Using Web Data to derive the Economic Activity of Enterprises

Manveer Mangat UNECE Machine Learning for Official Statistics Workshop 2023, June 2023

www.statistik.at

Independent statistics for evidence-based decision making

Research Objectives

- 1. Construct a hierarchical classification model to predict NACE level 1-5 codes of enterprises on the basis of their scraped websites
- 2. Propose evaluation measures which are more suitable to asses the performance of hierarchical models than the standard evaluation metrics

Hierarchical Classification

Data Set

Data: pairs of enterprise and URL links (enterprises part of the ICT survey in 2019-2021)

- URL linking done on the basis of the **Statistical Business Registry (SBR) (Ground Truth)**
- When VAT/CID of an enterprise found on a scraped webpage -> webpage linked to the respective enterprise -> we obtain its NACE 1-5 code from the SBR (NACE codes available on **all** levels)
- -> provides approx. 72k pairs

Processing of scraped webpages:

- Text on the landing page and sub-pages containing certain key-words in the link are scraped
- Only text elements are kept (Removal of digits and punctuations, Removal of characters not part of the German dictionary)
- Resulting text processed in the following way:
 - 1. Each word transformed using the "German morphological lexicon" (<u>http://www.danielnaber.de/morphologie/</u>)
 - 2. Stemming

Feature Selection

- After pre-processing scraped text contains > 3 Mio words
- Feature Selection Method: Combine a global (DFS) and a local feature selection (OR) score function to select a set of features for each class (Uysal 2016)
- Select
 - 500 words for classes on NACE level 1
 - 200 words for classes on NACE level 2
 - 100 words for classes on NACE level 3
 - 80 words for classes on NACE level 4
 - 50 words for classes on NACE level 5

-> use one-hot-encoding method to obtain the feature vector $f_i \in \mathbb{R}^{i*n_i}$ for each NACE level i $\in \{1, ..., 5\}$, where n_i is the number of all classes on NACE level i, for each enterprise (weighted by the term-frequency inverse document frequency)

Hierarchical Structure and Classification Approaches

- 1. Flat Classification Approach
- 2. Global Classification Approach
- 3. Local Classification Approach: i. local classifier per node, ii. local classifier per level, iii. local classifier per parent node

Hierarchical Classification Model

- Local classifier per parent node approach: each parent node only trained to distinguish between its child nodes
 - Advantage: class consistency e.g. predictions like A, B01, A011, C0112 not possible
 - **<u>Disadvantage</u>**: error propagation

Implemented using XGBoost (Chen et al. 2015)

- Local classifier only constructed for a parent node if:
 - 1. The parent node has at least 2 children
 - 2. There are at least 2 enterprises that can be assigned to each of the child nodes
 - -> if one of the conditions violated, prediction *not available* beyond the regarded parent node

-> NACE codes might not be available beyond a certain level

Evaluation of Hierarchical Models

<

Hierarchical Performance Measures

- 1. Standard evaluation measures (precision, recall, accuracy) (flat metrics)
 - <u>Disadvantage</u>: does not account for relationship between true and predicted value
 e.g.: True NACE 3 code A021, Model 1: A028, Model 2: C093
 -> both models perform equally poorly according to the standard evaluation measures
- 2. Distance based adjustment of standard evaluation metrics (Sun and Lim 2001)
- Semantics based adjustment of standard evaluation metrics (Sun and Lim 2001)
 -> overall precision and recall obtained by computing the Macro- or Micro-Average
- 4. Hierarchical variation of flat metrics (Kiritchenko et al. 2006)

Tailored Hierarchical Performance Measure for NACE Code Classifications

- Regarded evaluation measures give equal weights to every class
- <u>Proposal</u>: weight a class according to the *size* (number of employees) of the enterprises that are contained in that class

$$\rho_l = \frac{1}{\sum_{i=1}^{n_l} s_{li}} \sum_{i=1}^{n_l} s_{li} p_{li}$$

 $p_{li} \in \{Pr, Re, Ac\}$ evaluation measure at level $l \in \{1, ..., 5\}$ for the class $i \in \{1, ..., n_l\}$, s_{li} number of employees -> weighted evaluation measure available for each level l -> Take (weighted) average for an overall evaluation value

Evaluation

NACE	\mathbf{PR}	\mathbf{RE}	\mathbf{AC}	PR^{CS}	RE^{CS}	AC^{CS}	PR^{CD}	RE^{CD}	AC^{CD}
С	0.820	0.862	0.900	0.884	0.919	0.935	0.933	0.950	0.960
F	0.874	0.855	0.953	0.860	0.842	0.949	0.954	0.946	0.981
G	0.843	0.854	0.903	0.897	0.915	0.936	0.942	0.947	0.961
Н	0.902	0.848	0.980	0.892	0.830	0.978	0.964	0.942	0.992
Ν	0.908	0.823	0.969	0.916	0.837	0.972	0.967	0.933	0.988

Table 1: Performance at NACE level 1

Table 2: Overall Performance

Metric	Measure	Micro-Average	Macro-Average
-	Pr	0.74	0.71
-	Re	0.76	0.63
CS	\Pr	0.84	0.8
\mathbf{CS}	Re	0.86	0.75
CD	Pr	0.82	0.71
CD	Re	0.85	0.67

Hierarchical Versions: hPR=0.74 hRE=0.59

Evaluation

Table 3: Performance in terms of weighted precision, recall and accuracy at 1) each level separately (NACE 1- 5) and 2) over the whole category space (Weighted Average)

Metric	NACE 1	NACE 2	NACE 3	NACE 4	NACE 5	Weighted Average
PR	0.86	0.78	0.70	0.46	0.14	0.68
PR^{CS}	0.89	0.87	0.83	0.56	0.15	0.77
PR^{CD}	0.95	0.91	0.79	0.45	0.12	0.76
RE	0.85	0.74	0.68	0.47	0.16	0.67
RE^{CS}	0.88	0.83	0.80	0.56	0.17	0.75
RE^{CD}	0.94	0.90	0.77	0.46	0.16	0.75
AC	0.93	0.97	0.96	0.69	0.18	0.86
AC^{CS}	0.95	0.98	0.97	0.69	0.18	0.87
AC^{CD}	0.97	0.99	0.97	0.69	0.18	0.88

Visual Evaluation of class H

Distribution of the actual vs predicted NACE level 1-5 codes with NACE level 1 code H

References

Chen, Rory Mitchell, Ignacio Cano, Tianyi Zhou, et al. 2015. "Xgboost: extreme gradient

boosting." R package version 0.4-2 1 (4): 1–4.

Kiritchenko, Svetlana, Stan Matwin, Richard Nock, and A Fazel Famili. 2006. *"Learning and evaluation in the presence of class hierarchies: Application to text categorization."* In Advances in Artificial Intelligence: 19th Conference of the Canadian Society forComputational Studies of Intelligence, Canadian AI 2006, Qu'ebec City, Qu'ebec, Canada, June 7-9, 2006. Proceedings 19, 395–406. Springer.

Sun, Aixin, and Ee-Peng Lim. 2001. *"Hierarchical text classification and evaluation."* In Proceedings 2001 IEEE International Conference on Data Mining, 521–528. IEEE.

Uysal, Alper Kursat. 2016. "An improved global feature selection scheme for text classification." Expert systems with Applications 43:82–92.

Please address queries to Manveer MANGAT Manveer.Mangat@statistik.gv.at

STATISTIK AUSTRIA Guglgasse 13, 1110 Wien

Independent statistics for evidence-based decision making