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Abstract

The detection of anomalies in macroeconomic and financial time series is often regarded as a chal-
lenging but crucial task to produce high-quality official statistics. This paper proposes a novel, two-step
approach that leverages both data and metadata and allows for contextual outlier detection. We apply
a mix of unsupervised machine-learning (ML) algorithms which overcome common issues in macroe-
conomics and financial statistics (e.g. variable length) and ensure suitability for statistical production.
While further performance analysis and robustness checks may be needed, our results show that the
new method outperforms [substantially] traditional threshold-based rules and highlight its potential to
increase data quality and process efficiency.

1 Introduction
The detection of anomalies in macroeconomic and financial time series is often regarded as a challenging but
crucial task to produce sound official statistics. Well-designed and performant outlier algorithm checks not
only prevent erroneous data to be disseminated but have important implications in terms of productivity for
the statistician. Several outlier detection methods exist, ranging from the most traditional ones, based on
mean and standard deviation, to more innovative ones leveraging machine-learning (ML) techniques. The
latter are particularly useful to cluster time series and evaluate the presence of outliers taking into context
the dynamics of the whole cluster.

However, very often, the most common ML algorithms face several challenges when it comes to the analysis of
macroeconomic and financial time series. On the one hand, while unsupervised ML techniques are generally
preferred for large unlabelled data sets, although some of them may require extensive tuning effort to achieve
optimal clustering performance. Conversely, supervised ML algorithms may be easier to calibrate, but it is
often very hard to label large and heterogeneous data sets. On the other hand, time series often present
variable lengths which might prevent the use of standard distance metrics, such Euclidean, which come by
default with the most common ML algorithms.

To face those challenges, we propose a novel approach to detect outliers in macroeconomic and financial time
series based on ML techniques. Our approach consists of two steps. First, we cluster time series through
metadata and data to identify the context against which we perform outlier detection. To do so, we take
advantage of time series attributes, such as the title, code and unit, along with the shape of the data. We rely
on affinity propagation precomputed with Jaro-Winkler distance matrices as well as density-based spatial
clustering of applications with noise (DBSCAN) associated with dynamic time warping (DTW). Second, we
perform contextual outlier detection using DBSCAN to identify outliers as those points lying in low-density
areas.

∗Preliminary version. The views expressed are those of the authors and do not necessarily reflect those of the Bank for
International Settlements. All errors are our own.
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2 Background and motivation
The BIS Data Bank is a data warehouse hosting more than sixty thousand macroeconomic and financial time
series, most of which are submitted by central banks to the Bank for International Settlements (BIS). Outliers
are in principle rare as data quality checks are performed by reporting central banks. However, it may occur
that some observations are flagged as anomalies and prompt manual inspection by BIS statisticians.

Outlier checks currently in place in the BIS Data Bank identify outliers when the absolute difference between
the observation 𝑖 and the moving average 𝑀𝑀 over the rolling window of length 𝑘 is greater or equal to its
standard deviation 𝜎 over the window of same length 𝑘 multiplied by a factor 𝑏:

∣𝑖 − 𝑀𝑀 (𝑖)𝑘∣ ≥ 𝜎 (𝑖)𝑘 × 𝑏 (1)

This method presents several shortcomings. First, it defines point outliers against predefined thresholds
which are often not suited for time series with linear breaks, such as financial time series. Furthermore,
it does not allow for contextual outlier detection. For example, when a financial shock propagates across
countries, related domestic time series are expected to feature the same jumps, albeit possibly with different
orders of magnitude. Performing outlier detection on each individual series may lead to flag these jumps as
outlying values. Conversely, taking into account also the related time series, these jumps are expected to
be treated as inliers since it is unlikely that all related series, reported by multiple central banks, share the
same outliers over the same time window. The BIS Data Bank hosts this information as it typically gathers
cross-country data on related indicators from the reporting central banks.

Contextual anomalies are those “points which can be normal in a certain context, while detected as anomaly
in another context” (Braei and Wagner 2020). They differ from point anomalies which correspond to
data points deviating significantly from the rest of the data sample. For instance, the observation 𝑥
for period 𝑡 can be flagged as point outlier if it deviates significantly from other neighbouring observa-
tions [𝑥𝑡−𝑛, 𝑥𝑡+𝑛], 𝑛 ∈ ℕ. Under contextual outlier detection, the same observation 𝑥𝑡 is checked against
[𝑥𝑡−𝑛, 𝑦𝑡𝑛

, 𝑧𝑡−𝑛, ..., 𝑥𝑡+𝑛, 𝑦𝑡+𝑛, 𝑧𝑡+𝑛], 𝑛 ∈ ℕ where 𝑦 and 𝑧 are the neighbouring observations of the related
time series. Contextual outlier detection is very often considered challenging for at least two reasons. First,
it requires the identification of the context, for example the related time series. Secondly, when not properly
tuned, contextual outlier detection methods may fail to identify anomalies that would have been identified
by individual outlier detection.

Against this background, we propose a new method relying on ML that performs outlier detection taking
into account also related time series. Our method has two main steps. First, the time series are clustered
based on their metadata and data. Second, contextual outlier detection is performed for each cluster. Our
proposal aims to improve the current statistical production pipeline for the BIS Data Bank.

3 Clustering metadata and data
3.1 Metadata
This section briefly describes the approach we propose to cluster the times series based on their metadata.

3.1.1 Clustering the BIS Data Bank Topics

The BIS Data Bank contains time series which feature metadata stored as attributes. Time series are grouped
by statistical domains or blocks which are further broken down into categories or topics. A 4-four letter code,
or topic code, and a mandatory and standardized text description, or topic title, describe the topic. The
topic code is a useful starting point for clustering time series based on metadata since we reasonably assume
that series falling under the same topic should belong to the same metadata cluster. However, the level of
granularity of the topic appears to be too detailed for our purpose. For example, we expect that series on
Interest rate, policy rate are very close to series related to Interest rate, official discount rate albeit they
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belong to two different topics. For this reason we propose to leverage unsupervised ML techniques to cluster
those series based on not only on the topic code but also their mandatory description.

A key choice is the distance metric to calculate the similarity between strings. Widely-used distance func-
tions are edit distances such the Levensthein distance which measures the smallest number of operations
(i.e. insertion, deletion, substitution) needed to make identical a pair of strings. However, it typically fails to
take into account the order of the common characters, a feature which is key in our case. We use a variant of
the Jaro distance (Jaro 1989) which computes the number of common characters and transpositions, taking
also into account the agreeing initial characters between strings (Winkler 1999). This approach accomodates
our purpose to compare the concatenation of the topic code, which is located at the beginning of the string,
with the topic description. Also, Jaro-Winkler has been found to perform well on short strings which is also
our case (Christen 2006).

We calculate the similarity matrix with the Jaro-Winkler distance across all pairs of topics. We then feed the
affinity propagation algorithm with the similarity matrix in order to derive the clusters based on metadata.
Affinity propagation is a purely data-driven and unsupervised clustering algorithm, eg it does not require
to set ex ante the number of clusters (Frey and Dueck 2007). It clusters data points by grouping points (𝑖)
around those “highly representative” or “exemplars” (𝑘). It does so by iteratively assessing the responsibility
(𝑟, step 1), similarity (𝑠) and availability (𝑎), while maximising 𝑠 and 𝑎 (steps 2 and 3):

𝑟(𝑖, 𝑘) = 𝑠(𝑖, 𝑘) − 𝑚𝑎𝑥𝑘′≠𝑘{𝑎(𝑖, 𝑘′) + 𝑗𝑎𝑟𝑜𝑤(𝑖, 𝑘′)}

𝑎(𝑖, 𝑘)𝑖≠𝑘 = 𝑚𝑖𝑛(0, 𝑟(𝑘, 𝑘) + ∑
𝑖′⊄{𝑖,𝑘}

𝑚𝑎𝑥(0, 𝑟(𝑖′, 𝑘)))

𝑎(𝑘, 𝑘) = ∑
𝑖′≠𝑘

𝑚𝑎𝑥(0, 𝑟(𝑖′, 𝑘))

3.2 Data
This section briefly describes the algorithms we propose in this paper to cluster the time series based on
their shape. This step allows us to further refine the pre-clustering of time series based on their metadata.

3.2.1 Clustering unequal-length time series through Dynamic Time Warping

The BIS Data Bank contains an extensive volume of variable-length time series. Often, different series
may reflect the same phenomenon shifted over time. For example, a financial shock may propagate from
one country to another with some lag. Assuming that two time series 𝑎 and 𝑏 measure the same financial
indicator, time-fixed distances (i.e. distances which compare only values measured at the same point in time)
may show a greater distance between 𝑎 and 𝑏 than distances which compare the actual shape of the two time
series. As a result, for many cases, it may be desirable to group time series based on their shape. Besides,
series featuring the same frequency or spaced at uniform time intervals may also have missing data, for
example due to data gaps, and may feature other distortions.

The distance function used to cluster time series is a crucial choice for any clustering method as it has serious
impact on its overall accuracy and performance. Standard distance functions usually associated with time
series partitioning assume a fixed mapping between sequences and follow the temporal order of the data
points (Wang et al. 2013; Guijo-Rubio et al. 2020). The main reason is that time series, unlike other data
representations, are sequential-based arrays for which the order of observations carries relevant information.
Among those metrics, the Euclidean distance function is one of the most popular, along with Manhattan
and Minkowski. However, those methods cannot handle series with unequal length and do not account for
time shifts in the data (Ding et al. 2008).

In order to calculate the distance between variable-length time series, we use dynamic time warping - DTW
(Berndt and Clifford 1994). This algorithm is one of the most widely used for time series classification as it
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allows to calculate the distance between arrays with different lengths, thus getting their similarity based on
their shapes and reveal their temporal dynamics (Bagnall et al. 2016). Without loss of generality, we can
assume that 𝑋 and 𝑌 are time series of length 𝑁 and 𝑀 , with 𝑀 ≥ 𝑁 :

𝑋 = [𝑥1, 𝑥2, ..., 𝑥𝑖, 𝑥𝑁 ]; 𝑌 = [𝑦1, 𝑦2, ..., 𝑦𝑗, 𝑦𝑀 ], , 𝑁𝑎𝑛𝑑𝑀 ∈ ℕ

the two time series can be represented in a matrix 𝐶 = [𝑐𝑖𝑗]𝑀𝑁 , where 𝑐𝑖𝑗 = 𝑑(𝑥𝑖, 𝑦𝑗) and 𝑑 is the Euclidean
distance. The DTW algorithm will find the warping path, which is defined by the correspondences (𝑖𝑘, 𝑗𝑘)𝑀

𝑘=1
of elements 𝑥𝑖𝑘

in 𝑋 to elements 𝑦𝑗𝑘
in 𝑌 so that:

• 𝑥1 corresponds to 𝑦1 and 𝑥𝑁 to 𝑦𝑀

• the time ordering of 𝑋 and 𝑌 is preserved, i.e. 𝑖1 ≤ 𝑖2 ≤ ... ≤ 𝑖𝑁 and 𝑗1 ≤ 𝑗2 ≤ ... ≤ 𝑗𝑀

• there are no jumps, i.e. 𝑖𝑘+1 − 𝑖𝑘 and 𝑗𝑘+1 − 𝑗𝑘 are 0 or 1

• the cumulative distance of each mapped pairs Σ𝑀
𝑘=1𝑑(𝑥𝑖𝑘

, 𝑦𝑗𝑘
) is the minimum possible.

The DTW distance is the cumulative distance of the mapped pairs, such as

𝐷𝑇 𝑊(𝑋, 𝑌 ) = Σ𝑀
𝑘=1𝑑(𝑥𝑖𝑘

, 𝑦𝑗𝑘
) (2)

Since DTW forces time series to be stretched or compressed, it may also create wrong matching and distort
the true similarity between time series (Keogh and Ratanamahatana 2005; Ding et al. 2008). One possible
solution to prevent pathological mappings is to apply a cap on the maximal shift that the warping path is
allowed from the diagonals, for instance using a Sakoe-Chiba band (Dau et al. 2018; Sakoe and Chiba 1978).
Also, in our case, because time series are already clustered based on their metadata, we reasonably expect
this risk to be low.

3.2.2 Clustering with Density-based spatial clustering of applications with noise (DBSCAN)

To cluster time series, we rely on Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
which we feed with the distance matrix computed via the DTW algorithm as described in the previous section.
DBSCAN is an algorithm which discovers clusters on the areas with the highest density, while low-density
areas are associated with noise. The formal notion of “clusters” and “noise” is straightforward in Ester et al.
(1998). To form a cluster, the neighbourhood of a certain radius shall contain a minimum number of points
(𝑚𝑖𝑛𝑃𝑡𝑠). Considering the distance function 𝑑𝑖𝑠𝑡(𝑥, 𝑦) between points 𝑥 and 𝑦 in a database of points 𝐷,
the 𝜖-neighbourhood of 𝑥 is defined by {𝑞 ∈ 𝐷|𝑑𝑖𝑠𝑡(𝑥, 𝑦) ≤ 𝜖}. In our case, 𝑥 and 𝑦 are time series, 𝑑𝑖𝑠𝑡(𝑥, 𝑦)
is given by DTW, while 𝜖 and 𝑚𝑖𝑛𝑃𝑡𝑠 are set, respectively, to the median value of each cluster - excluding
observations equal to 0 - and 2. This means that the 𝜖-neighbourhood of a given point 𝑝 has to contain at
least 2 points in order to form a cluster.

For our purpose, DBSCAN brings several advantages. First, it is both data-driven and unsupervised. For
statistical production we consider this feature to be highly critical in order to generalize our method in a fully
automated pipeline. In this respect, it shall not require any manual intervention or domain-specific knowledge
to set the input parameters which partitioning and hierarchical algorithms often necessitate (Kaufman and
Rousseeuw 2009). Furthermore, DBSCAN associated with DTW has also be proven to perform relatively
well to cluster time series with noise, which is often the case for real time series (Lyudmyla Kirichenko 2019).
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4 Outlier Detection
This section goes over the steps that we follow in order to perform outlier detection on the clustered series.

4.0.1 Contextual outlier detection

Our key goal is to perform point outlier detection on time series taking into account points from related
time series. Since time series pooled in the same cluster share the same shape and are expected to carry
the information of related statistical phenomena, we perform outlier detection over the data points of all
series belonging to the same cluster. The intuition is straightforward: assuming that the 10-year government
French bond yield faces a sharp rise which is not explained by an idiosyncratic shock, we may expect to find
the same rise across other euro area countries, albeit with differences in level. Hence, we may find a point
to be an outlier while checking the single series, whereas we would flag the same point as inlier by looking
at the whole cluster of time series featuring the same jump.

Definition 4.1. Data point 𝑥𝑡,𝑆1
is flagged as outlier if it deviates significantly from its neighbouring points,

𝑥𝑡−1,𝑆1
, ..., 𝑥𝑡−𝑛,𝑆1

as well as from the data points belonging to related series 𝑥𝑡−1,𝑆2
, ..., 𝑥𝑡−𝑛,𝑆𝑍

.

4.0.2 DBSCAN

We rely on DBSCAN to capture outliers, ie those data points that lie in low-density areas and, consistently,
we expect inliers to lie in high-density ones. We formalise this intuition as follows: we detect outliers for
each region of data 𝐷 which contains the data points lying in cluster 𝐶 and within the sliding window 𝑘 of
size 𝑤 up to when the number of iterations (𝑖) is equal to the difference between the total number of periods
𝑇 and the window size

xt xt+1 xt+2 xt+3
...xT

k(i=0)
...

k(i=T−w)

Because differences in levels may exist and are not relevant in our case, we differentiate the time series and
apply a min-max scaler. The latter typically scales data points between 0 and 1, i.e. if 𝑥 = (𝑥𝑡)𝑁

𝑡=1, then the
min-max scaled series 𝑥′ is given by:

𝑥′
𝑡 = (𝑥𝑡 − min 𝑥)

(max 𝑥 − min 𝑥) × (𝑎 − 𝑏) + 𝑏 (3)

where tipically 𝑎 = 1 and 𝑏 = 0. We apply those transformations for each time series.

We follow a conservative approach to define 𝜖 and consider that at least 2 points are needed to form a
cluster (ie. 𝑚𝑖𝑛𝑃𝑡𝑠 = 2). Outliers are those data points which are part of the clusters which contain the
minimum number of data points, including those which could not be clustered (i.e. noise). We specify 𝑚
as the 𝑚 clusters featuring the minimum data points clustered, including noise. For example, let’s assume
that DBSCAN returns four clusters for iteration 𝑖, 𝐶1, 𝐶2, 𝐶3 and 𝐶4 respectively with sizes 𝑠1, 𝑠2, 𝑠3, 𝑠4.
If 𝑚 equals 2 and 𝑠1 and 𝑠2 are lower than 𝑠3 and 𝑠4, then data points belonging to 𝐶1 and 𝐶2 are flagged
as outliers. These parameters help to detect the presence of multiple outliers in 𝐷 whose cluster sizes are
different, but smaller than clusters containing inliers.
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5 Application
In this section, we present a brief empirical test to illustrate the methods outlined in the previous sections.

5.1 Data sample
For the purpose of this paper, we only consider a small subset of the BIS DataBank time series. Series
are organized in topic codes which describe the underlying statistical data. A topic code is typically made
of 4 letters and is associated to a unique statistical phenomenon. The order of the letters in the topic
code has a precise meaning: the initial letter refers to the broadest category while the other ones relate to
further breakdowns. For example, topic code HBBA contains series related to Interest rate, official, discount
rate/base rate, which belongs to block H (i.e. first letter) on interest rate. The characteristics of the sample
are summarized below:

Table 1: Data sample

Time series (n) 668
Topic codes (n) 43
Frequency M
Start date January 1919
End date May 2023
Missing observations 1.99%
Length 359

Missing observations correspond to the average share of NaN values, that is the data gaps, per series.
Consistently, the length refers to the average number of periods, i.e. months, per each time series. However,
start and end dates are the minimum and maximum dates across the whole data sample.

5.2 Time series metadata and data clustering
In order to define the context against which we perform outlier detection, we cluster time series leveraging
both metadata and data. We start by clustering the series by taking three metadata, namely the topic code,
the topic name and the unit code. Those attributes play a determinant role for our analysis: the topic code
is expected to give an indication about the classification of the series. However, the code alone is not enough
to cluster the time series, since there may be other topic codes closely related. For example, the series
in HBBA (Interest rate, official, discount rate/base rate) are closely related to codes HBAA (interest rate
official discount rate base rate), HBDA (interest rate official deposit facility), HBEA (interest rate official
rate advances) and so on. Hence, we look at the topic name on top of the code. Finally, the unit code is also
important, as to make sure that series falling in the same cluster share the same unit of measure.

We use affinity propagation with the Jaro-Winkler distance function (Section 3.1). We preprocess the
metadata in order to reduce errors or biased results, for example by removing stopwords and punctuation,
before calculating the distances for each combination of topic codes and names. We feed Affinity Propagation
with the distance matrix and we chose a low damping value to prevent overshooting. We set the preference
to each point to be 150% of the median similarity. This helps us to reduce the number of clusters and obtain
a better distribution of cluster sizes. We create groups from the clusters assigning to each of them a name by
appending the unit code of clustered time series to a sequential positive integer. In this respect, two series
falling under the same cluster but with two different units are assigned to two different groups.

As a second step, we further refine these results by clustering the time series based on their shape. To do so,
we use dynamic time warping and DBSCAN (Section 3.2). More specifically, we first differentiate each time
series before calculating the warping paths. To lower the risk of pathological mappings between time series,
we also apply a window equal to 3, i.e. one month can be mapped up to three months, which sounds to be
reasonable for our data. We use the distance matrix calculated through DTW to cluster the series using
DBSCAN. With low tuning effort, we manage to cluster 62.28% of the series. This result might be further
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improved by applying other preprocessing methods, including smoothing, although preliminary tests do not
show significant gains. Overall, the results sound promising: for example, the cluster 7C3681 contains 46
series relating to the topics: interest rate total loans total amounts outstanding, interest rate total loans new
loans, interest rate mortgage construction loans, interest rate new mortgage loans.

5.3 Contextual outlier detection
Once we retrieve the clusters for the time series in our sample, we check the presence of outliers using
DBSCAN. As explained in Section 4, we differentiate and apply a min-max scaler between 0 and 1 for each
time series before clustering. We run the model by setting 𝜖 to be equal to the 0.02 quantile of the sample,
and iterate the checks over a sliding window of size 12, i.e. a year. Sample data is expected to be without
outliers.

The comparison between the contextual and the current check is striking. Whenever there are exogenous
shocks that affect the whole context, contextual outlier detection does not raise any false positive. Conversely,
because the current outlier check does not take into account the context, it flags outliers over the same period.
We show an example of this finding below related to the time series on loans and mortgages interest rates
during the recent sharp rise in interest rates since mid-2022.
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(b) Current

Figure 1: Comparison between contextual and current outlier checks during the sharp increase in interest
rates since mid-2022

6 Conclusion and way forward
We showed that clustering time series based on their metadata and data is a powerful tool to enhance
traditional outlier detection checks, such as the current one in the BIS DataBank. Relying on unsupervised
ML techniques, we are able to derive the context against which performing outlier detection and prevent
false positives at the level of each individual series when an exogenous shock affect the whole sample.

Our method is still in its early stages and requires more research in three directions. First, we need to
better assess the mix of individual and contextual outlier checks. In fact, contextual outlier detection
may be less sensitive to individual point outliers that may occur across the individual time series, hence
requires appropriate tuning before being implemented in production. Also, further testing and robustness
checks may help to detect the presence of false negatives which may lower the data quality of the series
produced. Secondly, more tuning is also required to test different input parameters of the ML algorithms
referenced in this paper. This is particularly the case for DBSCAN since small changes in its parameters
may yield significantly different results. Finally, as we aim at introducing this check in the context of
statistical production, a careful analysis of performance needs also to be weighted-in along with the design
of a ML-based pipeline.
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