AF85C822A8 1250

Notification-Signature: 1251

sha256=66c2912069e6c9563d66fee4674cd23dd9dd00e6c08c985e964b11f92f477e48 1252

Content-Type: application/json 1253

Content-Length: ... 1254

{ 1255

 "id": "84db923d-2a19-4eb0-beb5-446c1ec57d34", 1256

 "occurrenceDateTime": "2022-04-16T16:40:00+01:00", 1257

 "typeCode": "ARRIVAL", 1258

 "shipmentId": "123e4567-e89b-12d3-a456-426614174000" 1259

} 1260

Response 1261

HTTP/1.1 204 No Content 1262

OpenAPI Naming and Design Rules V1.0 2022-09-13

 Page 53 of 59

7 Appendix A: Examples 1263

Printed JSON schema files of a realistic example can be very large, especially because of 1264

the code lists used. Therefore, we have not included an example here. 1265

However, examples can be found on the web at the following address: 1266

https://github.com/uncefact/spec-openAPI/examples 1267

https://github.com/uncefact/spec-openAPI/examples

OpenAPI Naming and Design Rules V1.0 2022-09-13

 Page 54 of 59

8 Appendix B: Naming and Design Rules List (normative) 1268

Rule # Rule

[R 1|1]

Conformance SHALL be determined through adherence to the content of the
normative sections and rules. Furthermore, each rule is categorized to indicate the
intended audience for the rule by the following:
1. Rules, which must not be violated. Else, conformance and interoperability is lost.
2. Rules, which may be modified, while still conformant to the NDR structure.
Inf. Rules that are informative only. If a different implementation is chosen this does
not have any impact on the conformance of the implementation towards this
specification.

[R 2|1] All API specifications based on this OpenAPI Naming and Design Rules technical
specification SHALL be compliant to the OpenAPI 3.1.x specification.

[R 3|1] An API specification-claiming conformance to this specification SHALL define
schema components as described in the JSON Schema Naming and Design Rules
Technical Specification.

[R 4|1] Request body content and Response content used to transfer structured data
information SHALL use the application/json media type for JavaScript

Object Notation (JSON). This rule MAY only be deviated from, if the API
implements a conversion service from or to JSON in another media type.
Additional media types (e.g. text/xml) to transfer structured data information

MAY be used. If non-structured information is transferred any valid media type
MAY be used.

[R 5|1] Encoding SHALL be UTF-8.

[R 6|2] The structure of the paths defined within APIs SHOULD be meaningful to the
consumers. Paths SHOULD follow a predictable, hierarchical structure to enhance
understandability and therefore usability.

[R 7|1] The API URLs SHOULD follow the standard naming convention as described
below:

https://{env}.api.{dnsdomain}/v{m}/{service}/{resource}/{id}/{sub-

resource}?{query}

The components are described as follows. If a rule is mandatory for a specific
component of the URL is SHALL be applied to any conformant API specification,
even if the basic URL structure is different from the one described above (e.g. if api

is not used as a prefix to the dnsdomain).

• https:// SHALL be used as the web protocol.

• {env} indicates the environment (e.g. test, sandbox or dev) and is usually
omitted for production environment.

• {dnsdomain} is the DNS domain of the API implementer (e.g. unece.org)

• {service} is a logical grouping of API functions that represent a business service
domain (e.g. transport). The {service} component is optional.

• v{m} is the major version number of the API specification. This component
SHALL be stated in the URL. It MAY be provided at a different place in the URL
(e.g. as a prefix to the domain).

• {resource} is the plural noun representing an API resource (e.g. consignments)

• {id} is the unique identifier for the resource defined as a path parameter. Path
parameters SHALL be used to identify a resource. This component is not part of
the path if an operation is performed on a collection of the resource.

• {sub-resource} is an optional sub-resource. Only used when there are contained
collections or actions on a main resource (e.g. consignmentItem).

• {query} is a list of additional parameters like filters that determine the results of a
search (e.g. consignments?loadingPort=AUSYD).

OpenAPI Naming and Design Rules V1.0 2022-09-13

 Page 55 of 59

[R 8|1] The total number of characters in the URL, including the path and the query, SHALL
NOT exceed 2000 characters in length including any formatting codes such as
commas, underscores, question marks, hyphens, plus or slashes.

[R 9|1] Endpoints SHALL NOT be actions. Services and resources SHALL consist of nouns.
HTTP verbs SHALL be used for actions.

[R 10|1] Kebab-case SHALL be used in services.

[R 11|1] Lower camelCase SHALL be used in resources, path parameters and query
parameters.

[R 12|1] Path parameters and query parameters with a relation to property names SHALL be
consistent with property names.

[R 13|1] Query parameters SHALL be URL safe.

[R 14|1] Resource names SHALL be pluralised. Resource names SHOULD be consistent with
schemas. If a schema is defined in singular, nevertheless the resource SHALL be
pluralized. If the plural of a resource is non-standard, you MAY choose a more
appropriate noun in its plural form.

[R 15|1] Query parameters SHALL use ISO8601 compliant date and time representations that
are defined in UNTDID 2379 json as defined in the JSON schema NDR technical
specification. To represent a specific date, time or date-time the format SHALL
comply with the JSON schema definition for date, time or date-time.

[R 16|1] A prerequisite for an OpenAPI specification and its implementation to be fully
compliant with this NDR TS is the use of UN/CEFACT semantics and UN/CEFACT
syntax (e.g. UN/CEFACT XML, UN/CEFACT JSON Schema, and UN/CEFACT
Vocabulary).
An OpenAPI specification that does not use UN/CEFACT syntax or UN/CEFACT
semantics may still be conformant to this NDR TS if it meets the criteria specified in
[R 1|1].

[R 17|1] Endpoints are RECOMMENDED to support CRUD operations. (Create, Read,
Update, Delete). If an endpoint is not intended to support e.g. a delete operation, it
SHALL return the HTTP response codes as defined in chapter 3.2.10.

[R 18|1] APIs SHALL adhere to the idempotency of operations specified in Table 4.

[R 19|1] APIs SHOULD implement the Idempotency-Key HTTP header field and the
corresponding implementation advice in order to make non-idempotent operations
like POST and PATCH fault-tolerant.

[R 20|1] If pagination is used in an API, keyset-based pagination (cursor-pagination) SHALL
be used. This means that the consumer cannot request a specific page, instead the
consumer has to select a page-link provided by the server. The server SHALL
provide links in the HTTP response header to the previous and next page and
SHOULD provide links to the first and last page. More links MAY be provided.
The cursor-value is a string, created by the server using whatever method it likes. It
identifies a point in a list of results for a query containing filters and sorting
parameters for a specific moment in time. Therefore, it divides the list into those that
fall before the cursor and those that fall after the cursor. There may optionally be one
result that falls "on" the cursor.

[R 21|1] GET requests on collection results SHOULD implement pagination. The default and
maximum page size SHOULD be 100, if not specified on the endpoint. If SHOULD
be smaller, if the resulting page load is large. The default page size MAY be changed
per endpoint. A consumer SHOULD be able to override the default page size.
If the filter, sorting and/or page size used is changed when getting a result, the
pagination SHALL BE reset to the first page.
The query parameters described in the following table SHALL be used, rules
SHALL be applied.

[R 22|1] Sorting and filtering SHALL be done using query parameters. Using a path
parameter is only allowed to identify a specific resource.

[R 23|1] As a general guide, filtering SHOULD be done with case insensitivity. Whether you
choose to filter with case insensitivity or not SHALL be clearly documented.

OpenAPI Naming and Design Rules V1.0 2022-09-13

 Page 56 of 59

[R 24|1] If an application needs to support a richer search and filter capability that includes
logical operators, fuzzy search, grouping, and so on, API MAY apply a query string
according to lucene query syntax . In that case, the filtering and query parameters
normally are transmitted in the request body.

[R 25|1] Sorting SHOULD be limited to specified fields. The sort direction MAY be omitted.
The default sort direction is ascending. A colon : is used to separate the field name

and the sort direction. Multiple sort fields are separated by comma ,.

[R 26|1] HTTP response codes SHALL be used.
Table 6 defines HTTP response codes supported by conformant APIs. The column
Response indicates whether an additional error response payload is
RECOMMENDED to be returned as described in chapter 3.2.11.

[R 27|1] Table 7 defines which HTTP response codes SHALL be supported for a specific
HTTP request method by conformant APIs. Column Use indicates how a conformant
API supports the specified http response code:
- M the code SHALL be supported

- MA SHALL be supported for requests where the response is handled asynchronous,

for instance due to forwarding or processing time. In that case, a Location HTTP
response header SHALL be gives that points to the respective resource. In
addition, a Retry-After HTTP response header is RECOMMENDED to be
returned.

- R the code is recommended to be supported.

The default response code for a positive response is marked in bold.

[R 28|1] An API SHALL implement an error response schema to allow a standardised error
handling. The response SHALL use the following JSON Schema. The JSON Schema
MAY be extended.

[R 29|1] The following rules are RECOMMENDED:

- The definitions in a conformant OpenAPI specification SHALL be considered as
technical contracts between designers and developers and between consumers and
providers.

- Mock APIs SHOULD be created using the API description to allow early code
integration for development.

- The behaviour and intent of the API SHOULD be described with as much
information as possible.

- Operations SHOULD provide examples for request and response bodies.
- Expected response codes and error messages SHOULD be provided in full.
- Known issues or limitations SHOULD be clearly documented.

- Expected performance, uptime and SLA/OLA SHOULD be clearly documented.
- Although YAML is a supported file format of an OpenAPI specification, the JSON

format SHOULD be used as the OpenAPI specification format.

[R 30|1] All APIs SHALL apply Semantic versioning 2.0.0 :

MAJOR.MINOR.PATCH

The first version of an API SHALL start with a MAJOR version of 1.
Pre-release version information and build metadata version information SHALL
NOT be used in API versioning.

[R 31|1] All APIs SHALL use URI versioning. They SHALL include the MAJOR version as
part of the URI in the format of 'v{MAJOR}'. Example:
https://api.logistics.io/transport/v1/voyages

The minor and patch version SHALL NOT be used in the URI.

[R 32|1] A custom header named API-Version SHALL be added to any response of the API.
It SHALL be aligned with the URI version and SHALL state all three levels:
API-Version: 1.21.5

[R 33|1] An API-Version custom header MAY be added to a request. If added, it SHALL
only contain the MAJOR version.
API-Version: 1

OpenAPI Naming and Design Rules V1.0 2022-09-13

 Page 57 of 59

[R 34|1] An API SHALL implement a response to a GET request to the base URI of the API.
The response SHALL use the JSON Schema defined in R 33.

[R 35|2] APIs that are still in a DRAFT status SHOULD be placed in a sandbox environment.

This could be done by changing the basis URL accordingly.
Example for a productive base URL:
https://api.uncefact.unece.org/v1/

Examples for a development base URL:
https://sandbox.api.uncefact.unece.org/v1/

https://staging.api.uncefact.unece.org/v1/

[R 36|1] Within a major release backward compatibility SHALL NOT be broken.

[R 37|1] API clients and subscribers SHOULD be robust:

- Be conservative with API requests and data passed as input.
- Be tolerant with unknown fields in the payload, but do not eliminate them from

payload if needed for subsequent PUT requests.

[R 38|1] An API SHALL NOT be set to DEPRECATED until a replacement service is running

with status ACTIVE. The root service of the API SHALL provide the Deprecation

Header Field and the Sunset HTTP Response Header Field .

A Link header SHALL be added in combination with the Deprecation header. It

SHALL provide a link to the documentation. A second Link header SHALL be
added linking to the replacement version of the API.

[R 39|1] Deprecated endpoints SHALL be documented in the OpenAPI specification using
the DEPRECATED property introduces since OpenAPI 3.0.0.

Deprecated endpoints SHOULD provide the Deprecation Header Field and the
Sunset HTTP Response Header Field.
A Link header SHALL be added in combination with the Deprecation header. It
SHALL provide a link to the documentation.
Where possible, communication SHOULD be sent to consumers of deprecated
endpoints.

[R 40|1] The introduction of a major version SHOULD be avoided, whenever possible. This
MAY be achieved as follows:

- Create a new service endpoint, if the process is changed.
- Duplicate and Deprecate: add a Deprecation Header to the old service including

a Link Header to documentation and to the new service. Eventually add a Sunset

Header.

- Create a new resource (a variant of the old) in addition to the old.

[R 41|2] New resources or service endpoints can be added during a minor release. In order to
support the implementation of those new services a sandbox environment SHOULD
be provided to the interested or affected consumers.

[R 42|1] It is RECOMMENDED that no more than 3 parallel MAJOR versions are available.
Implementers of the API SHALL NOT be more than 1 major version behind the
latest version.

[R 43|1] In order to provide a better experience for API consumers, APIs SHOULD provide a
list of state transitions that are available for each resource. As possible values for link
relation types the official IANA registry list SHALL be used. It MAY be extended.
Any extension SHALL be documented in the API specification.

[R 44|1] All API endpoints SHALL be secured. HTTPS SHALL be used. The OAUTH2
security scheme is RECOMMENDED. Other security schemes MAY be used.
The receivers endpoints of subscription callbacks MAY be designed with different
security measures like those described in chapter 6.3.
The aspects described after rule 32 of API security are RECOMMENDED to be
implemented.

 1269

OpenAPI Naming and Design Rules V1.0 2022-09-13

 Page 58 of 59

9 Appendix C: Glossary 1270

Term Definition

ABIE Aggregate Business Information Entity – a term from CCTS that
describes an information class such as “consignment”

API Application Programming Interface – a term that references a machine-
to-machine interface.

ASBIE Association Business Information Entity – a term from CCTS that
defines a directed relationship from source ABIE to target ABIE – e.g.
“consignee” as a relationship between “consignment” and “party”

B2B Business to Business

BBIE Basic Business Information Entity – a term from CCTS that describes
a property of a class such as party.name

BRS Business requirement specification

CamelCase CamelCase is a naming rule for a technical representation of identifiers
consisting of several words. White spaces are removed and every new
word begins with a capital letter. Example: this identifier is written
as thisIdentifier in camelCase.

CCL Core Component Library

CCTS Core Component Technical Specification – a UN/CEFACT
specification document that described the information management
metamodel.

CDT Core Data Type. A value domain for a BBIE that is a simple type such
as “text” or “code”

HATEOS Hypermedia as the Engine of Application State

IETF Internet Engineering Task Force

JSON JavaScript Object Notation – an IETF document syntax standard in
common use by web developers for APIs.

JSON-LD JSON-Linked Data – a JSON standard for linked data graphs /
semantic vocabularies.

Kebab-case Kebab-case is a naming rule for a technical representation of
identifiers consisting of several words. Hyphens are used to connect
words. Example: this identifier is written as this-identifier in
kebap-case.

NDR Naming & Design Rules – a set of rules for mapping one
representation (e.g. RDM) to another (e.g. JSON-LD)

OpenAPI An open source standard, language-agnostic interface to RESTful
APIs.

OWL Web Ontology Language

RDF Resource Description Framework – a W3C semantic web standard

RDM Reference Data Model- a UN/CEFACT semantic output.

RESTful API See REST API

REST API Representation State Transfer Application Programming Interface,
a.k.a. RESTful API

RFC Request for Comments

SDO Standards Development Organisation

UN/CEFACT United Nations Centre for Trade Facilitation and Electronic Business

UNECE United Nations Economic Commission for Europe

URI Uniform Resource Identifier – a namespace qualified string of
characters that unambiguously identify a resource. AURL is one type
of URI.

OpenAPI Naming and Design Rules V1.0 2022-09-13

 Page 59 of 59

Term Definition

URL Uniform Resource Locator – the web address of a resource.

UNTDID United Nations Trade Data Interchange Directory

XML Extensible Markup Language

XMI Xml Metadata Interchange - a well-established OMG standard for
exchange of UML models between different tools.

Table 9 - Glossary 1271

	Abstract
	1.1 Document History
	1.2 Change Log
	1.3 OpenAPI Naming and Design Rules Project Team
	1.4 Acknowledgements
	1.5 Contact information
	1.6 Notation
	1.7 Audience
	2 Introduction
	2.1 Objectives
	2.2 Requirements
	2.3 Dependencies
	2.4 Caveats and Assumptions
	2.5 Guiding Principles
	2.6 Interoperability

	3 API Naming and Design Rules
	3.1 Conformance and Compliance
	3.2 Design Rules
	3.2.1 Media type for structured data exchange
	3.2.2 Endpoints
	3.2.3 Discoverability
	3.2.4 Date and Time
	3.2.5 Using the UN/CEFACT semantics
	3.2.5.1 Using the UN/CEFACT JSON schema publication
	3.2.5.2 Using the UN/CEFACT vocabulary
	3.2.5.3 Using other (standardised) data structures

	3.2.6 Operations
	3.2.6.1 Collection of Resources
	3.2.6.2 Single Resource
	3.2.6.3 Idempotency

	3.2.7 Pagination
	3.2.8 Filtering
	3.2.8.1 Output Selection
	3.2.8.2 Simple Filtering
	3.2.8.3 Advanced filtering with LHS Operators
	3.2.8.4 Rich Query with Lucene Syntax
	3.2.8.5 GraphQL

	3.2.9 Sorting
	3.2.10 API Responses and error handling
	3.2.11 Error Response Payload
	3.2.12 Design rule examples

	4 Well-documented APIs
	4.1 General considerations
	4.2 API Versioning
	4.2.1 Versioning Scheme
	4.2.2 URI Versioning
	4.2.3 Providing version information
	4.2.4 Robustness
	4.2.5 Deprecation and End of Life Policy

	4.3 Hypermedia
	4.3.1 Hypermedia - Linked Data
	4.3.2 HATEOAS
	4.3.3 Hypermedia Compliant API

	5 API Security
	6 Event driven data exchange
	6.1 Callbacks
	6.2 Webhooks
	6.3 Security guideline for callbacks (informative)
	6.3.1 Subscription setup (informative)
	6.3.2 Performing a subscription call (informative)

	7 Appendix A: Examples
	8 Appendix B: Naming and Design Rules List (normative)
	9 Appendix C: Glossary

