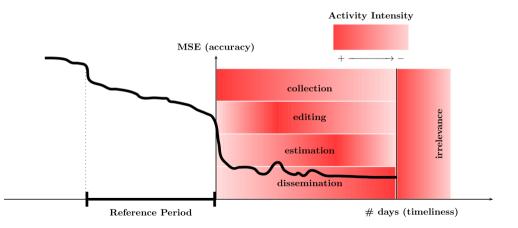


Timeliness and Accuracy with Machine Learning Algorithms: Early Estimates of the Industrial Turnover Index

UNECE Machine Learning for Official Statistics Workshop 2023

David Salgado

S.G. for Methodology and Sampling Design Statistics Spain (INE)


June 5th, 2023

- General motivation
- ► The approach: main details
- ► The results
- Some lessons and conclusions

Timely or accurate? The production process

Main target: to improve timeliness under accuracy and cost-efficiency bounds

- The pressing demand for timeliness has been put in the basis for the use of new data sources:
 - surveys are slow and expensive
 - digital data are fast and cheap
- The data deluge has favoured the delusion of accuracy

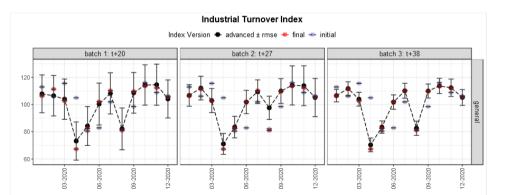


E Service Sector	ndex_202205_raw.txt 🔀
630044	varGestion@@147929252SS35.@@LI
630045	varGestion@@147930189SS35.@@LI
630046	varGestion@@147930266SS35.@@LI
630047	varGestion@@147930650SS35.@@LI
630048	varGestion@@147930918SS35.@@LI
630049	varGestion@@147931248SS35.@@LI
630050	varGestion@@147931987SS35.@@LI
630051	varGestion@@147932375SS35.@@LI
630052	varGestion@@147932761SS35.@@LI
630053	varGestion@@147933239SS35.@@LI
630054	varGestion@@147933406SS35.@@LI
630055	varGestion@@147933409SS35.@@LI
630056	varGestion@@147933897SS35.@@LI
630057	WarCostion001470330200035.00LI
630058	This is not the economic reality 5.00LI

The key for connecting data to reality is on the statistical methodology

The Spanish Industrial Turnover Index

- Short-term Business Statistics under European Regulation (STS)
- Monthly; around 12000 units per month
- Cut-off sampling + Fixed-base Laspeyres Index


- Subject matter experts receive data batches at m + 20, m + 27, and m + 38.
- First release at m + 51.

The approach

Reconstruct microdata with predictions using past and on-course information:

 r_t subsample collected up to time $t < t_{\text{release}}(m)$

$$Y_{U_d}^{(m)}(t) = \sum_{k \in r_{t,d}} y_{kt}^{(m,\mathrm{ed})} + \sum_{k \in U_d - r_{t,d}} \widehat{y}_{kt}^{(m,\mathrm{val})}$$

Information Representation: Regressors

From statistical variables: Turnover + Geo Location + Economic activity

To Regressors:

Geographical variables

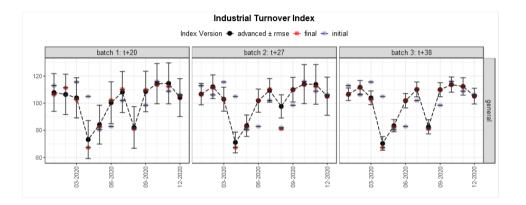
code_NUTS2_ent_ed, code_NUTS3_ent_ed, code_LAU_ent_ed...

Time variables

year_ref, batch, nmonths i_imputd_xprt...

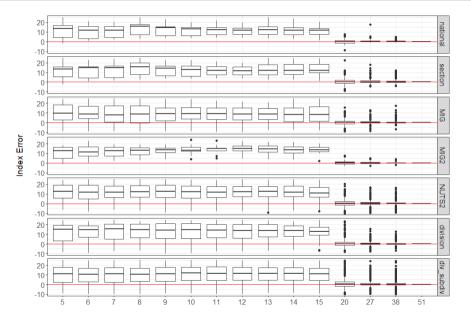
Economic activity variables

code_NACE2class_frame_ed, code_NACE2group_ed...


Target-Related Variables

trnovr_val_i, MAi_trnovr_val, q95_MAitrnovr_val_NACE2div...

To Encoded Regressors: Dummy and Mean Encoding


	1
q95_MA <i>i</i> trnovr_val_NACE2div	
Definition	Quantiles 0.95 of the variable MAi_trnovr_val across the
	population domain defined by edited values of variable
	code_NACE2div_ed (NACE Rev. 2 division) of the industrial es-
	tablishment from the reference time period
Stat Type	Numerical
Values	$\mathbb{R}, i = 3, 6, 12$ (3 variables)
Example	150000
Source	Internal-Derived
Formula	$Q_{0.95}^{\mathrm{NACE2div}}(\mathrm{MA}i(z_k^{my,\mathrm{val}})),$
	$\begin{aligned} &Q_{0.95}^{\text{NACE2div}}(\text{MA}i(z_k^{my,\text{val}})),\\ &\text{where } \text{MA}i(z_k^{my,\text{val}}) = \frac{1}{i}\sum_{j=1}^{i} z_k^{(m-j)y,\text{val}} \end{aligned}$
Stat Progr Ref	Spanish IOE-30052
Unit/Aggr	Aggr
Time Periods	$\{-1,, -i\}$
Long/Cross	Long + Cross
Cross-Domain Vars	code NACE2div ed
Encoding	• • • • • • • • • • • • • • • • • • •
Linooding	

INĒ

Results: timeliness vs. accuracy

INĒ

Some lessons and conclusions

- Strategy:
 - ► Machine learning allows us to **improve statistical business functions**.
 - Quality can be improved: timeliness, accuracy, cost-efficiency, sound methodology,...
 - Constant **updating of synthetic microdata sets**: process refurbishing.
 - Repository of regressors (features).
- Methodology:
 - The core task is more about information representation than about statistical modelling.
 - **Combination** with existing methods is possible.
- Computational:
 - ► Traditional technological infrastructure is not enough.
 - Data architecture must be standard.
- Organizational:
 - A collaboration among methodologists, computer scientists and subject matter experts is necessary to integrate knowledge.