
From Rags to Riches: Using web-scraped data to derive a clothing price index

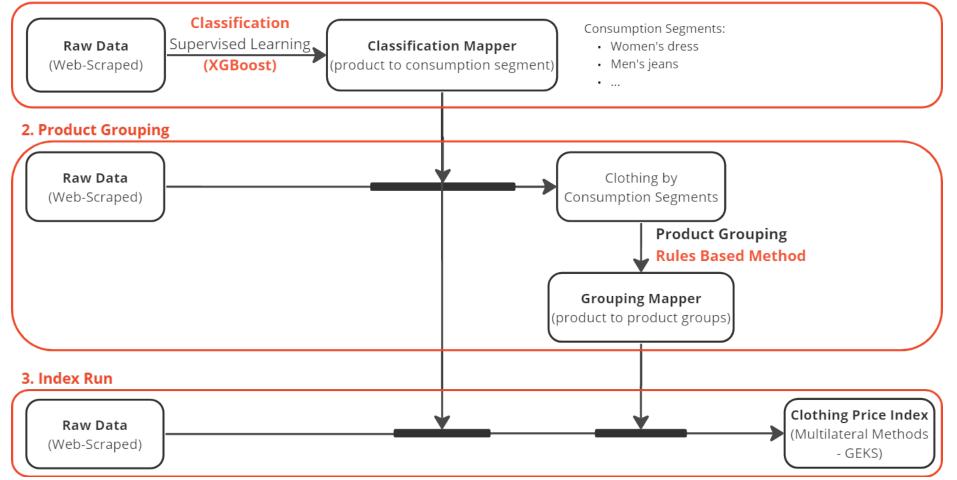
Laura Christen

Data Scientist | Prices Division Office for National Statistics | UK

The clothing project is part of a wider programme of transformation

Alternative data sources (ADS)

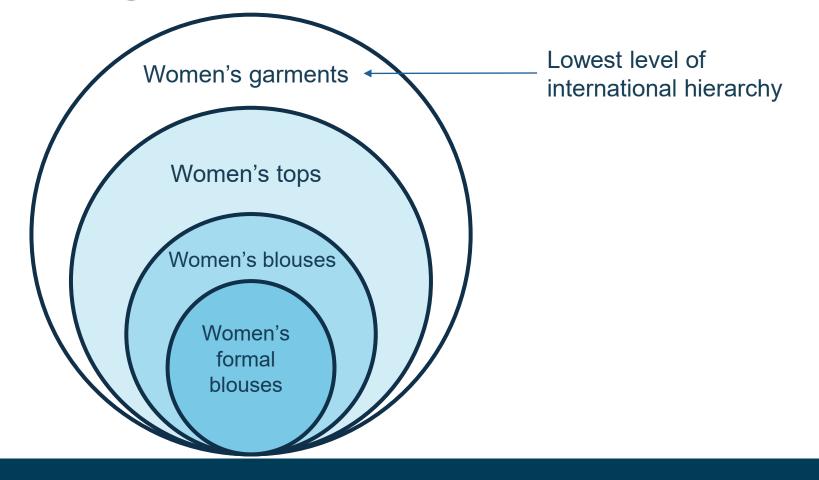
Incorporate scanner and web-scraped data into the production of major consumer price statistics


Webscraping

17 retailers 1000 brands Dataset from June 2020

There are 3 key pipelines in the clothing project

1. Clothing Classification

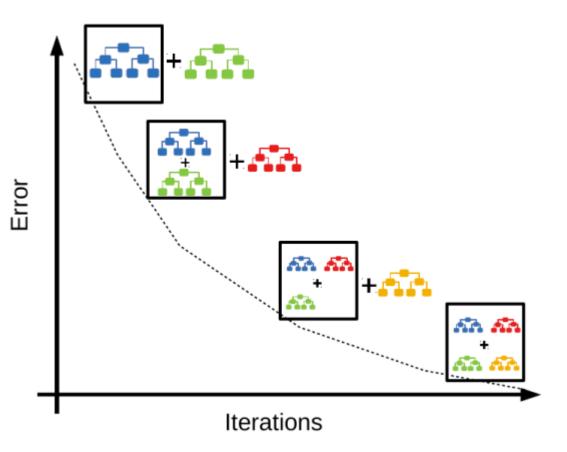


Office for National Statistics

We classify our data into UK-specific "consumption segments"

They must be:

- ✓ Relatively homogeneous
- ✓ Simple to classify
- ✓ Right size to produce reliable statistics


We used an in-house app to produce a labelled dataset

- Supervised machine learning requires a large, labelled dataset (162,700 products labelled)
- We achieved 89% consistency across categories; this varied by class
- Testing and training datasets

	<	Label!	>	SAVE
Current Product:		product 1 of 25: 0 pr	roducts labelled	
attributes index	product info	Select COICOP5	Select broad	Select
category	Boys / Jumpers and Hoodies	category	 Not enough 	category Not enough information Other (please specify)
product_location	Boys / Jumpers and Hoodies	 Not enough information Other (please specify) 	information Other (please) 	
product_name	Printed Hoodie		specify)	
retailer	Retailer X		Coats, etc.	
instock_yes_or_no	Yes	 Accessories Babies 	 Fancy dress Jumpers, etc. 	 Cardigan Fleece
isbestseller yes or	CONTRACT.	Boys	 Nightwear 	Hoodie

Welcome to the prices alternative data sources labelling app; v101

After testing multiple classification models, XGBoost best fit our needs

XGBoost:

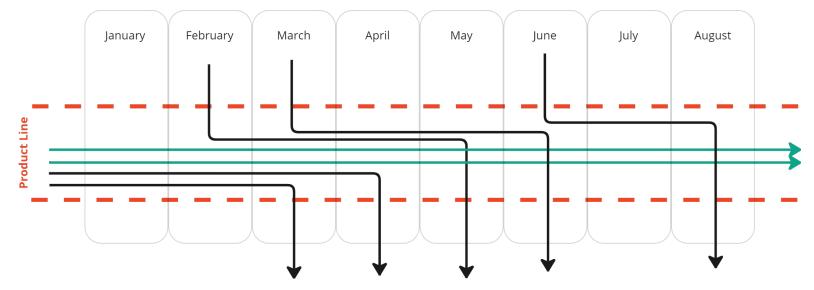
- High performance metrics
- Acceptable training time (with GPU support)
- Confidence scores

We've recently investigated two methods of model improvement

1) Confidence Threshold

- Defines a prediction probability that is the "threshold" for allocating a product to a class
- Increases precision at the expense of recall – this could be preferable for our task
- Could result in use of an fbeta score

Threshold	Precision	Recall	F1 Score	F0.33 Score
None	0.86	0.84	0.85	0.86
0.70	0.91	0.69	0.77	0.88
0.75	0.92	0.66	0.75	0.89
0.80	0.92	0.61	0.72	0.88


We've recently investigated two methods of model improvement

2) Confusion matrix

- Homogeneity vs. simplicity vs. size
- Compares predicted value to actual value for each class, providing us with points of contention
- Use weight, F1-score, and change in F1 score to decide which classes to combine

Class	Point of Contention		
Girls' sports top	Girls' top/t-shirt/crop-top		
Boys' outfit set Men's sports top	Boys' full tracksuit Men's t-shirt		
Women's sports	Women's top/t-shirt/crop-		
top Boys' vest	top Boys' t-shirt		

Our index tracks prices over time, but this is hindered by product churn in clothing

- Rapid product entry and exit \rightarrow Product churn
- Group similar products together to follow through time
- Reducing the impact of churn on the index

We form our product groups using "rules", or keywords, from each column

- Retailer, Brand, Product Name, Description, Style, Material
- N most common words from each attribute column

	Rules Die		
Attributes:	Product Name	<u>Material</u>	
	v-neck	polyester	
	maxi	cotton	
	Product Name	Material	Group Identifier
Product 1	v-neck dress	polyester	v-neck_polyester
Product 2	floral maxi dress	100% cotton	maxi_cotton
Product 3	white maxi dress	cotton elastic	maxi_cotton

The quality of our groups are measured by the MARS Score

 Ideally, group items a consumer would consider to be similar

→ Homogeneous

- Increase product match by having large enough groups to survive
 - → Match Rate
- Homogeneity vs. Match Rate
- MARS_t = $R_t \mu_t$

A "quality adjustment" of rules helps to improve the MARS score


Basic approach

N most common words from each column

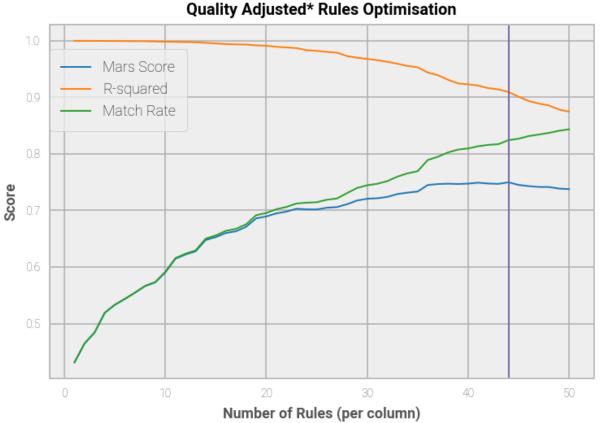
Quality adjustment

Hedonic regression

- Quantify the impact of key words on price
- Keep words with significant impact
- Re-rank rules dictionary according to their contribution to the price

We can also optimise the number of rules

- Basic approach


Fixed number of rules from each column

Optimisation

• Find number of rules which maximises MARS score

Office for National Statistics

 Start with single group for each retailer and add one rule from each column in each step

*Hedonic regression on 200 most common words for each column

The final output is a clothing price index

- We calculate price indices for each consumption segment and retailer
- These are aggregated up to get an online clothing market consumer price index
- Web-scraped data require more advanced index number and weighting methods

- Can read more about our ongoing research into index methods here:

New index number methods in consumer price statistics - Office for National Statistics

Thank you!

For more information please contact:

Laura.christen@ons.gov.uk (Classification)

Ahmet.aydin@ons.gov.uk (Product Grouping)

