

Methodological choices when using multilateral methods: window length, seasonality and aggregation structure

Vanda Guerreiro, Sebastian Weinand and Paul Konijn Eurostat

> Group of Experts on Consumer Price Indices UNECE, June 2023

Background

- Multilateral methods are increasingly being used to derive consumer price indices from transactions data.
- Eurostat released two publications in 2022:
 - Guide on Multilateral Methods in the HICP (Guide)
 - Progress Report Task Force Multilateral Methods 2022

Introduction

Choices have to be made when using multilateral methods. This presentation will address the following:

- the window length over which the multilateral method is compiled and the splicing method used;
- the compilation methodology for categories that include seasonal products;
- the aggregation structure and the methodology for integrating diverse data sources in the compilation.

TIME WINDOWS AND SPLICING METHODS

Window length

shorter time windows	longer time windows			
Trade offs				
 could lead to unstable results may not solve the chain drift problem 	 data from the past will impact the current month compilations 			
Better for:				
 products with short life- cycles (e.g. consumer electronics) 	 seasonal products to cover two successive in-season periods 			

Adjusting the time window

Rolling time windows	Expanding time windows			
Each month, the time window is				
shifted forward by one month.	extended by one month. After one year, it could be reset to its initial length.			
Advantages				
Window length is constant	Does not need long back data			

SPLICING METHODS

• Why do we need to splice?

Every month a new time window is used and indices are calculated for every period.

To avoid revisions, splicing techniques must be used which link the latest result onto the previous

SPLICING METHODS

- The different methods all have their advantages and disadvantages.
- The splicing method can be tested by comparing the resulting index to the index compiled over a full time window.
- The splicing methods can either use the recalculated or the published indices.

SPLICING METHODS

This example is obtained with the half splice on published series method using a 25 month rolling time window (25 HASP)

yoy rates of published indices = yoy rates of the latest calculated multilateral index

Spliced (published) index from Jan19 to Feb21

Index compiled over Jan19 to Jan21(blue) and over periods Feb19 to Feb 21 (orange).

SOURCE: EUROSTAT calculations

9

SEASONAL PRODUCTS

Seasonal products - Methods

A data set with seasonal products and the corresponding multilateral indices can be found in this <u>file</u> (Example provided by STATEC for the Guide).

Seasonal products - Window length

- The window length should include the last month of the previous in-season period and the first month of the new in-season period.
- As in-season period vary, the window length should be at least 13 months.
- A 25-HASP splicing may be a good compromise because it ensures consistent annual rates and the window is sufficiently large to include all seasonal products.

Similarity linking method

13

- This method is based on an underlying bilateral price index that compares the current period to the most 'similar' previous period.
- The draft chapter 9 of the CPI Theory publication presents it as one of the preferred options in the context of seasonal products.
- Eurostat report provides some initial conclusions:
 - advantages no need to select a window length or splicing method.
 - disadvantages results depend on the choice of dissimilarity measure.
- The method shows pronounced differences in index behaviour compared to other methods.

AGGREGATION

How detailed is the elementary aggregate?

Level	Option 1	Option 2	Option 3	Option 4
ECOICOP	Laspeyres-	Laspeyres-	Laspeyres-	Laspeyres-
	type	type	type	type
Retail chain	Laspeyres-	Laspeyres-	Laspeyres-	Laspeyres-
	type	type	type (= EA)	type (= EA)
Product category	Laspeyres-	Laspeyres-		Törnqvist
	type	type (= EA)		
Outlet	Laspeyres-			
	type (= EA)			
Individual product	Multilateral	Multilateral	Multilateral	Multilateral
Transacted	Unit value	Unit value	Unit value	Unit value
product				

From the items to the elementary aggregates

- Option 1, the EA is defined rather tightly, i.e., the transactions of a detailed product category in a specific outlet.
- Option 2, is an intermediate solution which skips the outlet level.
- Option 3, the EA is defined rather broadly i.e., transactions of a given COICOP category in a given retail chain.
- Option 4, is a more advanced solution. The same structure as in option 3 but the price indices by product category are aggregated using variable weights with, for instance a Törnqvist index.

INTEGRATING DIVERSE DATA SOURCES

How can data from different sources be combined?

- A price index is compiled for each product and each data source.
- The indices for the different data sources are aggregated with weights.
- The weights must be fixed at this level because only fixed weights are available for the traditionally collected prices.
- The weights and the structure should be updated every year.

Integrating diverse data sources

Each of these cells are a sub-division

	Scanner	Scanner	Web	Field price collection
	data (retailer A)	data (retailer B)	(retailer C)	(other retailers)
Region 1	Multilateral method	Multilateral method	Method for web scraped data	Traditional price collection and index compilation
Region 2	Multilateral method	Multilateral method		Traditional price collection and index compilation

Conclusions

- The validity of a splicing method and a window length option should be empirically validated.
- Considerations should be given to the 'half splice on published indices' method over a 25-month rolling time window (25-HASP).
- To cover two successive in-season periods for seasonal products, the time windows must be longer than 13 months.
- Further research on multilateral methods for seasonal products is ongoing.

Conclusions

- Applying a multilateral method up to a:
 - more aggregated level is more appropriate for a dynamic universe of individual products.
 - lower aggregated level introduces more stability in the index.
- The index structure below the subclass level and the elementary aggregate weights should be reviewed and updated at least once per year.

Thank you

