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Abstract

The economic activity of enterprises (NACE) is often a key characteristic for the production
of business statistics. The NACE code is determined for all units in the population and stored
in the statistical business register. It is imperative that misclassifications in NACE codes are
avoided, since they can lead to seriously biased business statistics. Determining and maintaining
the main economic activity of an enterprises is a challenging classification task which relies on
manual editing. Accordingly, this leads to the swift depletion of time resources, especially for
national statistical institutes with a large business population size. Due to an increasing web
presence of enterprises, web data is becoming a viable data source to help classify the economic
activity of enterprises. One project within the ESSNet Web Intelligence Network, which started
in April 2021, aims to develop automatic procedures to support manual editing of NACE codes.
Clearly whether a proposed classification model has the ability to support the manual editing
processes will depend on its quality. Hence the purpose of this paper is two-fold: 1) to construct
a hierarchical classification model to predict NACE 1-5 codes of enterprises on the basis of their
scraped websites and 2) to apply evaluation measures, including a novel customized performance
measure, which are more suitable to assess the quality of hierarchical models than the standard
evaluation metrics. Our web data encompasses the web pages of enterprises that were part of
the Information and Communication Technologies survey from 2019 to 2021.

1 Introduction

NACE is the European standard hierarchical classification method used to classify enterprises ac-
cording to their economic activity. As such it builds the foundation of various business statistics and
indicators which in turn are the basis of policy proposals and implementations, hence underlining
the importance of correct classifications. Any misclassification - in particular of larger enterprises
- will inevitably lead to biased statistical outputs. Accordingly national statistical institutes care-
fully classify and edit NACE codes continuously to ensure a high level of accuracy which causes a
significant depletion of time resources.

In order to assist and expedite the manual classification and editing process, we propose a
hierarchical classification model that uses the scraped web pages of enterprises to predict their
respective NACE level 1-5 codes. Clearly whether the proposed classification model will have the
ability to support the manual classification and editing process will depend on its quality. Thereby
the drawback of using the usual evaluation metrics such as the precision, recall and accuracy to
evaluate hierarchical text classification models is their incapacity to account for the relationship
or closeness between the categories in the hierarchy. Accordingly Sun and Lim (2001) proposed
adjusted versions of the standard performance metrics which incorporate the information pertaining
to class relationships in a hierarchical structure, to provide a more accurate evaluation method for
hierarchical models.

The purpose of this paper is tow-fold: 1) to construct a hierarchical classification model based
on the local classifier per parent node approach - which trains each parent node to only distinguish
between its child nodes, hence respecting class consistency by construction - to predict NACE level
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1-5 codes of enterprises on the basis of their scraped websites and 2) to evaluate it using the adjusted
versions of the standard measures, as well our newly proposed performance measure, which are more
suitable to asses the performance of hierarchical models than the standard evaluation metrics.

The paper is structured as follows. The second section will give a brief description of various
quality metrics encompassing the adjusted versions of the standard evaluation measures which
account for the degree of alignment between the true and predicted classes, as well as our newly
proposed evaluation measure which weighs classes according to their respective sizes. Section
three presents the methodological framework used to construct the hierarchical classification model
along with the results of its application to the regarded web data set consisting of the web pages
of enterprises that were part of the Information and Communication Technologies (ICT) survey in
2019, 2020 and 2021. Section 4 presents the evaluation results of the hierarchical model using the
quality measures from Section 2 and Section 5 concludes.

2 Evaluation Measures

In this section we will present the adjusted standard evaluation measures based on class similarity
and class distance (see Sun and Lim 2001), which account for the degree to which the true
and predicted classes align. In addition we will also present extended versions of the standard
evaluation measures specifically designed for hierarchical classification tasks. Finally we will propose
an evaluation measure specifically designed for our use case. Henceforth the words class and
category will be used interchangeably and we adopt the following notation: the category space is
denoted by C = {C1, . . . , Cm} where m is the depth of the tree (i.e. there are m levels) and for
each level l ∈ {1, . . . ,m}, Cl = {cl1, cl2, . . . , clnl

} contains all the classes on the l-th level of the
tree and nl denotes its cardinality, i.e |Cl| = nl. For the total number of classes across all levels we
denote n := |C|. (Note, for ease of notation and to increase readability, we will occasionally omit
one subindex of classes cli ∈ Cl for l ∈ {1, . . . ,m} if convenient).

We define the dimension of the feature vectors for our model at level l to be dl := nlf(l), where
f : {1, . . . ,m} −→ A ⊂ N is a function assigning the number of features that are considered for
each class for a given level l, which implies that for each class on level l the same number of features
will be considered.

2.1 Evaluation Measures based on Class Similarity

One way to compute the degree of alignment between two classes cli ∈ Cl(⊂ C) and clj ∈ Cl(⊂ C)
from the l-th level is to compute their category similarity CS(cli, clj) using the cosine similarity

CS(cli, clj) :=

∑dl
k=1(f

li
k f

lj
k )√∑dl

k=1(f
li
k )

2

√∑dl
k=1(f

lj
k )2

, (1)

where f li ∈ Rdl , f lj ∈ Rdl are the sum of all feature vectors assigned to class cli, clj respectively.
Using this category similarity measure we can define the Average Category Similarity (ACS) on
the l-th level in the following way

ACSl :=
2
∑nl

i=1

∑nl
j=i+1CS(cli, clj)

nl(nl − 1)
, (2)

where nl is the total number of classes on the l-the level. Note the category similarity is only
computed for classes on the same level. Now we can compute the category similarity between the
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true class y of an enterprise e and its predicted class p. If the enterprise e belongs to the class ci
and p = ci i.e. e ∈ TPi, then e is counted as 1 in the computation of precision and recall for the
class ci. However if e does not belong to the class ci but it is predicted to be, i.e. e ∈ FPi, we
compute the similarity between the predicted wrong class p = ci and the true class y to determine
how much e can actually contribute to class ci when its precision and recall are computed. If the
predicted and true class are very similar, the enterprise e will be counted close to a value of 1 for
TPi. Similarly if e is wrongly rejected from the class ci, i.e. e ∈ FNi, we can compute the similarity
between the predicted class p and the true class y = ci to determine the contribution of e to the
class ci. The contribution of the enterprise e to the class ci when e ∈ FPi or e ∈ FNi is given as
follows

Conb(e, ci) =

min
(
1,max

(
− 1, CS(y,ci)−ACS

1−ACS

))
, where e ∈ FPi

min
(
1,max

(
− 1, CS(p,ci)−ACS

1−ACS

))
, where e ∈ FNi,

(3)

where the range has been restricted to [−1, 1]. For all enterprises e that were incorrectly assigned
to ci, i.e e ∈ FPi, the total contribution of these enterprises to category ci is given by

FpConbi :=
∑

e∈FPi

Conb(e, ci) (4)

and similarly for all enterprises e that were incorrectly rejected from ci, i.e e ∈ FNi the total
contribution of these enterprises to category ci is given by

FnConbi :=
∑

e∈FNi

Conb(e, ci). (5)

Using the category similarity we can now define the adjusted evaluation measures of: 1) precision
and recall (see Equations (6)), 2) micro-averages of precision and recall (see Equations (7)), 3)
macro-averages of precision and recall (see Equations (8)), 4) accuracy and error (see Equations
(9)), for every class ci ∈ C in the following way:

PRCS
i =

max(0, TPi + FpConbi + FnConbi)

TPi + FPi + FnConbi
, RECS

i =
max(0, TPi + FpConbi + FnConbi)

TPi + FPi + FpConbi
(6)

PRCS
Mic =

∑n
i=1 max(0, TPi + FpConbi + FnConbi)∑n

i=1(TPi + FPi + FnConbi)
, RECS

Mic =

∑n
i=1 max(0, TPi + FpConbi + FnConbi)∑n

i=1(TPi + FNi + FpConbi)
(7)

PRCS
Mac =

∑n
i=1 PRCS

i

n
, RECS

Mac =

∑n
i=1 RECS

i

n
, (8)

ACCS
i =

TPi + TNi + FpConbi + FnConbi
TPi + TNi + FPi + FNi

, ERCS
i = 1−ACCS

i , (9)

where TNi are all the observations that are correctly rejected from the class ci.

2.2 Evaluation Measures based on Class Distance

Another way to quantify the degree of alignment between two classes cli ∈ Cl and clj ∈ Cl from the
l-th level is to compute their distance Dis(cli, clj), which is defined as the total number of edges in
the shortest path from clj to clj . The shorter the distance between two classes the higher the degree
of alignment. As we will construct our hierarchical classification model using the local classifier
per parent node approach, we can systematically derive the distance between two classes. Under
the local classifier per parent node approach a false prediction made on level l ∈ {1, . . . ,m − 1}
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will result in false predictions on the subsequent level(s) l + 1 as well. Indeed, if the hierarchical
predictions pi of an enterprise align with the true values yi up until the l-th level i.e. pi = yi for
i = 1, . . . , l but do not coincide on the (l+1)-st level - hence also not on the subsequent levels, i.e.
pi ̸= yi for i = l+1, . . . ,m, then the distance between the true category and the predicted category
on the i-th level is given by (i − l)2, where i = l + 1, . . . ,m. Before defining the contribution
of an enterprise e to a class ci ∈ C, we have to specify an acceptable distance Disθ between two
classes. For example if Disθ = 2, then classes that are more than two edges apart will have a
negative contribution to class ci. A common way of selecting Disθ is to use the depth m of the
tree. Analogous to Section 2.1, we can now define the contribution of the enterprise e to the class
ci, when e ∈ FPi or e ∈ FNi is given, as follows

Conb(e, ci) =

min
(
1,max

(
− 1, 1− Dis(y,ci)

Disθ

))
, where e ∈ FPi(

1,max
(
− 1, 1− Dis(p,ci)

Disθ

))
, where e ∈ FNi,

(10)

where the range has been restricted to [−1, 1]. Similarly to Section 2.1, we can now define the
adjusted evaluation measures of: 1) precision and recall 2) micro-averages of precision and recall
3) macro-averages of precision and recall 4) accuracy and error for every class ci ∈ C, by replacing
the contribution by the class similarity, by that of the category distance in equations (6)-(9).

2.3 Hierarchy based Evaluation Measures

Kiritchenko et al. (2006) proposed a hierarchy based extension of the standard evaluation metrics
precision hPR and recall hRE, defined in the following way

hPR :=

∑K
i=1 |Pi ∩ Yi|∑K

i=1 |Pi|
hRE :=

∑k
i=1 |Pi ∩ Yi|∑K

i=1 |Yi|
, (11)

where K is the number of observations in the test set, Pi is the set consisting of the most specific
class prediction(s) of the observation i i.e. Pi = {pi1, . . . , pim̃} where m̃ ≤ m, (m being the number
of levels) and Yi is the set consisting of the true classes of the observation i on every level i.e.
Yi = {yi1, yi2, . . . , yim}.

2.4 Tailored Evaluation Measures

The measures considered so far, all gave equal weights to each class when computing the overall
(average) quality of the model. However for our particular use case it is advisable to give more
weight to classes to which large enterprises tend to be assigned, as a missclassified large enterprise
will introduce a more significant bias in a business statistic than a small missclassified enterprise.
As our statistical business registry does not provide the turnover of the enterprises, we use the
number of employees of the enterprises as an indicator for their size as it is generally justifiable to
assume that enterprises with a large number of employees will comparatively have a bigger turnover
than enterprises with a smaller number of employees.

Accordingly we introduce the following average weighted precision PRl, recall REl and accuracy
ACl for each NACE level l ∈ {1, . . . ,m = 5}, where we weight each class cli ∈ Cl = {cl1, cl2, . . . , clnl

}
with the total number of employees sli of the enterprises that are assigned to this class

PRl :=
1∑nl

i=1 sli

nl∑
i=1

sliPRli, REl :=
1∑nl

i=1 sli

nl∑
i=1

sliREli, ACl :=
1∑nl

i=1 sli

nl∑
i=1

sliACli, (12)
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Note these measures can be computed by either using the standard precision, recall and accuracy
measures or their adjusted versions based on category distance and category similarity. To obtain
an average value for the precision, recall and accuracy across all levels, we compute the (weighted)
average of PRl, REl and ACl, respectively:

PRw :=
1∑m

l=1 |wl|

m∑
l=1

|wl|PRl, REw :=
1∑m

l=1 |wl|

m∑
l=1

|wl|REl, ACw :=
1∑m

l=1 |wl|

m∑
l=1

|wl|ACl, (13)

where m = 5 is the total number of levels and |wl| refers to the number of predictions available at
the l-th level. Note w1 by construction will always be equal to the maximum number of predictions
possible, i.e. will coincide with the number of enterprises contained in the test set and for the
second NACE level we expect a similar result. However for NACE codes beyond the third level,
the available number of predictions will tend to diminish for the local classifier per parent node
approach as there might not be sufficient data to train the local classifiers.

3 Methodology

In this section the methodological framework used to construct the hierarchical classification model
to predict the NACE level 1-5 codes of enterprises, based on their respective web scraped data, is
presented.

3.1 Data

Before an enterprise can be classified on the basis of its webpage (URL), it first has to be linked
to its true URL. For our data set we consider all enterprises that were part of the Information and
Communication Technologies (ICT) survey in 2019, 2020 and 2021. Our method of linking each of
these enterprises to their respective websites using the Statistical Business Registry (SBR) (contains
information of enterprises e.g. name, address, NACE codes, etc) is conducted in the following way:
We first search the name and address of each enterprise which has a website according to the ICT,
through the Google Search API and retain the first ten URLs as possible website candidates of
the enterprise. Subsequently using the statistical software R (R Core Team 2023) and Selenium
we scrape each website and use that data to conduct our URL linking procedure. In particular
we look for direct identifiers such as the value added tax (VAT) or the company ID (CID) of the
considered enterprise on each of the websites. If a match can be found the respective website(s)
are linked to the enterprise. Through this linking procedure we could link 72,498 enterprises with
their respective websites, hence providing us with 72,498 labeled observations for the construction
of our training and test set.

3.2 Pre-Processing

Before the set of raw scraped webpages can be used for the classification task, it has to be thoroughly
processed. From our scraped webpages we only retain the text elements and discard the html code.
Thereby in addition to using the text elements of the scraped landing page, we also include the
text elements of certain sub-pages that contain keywords in the link which suggest that they
might harbor information pertaining to NACE code classifications (e.g. ”enterprise”, ”company”,
”unternehmen”, ”about us”, ”über uns”, etc.). Once the text of interest from each webpage is
obtained, it is processed in the following way: 1) each word is transformed with the German
morphological lexicon 2) all digits and punctuations are removed 3) all characters not part of the
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German dictionary are removed 4) German stop words are removed and 5) lemmatization using
the German version of the hunspell dictionary is conducted.

3.3 Feature Selection

After applying the pre-processing procedure to our data set, the number of total unique words across
all the scraped webpages amounts to 3,212,247, hence providing a vast pool of words (features) to
select form. The feature selection method we apply was proposed by Uysal (2016) where a global
and a local feature selection score function is combined to select a balanced set of features for
each class. We use the Distinguishing Feature Selector (DFS) as our global selection score and
the Odds Ratio (OR) as our local selection score. As we use the local classifier per parent node
approach, where each parent node is only trained to distinguish between its children, we construct
a multi-step feature selection procedure which respects this property. Let us first introduce some
notation. Let Ll denote the set of all NACE level l codes occurring in the regarded data set where
l = 1, . . . , 5 = m indicates the level. Accordingly |Ll| denotes the number of all NACE level l
codes. For our hierarchical classification method we will be working with restricted data sets such
as Lj

l = {i ∈ Ll|parent(i) = j}, which contain all the children of the parent j ∈ Ll−1 at level l.

For ease of notation we assign a number from 1 to |Lj
l | to each class in Lj

l , then we can denote the

feature set corresponding to Lj
l by F j

l = {Fl1, . . . , Fl|Lj
l |
}, where Flk is the feature set of the k-th

class in Lj
l . However the feature set is not computed for every class on every level. Indeed, the

computation of the feature set for a class depends on two conditions:

Selection Conditions: Let j ∈ Ll for l = l, . . . , 4 be the parent on the l-th level, then the
feature set F(l+1)k of the child c(l+1)k ∈ Lj

l+1 is computed, where k = 1, . . . , |Lj
l+1|, if

1. there are at least two children |Lj
l+1| ≥ 2 of the parent j, i.e. there are at least two

classes to be differentiated amongst

2. there are at least two enterprises that can be assigned to each class in Lj
l+1.

If we would not impose the first condition, then in case of a single child c ∈ Lj
l+1 of the parent j,

the model would inevitably predict the NACE level l+ 1 code c for every enterprise in the test set
with NACE level l code j. The second condition ensures that there is sufficient data available to
compute useful features, as a single web page will most likely not provide a representative feature
set of the respective class.

3.4 Construction of Training and Test Set

Our data set consists of enterprises that can be assigned to 19 out of the 21 possible NACE level 1
codes, i.e. L1 = {A,B,C,D,E, F,G,H, I, J,K,L,M,N,O, P,Q,R, S}. As our aim is to construct
a five tier hierarchical classification model, it is not only imperative to ensure that there are suffi-
cient enterprises assigned to each of the occurring classes, but also that there are multiple children
of a parent (see Selection Conditions). Accordingly we restrict our data set to all enterprises that
are assigned to the NACE level 1 code j ∈ L1 := {C,F,G,H,N} to minimize the violations to the
Selection Conditions. This restriction reduces the number of labeled data 72,498 to 45,105. Once
the data set for the model construction is established, a representation method for the categorical
features (words) has to be selected. We use the one-hot-encoding method to represent the cate-
gorical features as multidimensional vectors where each dimension corresponds to a feature which
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we then weight by the term-frequency inverse document frequency. Hence the feature vector of an
enterprise at the NACE level 1 - 5, is represented by a f(1)|L1| = 500|L1|, f(2)|Lj

2| = 200|Lj
2| where

j ∈ L1, f(3)|Lj
3| = 100|Lj

3| where j ∈ L2, f(4)|Lj
4| = 80|Lj

4| where j ∈ L3 and f(5)|Lj
5| = 50|Lj

5|
where j ∈ L4, dimensional feature vector, respectively where j denotes the parent. We then use
80% of our data as the training set (36,076 enterprises) and the remaining 20% as the testing
set (9,060 enterprises). However, if we only retain the enterprises whose number of employees are
available in the SBR - which is required for the computation of the tailored evaluation measure
(see Section 2.4)- the number of test examples is reduced to 8805.

Note, we could have also used the whole data set to build the hierarchical classification model,
but as we would like to ideally obtain a prediction at all the five NACE levels, we omit the enterprises
for which we know with certainty that the model would have not been able to predict the NACE
code on all the levels.

3.5 Model Specification

For our hierarchical classification model we use the XGBoost algorithm (see Chen and Guestrin
2016), which we implement using the R-package xgboost by Chen et al. (2015). Before an XG-
boost algorithm can be implemented its hyperparameters have to be selected. In order choose the
hyperparamters we apply the random search technique, which generates random values for each
hyperparameter and then uses a 5 cross-validation to find the optimum values.

Our hierarchical classification model consists of multiple mulit-class models which are trained in
the following way: The first model is trained to distinguish between the classes of L1. Subsequently
we train a model for each class j ∈ Ll on any of the levels l = 1, . . . , 4, to differentiate among its
children as long as 1) there are at least two children |Lj

l+1| ≥ 2 of the regarded parent j and 2) there

are at least two enterprises that are assigned to each of the children in Lj
l+1. Hence the Selection

Conditions dictate the number of models that can be constructed on each level. The feature set
used to train the first model is given F1 and the feature set used to train the rest of the models is
given by F j

l+1. Clearly the data set used to train the latter models is restricted to the enterprises
that are assigned to the NACE level l code j.

As mentioned, for a model to be trained restricted to a class the Selection Conditions have to
be satisfied. If one of these conditions is violated the model is not trained for that particular class.
In case of the hierarchical classification model this means that the hierarchical prediction will be
terminated before the final level is reached.

4 Evaluation

Table 1 shows the performance results of the hierarchical classification model at NACE level 1. The
performance was evaluated using the standard evaluation measures precision, recall and accuracy
and their adjusted counterparts based on category similarity (see Section 2.1) and category distance
(see Section 2.2). For the category distance we used the depth of our tree as the acceptable distance
Dθ = 5 which implies that only nodes that are more than 5 edges apart will contribute negatively
to the class in question. As is apparent the adjusted versions of the standard evaluation are
evermore higher than their standard counterparts, regardless of whether the category distance or
category similarity is used to quantify the alignment between classes. The performance results of
the model at NACE level 2-5 lead to the same conclusion (their tables have been omitted due to
their significant size).

To obtain an overall value for the precision, recall and accuracy we consider the Micro-Averages
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NACE PR RE AC PRCS RECS ACCS PRCD RECD ACCD

C 0.818 0.866 0.901 0.884 0.922 0.936 0.932 0.952 0.960
F 0.872 0.861 0.953 0.857 0.848 0.949 0.953 0.948 0.981
G 0.850 0.851 0.903 0.901 0.911 0.936 0.945 0.945 0.961
H 0.911 0.851 0.982 0.901 0.833 0.980 0.967 0.943 0.993
N 0.905 0.821 0.969 0.914 0.834 0.971 0.966 0.932 0.988

Table 1: Performance results restricted to the first NACE level

Metric Measure Micro-Average Macro-Average

- Pr 0.74 0.71
- Re 0.76 0.63

CS Pr 0.84 0.81
CS Re 0.86 0.74

CD Pr 0.82 0.72
CD Re 0.85 0.67

Table 2: Performance results over the whole category space. Metric describes if and which method (category
similarity CS or category distance CD) was implemented to quantify the alignment between the predicted
and true classes

and Macro-Averages which we define on the basis of the standard and adjusted evaluation measures
(see Table 2). The Micro-Averages and Macro-Averages computed using the adjusted standard
evaluation metrics are higher than their counterparts based on the standard evaluation metrics.
Furthermore the hierarchical based precision is hP = 0.74 hence similar to the value obtained by
computing the Micro-Average and Macro-Average using the standard evaluation metrics. The low
value of the hierarchical recall hR = 0.59 can be explained by the unavailability of predictions at
the more granular level, in particular the fourth and fifth NACE level (see Figure 2).

Table 3 displays the weighted precision at each separate NACE level on the basis of the standard
evaluation metrics (PR,RE,AC) and the adjusted evaluation measures based on category similarity
(PRCS , RECS , ACCS) and category distance (PRCD, RECD, ACCD) and its overall weighted
average across all the five NACE levels and shows that it decrease as the NACE level increases.
This is due to the fact that the enterprises for which the predictions are available on the more
granular level are rather on the smaller side (do not have a large number of employees) and not due
to a overall decreasing quality of performance as the level increases as Table 4 illustrates. Indeed
the average performance over each NACE level is stable over time.

In order to illustrate the discrepancy between the predicted and true NACE codes at all levels
for a fixed NACE level 1 code j ∈ L1, we plot the distribution of all NACE codes at level 1-5 with
NACE level 1 code j = H from the test set (see Figure 1) and the distribution of all NACE codes
at level 1-5 with NACE level 1 code H obtained from the hierarchical prediction model (see Figure
2). The class H was merely chosen due to its comparatively modest number of classes at each level
which allows for a interpretable plot.

In Figure 1 all the enterprises with NACE level 1 H get partitioned into five distinct classes
H49, H50, H51, H52, H53 with cardinality 503, 5, 10, 154, 23, respectively at the NACE level
2 corresponding to the colors blue, green, orange, violet, red respectively. Similarly each of these
NACE 2 level codes get partitioned into multiple classes at the NACE level 3 themselves represented
by the different shades of their respective colors. In particular the classes at level 3 consist of H491,
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Metric NACE 1 NACE 2 NACE 3 NACE 4 NACE 5 Weighted Average

PR 0.86 0.78 0.70 0.46 0.14 0.68
PRCS 0.89 0.87 0.83 0.56 0.15 0.77
PRCD 0.95 0.91 0.79 0.45 0.12 0.76

RE 0.85 0.74 0.68 0.47 0.16 0.67
RECS 0.88 0.83 0.80 0.56 0.17 0.75
RECD 0.94 0.90 0.77 0.46 0.16 0.75

AC 0.93 0.97 0.96 0.69 0.18 0.86
ACCS 0.95 0.98 0.97 0.69 0.18 0.87
ACCD 0.97 0.99 0.97 0.69 0.18 0.88

Table 3: Performance results in terms of weighted precision, recall and accuracy at 1) each level separately
(NACE level 1- 5) and 2) over the whole category space (Weighted Average) using different evaluation
metrics. Metric describes if and which method (category similarity or category distance) was implemented
to quantify the alignment between the predicted and true classes

Metric NACE 1 NACE 2 NACE 3 NACE 4 NACE 5 Average

PR 0.87 0.77 0.72 0.68 0.73 0.75
PRCS 0.89 0.84 0.83 0.79 0.80 0.83
PRCD 0.95 0.91 0.82 0.66 0.61 0.79

RE 0.85 0.67 0.58 0.59 0.83 0.70
RECS 0.87 0.77 0.71 0.72 0.90 0.79
RECD 0.94 0.86 0.70 0.58 0.77 0.77

AC 0.94 0.99 0.99 1.00 0.99 0.98
ACCS 0.95 0.99 1.00 1.00 1.00 0.99
ACCD 0.98 0.99 1.00 1.00 0.99 0.99

Table 4: Performance results in terms of average precision, recall and accuracy 1) at each level separately
(NACE 1- 5) and 2) over the whole category space (Average) using different evaluation metrics. Metric
describes if and which method (category similarity or category distance) was implemented to quantify the
alignment between the predicted and true classes

H492, H493, H494, H503, H511, H521, H522, H531, H532 with cardinality 1, 5, 211, 286, 5, 10,
8, 146, 2, 21, repectively. Then each of the classes at the NACE 3 get partitioned into multiple
classes at the NACE level 4 and each of the NACE level 4 codes get partitioned into multiple
classes at the NACE 5 with the respective colors. Figure 2 illustrates the distribution of all the
predictions with NACE level 1 code H. At the NACE level 2 the 5 distinct classes H49, H50,
H51, H52, H53 are predicted with cardinality 518, 4, 6, 123 10, corresponding to the colors blue,
green, orange, violet, red respectively just as in Figure 1. On level 3 the predicted classes are H491,
H492, H493, H494, H511, H522, H531, H532 with the cardinality 1, 3, 214, 300, 6, 123, 2, 8,
respectively. Recall that the hierarchical model might not provide a prediction beyond a certain
NACE level in case one of the Selection Conditions is not satisfied. An unavailable prediction is
indicated by opacity in Figure 2. For example the color green corresponds to the NACE level 2 code
H50, however the opaque green color at NACE level 3 signifies that its prediction is not available
at the third level, and hence by implication also not on the fourth and fifth NACE level. Generally
no predictions are made at the fifth NACE level.
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Figure 1: Distribution of the classes with NACE level 1 code H in the test set. The different colors
correspond to the different classes. Thereby different shades of the same color indicate that they have the
same parent at level 2.
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Figure 2: Distribution of the classes that were predicted to have NACE level 1 code H. The different colors
correspond to the different classes. Thereby different shades of the same color indicate that they have the
same parent at level 2. Opacity is indicative of no available prediction.

5 Conclusion

In this paper we construct a hierarchical classification model that predicts the NACE level 1-5 codes
of enterprises on the basis of their scraped web pages and then we evaluate it using measures that
are more suitable to asses the performance of hierarchical structures than the standard evaluation
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metrics. We first give an overview of these suitable evaluation measures and then we propose a
new evaluation measure specifically for our regarded use case, which weighs each class according to
the number of employees that are contained in the considered class, allowing to give more weight
to classes that tend to be assigned to large enterprises. Using the local classifier per parent node
approach, we construct a hierarchical classification model by 1) pre-processing the web scraped
data 2) computing the feature set for all classes of all NACE 1-5 levels by combing a global and a
local feature selection score function as long as i. the class has at least one sibling and ii. there are
at least two enterprises that can be assigned to each of the siblings 3) computing the feature vector
for each enterprise using the one-hot-encoding method weighted by the term-frequency inverse
document frequency 4) constructing a multi-class classifier using the XGBoost algorithm for each
parent node as long as i. the parent node has at least two children and ii. there are at least two
enterprises that can be assigned to each of the child using 80% of the data as the training set.
Evaluating the model shows that the adjusted standard evaluation metrics, which account for the
relationship between the predicted and true NACE codes of an enterprise, are higher than their
standard counterparts. Accordingly, the overall performance of the model is deemed higher when
the averages are computed using the adjusted evaluation metrics. Thereby the general performance
of the hierarchical model measured in terms of the Micro-Average, Macro-Average and the tailored
performance measure is of homogeneous nature.
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