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Abstract 
 
This study combines heterogeneously behaving cross-sectional regressions and hedonic quality adjusting in 

traditional index number framework. The approach provides a transparent mathematical representation of 

quality correction and quality adjustment of price changes in elementary aggregates. We propose an 

alternative to the standard Griliches-type time-dummy hedonic approach, which in the sense of index number 

theory is more interpretable and mathematically transparent between actual average price changes, quality 

correction and quality adjustment.  

 

In the first stage, the problem of heterogeneously behaving cross-sectional models is handled using the 

principle of hierarchical, ‘nested’, price models. The price models are formulated by combining the proper 

partition of observations (categorization of observations) and the proper classification of observations into 

the most homogeneously behaving subgroups (heterogeneous between subgroups) using standard statistical 

inference. These are achieved using the FE-models (fixed effects) familiar to economists. In the second 

stage, the estimated price models are aggregated from observation level into the level of partition (i.e., into 

stratums), where the so-called Oaxaca decompositions are computed. This decomposition, although not 

unambiguous, consistently divides the actual price change into quality corrections and quality adjusted price 

change for each stratum. We show what is the ideal selection of decompositions based on the algebraic 

properties of the OLS method. In the third stage, the stratum level decompositions are aggregated into higher 

levels similarly as in a traditional index number calculation where ‘a weighted-by-economic-importance’-

variable takes a central role. We use several basic and excellent index number formulas. The study ends in 

empirical application of used cars in Finland.  
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1 Introduction 
 

In traditional index number theory direct price-links are based on comparisons 0 → t, t = 1, 2, …, for 

commodities comparable in quality. Practically this means measurement of price changes from commodity 

prices having a unique code e.g. GTIN-identifier. This traditional method fits nicely for e.g. daily products 

but not generally. In most cases, like clothes, shoes, mobile phones, TV, home electronics etc., bilateral 

price-linking is not possible because of quality change. This property makes bilateral strategies less useful 

leading to indices being contingently biased caused by quality changes of quality characteristics. This 

happens for example for prices of houses and used cars. For that Bailey, Muth and Nourse (1963) developed 

a repeat-sales model (see, Case and Shiller,1989; Quigley, 1995) using a model based (or the stochastic) 

approach to measure changes of prices. These repeat-sales models are problematic, because they can capture 

a tiny fraction of the data because each transacted ‘commodity’, for example apartment or used car, appears 

rarely more than once in the data in a short time span. Another well-known model-based approach is the 

Griliches (1971) time-dummy hedonic method or the WTPD-model (Diewert and Fox, 2018, pp.15), which 

cover the entire data and resolve the comparability issue using hedonic quality adjusting. These methods 

suffer from several problems, but most importantly they are not connected any way with traditional index 

number theory (see Koev, 2003; Suoperä, Luomaranta, Nieminen and Markkanen. 2021; Kaila, Luomaranta 

& Suoperä, 2022). Therefore, these hedonic methods are abandoned in this study. 

 

The focus of the study is to show ‘How hedonic quality adjusting, and traditional index number theory may 

be combined using familiar regression analysis and its algebraic properties transparently?’.  The work builds 

on two earlier papers (Koev, 2003; Suoperä, 2006; see also Vartia, Suoperä & Vuorio, 2021; Suoperä & 

Auno, 2021; Suoperä, Luomaranta, Nieminen and Markkanen. 2021; Kaila, Luomaranta & Suoperä, 2022) 

which address most of issues based on hedonic approach to index numbers. The main idea is that because 

effective matched pairs method or bilateral price-linking is not possible, the price-linking should be done for 

some coarse but the most homogeneous grouping of observations. We do this using econometric approach 

where price models include two-dimensional heterogeneity: ‘intercept’ or ‘categorical heterogeneity’ that 

arise from a detailed partition and ‘slope coefficient heterogeneity’ from different OLS regressions in several 

heterogeneously behaving subgroups (Suoperä and Vartia, 2011). In statistical textbooks this modelling is a 

well-known Fixed Effects (FE) model (Hsiao, 1986, s.29-32).  

 

The process consists of three steps. In the first step, we define several hierarchical ‘nested’ FE price models 

and use statistical inference, that is the estimation of heterogeneously behaving price models and testing 

equality between them. Statistical inference helps us to identify the data generating process of prices and 

leads to selection of the best price models, that is the combination of the classification of price models and 

their partitions. Estimators of the price models are the best linear unbiased estimates (BLUE). In second step, 

we aggregate price models from observations into stratums of the partition. This will be done while 

satisfying the basic algebraic properties of the OLS method. Then the quality adjusting is performed using 

decomposition introduced by Oaxaca (1973). Even the decomposition is not unambiguous, it splits the true 

average price change consistently into quality changes and quality adjusted price changes for any stratum in 

question. In third step, we apply traditional index number theory for stratum level aggregates of the 

decomposition. We analyze two stratum aggregates and their decompositions – unweighted arithmetic and 

geometric averages. We perform our analysis of index numbers using several basic (Laspeyres (L), log-

Laspeyres (l), Log-Paasche (p), Paasche (P)) and excellent index number formulas (Törnqvist (T), 

Montgomery-Vartia (MV), Sato-Vartia (SV), Fisher (F)). 

 

The structure of the study is as follows. In chapter 2 we present the data, basic concepts and notations. In 

chapter 3 we present several nested partitions and combine them with heterogeneously behaving cross-

sectional regressions. Theoretical methods are presented by their empirical counterparts. In chapter 4 we 

derive stratum aggregates and their Oaxaca decompositions.  In chapter 5 we apply index number methods to 

our stratum aggregates and show some graphical figures comparing different basic and excellent index 

numbers. Chapter 6 concludes. 



2 Data, Basic Concepts and Notation 

2.1 Data 
 

Data is received on a daily basis from one major selling portal for second-hand cars in Finland. The received 

data contains the sales announcements updated on the previous day. When daily announcements are 

compiled as monthly data, only the latest sales announcement of the month is considered. The sales 

announcement data is then supplemented with additional characteristics information from the vehicle register 

data from Finnish Transport and Communications Agency. If the weight or the power of the car are 

unavailable from abovementioned sources, they are imputed. The monthly data contains approximately 

75 000 individual sales announcements of second-hand cars.  

For index calculation purposes, only second-hand cars with ”sold”-status purchased from car dealers are 

taken into account. Second-hand cars aged between one and twenty years are taken into index calculation. 

Cars with price less than 2000 euros are excluded since they are not considered representative. Vans and 

recreational vehicles are deleted from index calculation data. Cars with outliers or clearly incorrect 

information in the categorical variables (such as mileage over one million kilometers, weight under 750 

kilograms or over 3000 kilograms and power under 20 kilowatts or over 600 kilowatts) are also removed. 

Also, cars with mileage under one kilometer are deleted since they are not considered as second-hand cars. 

 

2.2 Basic Concepts 
 

Price is defined as car specific unit value measuring price of a car. In this study, the unit prices are in 

logarithmic scale, log-euros. All other variables are measured by their typical units of measurement, e.g. age 

of the car in years, selling time of the cars in months, and mileage in kilometers.  Non-linearity is taken into 

account by calculating square roots of those explanatory variables that are not dummy variables.  In short, 

our price model is specified as semilogarithmic. 

 

 

2.3 Notation 
 

The notations in this study are two-fold. First, in observation level we use typical econometric notation 

because we use model-based price analysis. Aggregation of variables (i.e., dependent, independent) from 

observations into strata (i.e., into index commodities or stratum aggregates) connect notations also into 

traditional notations of index number theory. The most important concepts are: 

 

Observation level: 

Commodities: 𝑎1, 𝑎2, … , 𝑎𝑛𝑡
 are transacted used cars in period t.  

Time periods: t = 0, 1, 2, … are the compared months.  

Quantity: 𝑞𝑖
𝑡 = 𝑞𝑖𝑡 = 1  for 𝑎𝑖  in period t. 

Unit value or unit price: 𝑝𝑖
𝑡 = 𝑣𝑖

𝑡 𝑞𝑖
𝑡⁄  or  𝑝𝑖𝑡 = 𝑣𝑖𝑡 𝑞𝑖𝑡⁄  is the unit price of a used car 𝑎𝑖  in period t 

Value: 𝑣𝑖
𝑡 = 𝑣𝑖𝑡 = 𝑞𝑖𝑡𝑝𝑖𝑡  is the value of a used car 𝑎𝑖  in period t. 

Total value: 𝑉𝑡 = ∑ 𝑣𝑖
𝑡

𝑖 = ∑ 𝑣𝑖𝑡𝑖  is the total value of all used cars in period t. 

Total quantity: 𝑄𝑡 = ∑ 𝑞𝑖
𝑡

𝑖 = ∑ 𝑞𝑖𝑡𝑖  is the total quantity of all used cars in period t. 

Explanatory variables in regressions: 𝒙𝑖𝑡 = (𝑥𝑖𝑡1 …𝑥𝑖𝑡𝑘)′ is a k-vector of observed characteristics in period t. 

 

Stratum level (i.e., elementary aggregates, for example conditional averages): 

Price relatives: �̅�𝑘
𝑡/0

= �̅�𝑘𝑡 �̅�𝑘0⁄  is the price relative of averaged unit prices for stratum k from period 0 to t. 

Quantity relatives: 𝑞𝑘
𝑡/0

= 𝑞𝑘𝑡 𝑞𝑘0⁄  is the quantity relative for stratum k from period 0 to t. 

Value relatives: 𝑣𝑘
𝑡/0

= 𝑣𝑘𝑡 𝑣𝑘0⁄  is the value relative for stratum k from period 0 to t. 

Value shares: 𝑤𝑘𝑡 = 𝑣𝑘𝑡 ∑ 𝑣𝑘𝑡𝑘⁄  is the value share for stratum k in period t. 



Explanatory variables in regressions: �̅�𝑘𝑡 = (�̅�𝑡1 … �̅�𝑡𝑘)′ is a k-vector of averaged characteristics for stratum 

k in period t. 

 

 

3 The Regression Analysis  
 

We underline the importance of the analysis of heterogeneous micro behaviors that includes two main 

sources of heterogeneity – intercept or categorical heterogeneity (problem of partition) and slope 

heterogeneity from different OLS regressions. Inadequate partition or inadequate classification of price 

models, or both, lead to biased estimates of the OLS regressions caused by omitted relevant variables. We 

analyze this problem using several hierarchical partitions of observations and several classifications of the 

nested OLS regressions.  

 

Partition means for most statisticians the classification of statistical units into most ‘homogenous’ disjoint 

stratums. ‘Homogeneous groupings’ are not easy to come by. In this study, we use statistical inference to 

solve problem of partition. The same principle is used also in the decision-making of the classification of 

price models. Together they make possible to control quality differences of the characteristic’s variables, that 

is 𝒙𝑖𝑡 = (𝑥𝑖𝑡1 …𝑥𝑖𝑡𝑘)′,  inside stratum k and time periods t ≠ t’. 

 

We proceed similarly as in Suoperä and Vartia (2011) – we make partition of transacted used cars and then 

apply regression analysis for some subgroup of stratums included in partition. We combine them into fixed-

effects dummy-variable approach (Hsiao, 1986, s.29-32). We show that regression analysis combined with 

the partition is operational especially in construction of hedonic index numbers (Koev, 2003; Suoperä, 2006; 

see also Vartia, Suoperä & Vuorio, 2021; Suoperä & Auno, 2021; Suoperä, Luomaranta, Nieminen and 

Markkanen. 2021; Kaila, Luomaranta & Suoperä, 2022). 

 

We give simple examples how to make hierarchical ‘competing price models’ that combine 

intercept/categorical and slope heterogeneity into the FE models. We also show how to select the best price 

model for our hedonic quality adjusting using simple statistical inference for these ‘nested models’. Following 

Table shows two sources of heterogeneity for used cars. 

  

Table 3.1: Two heterogeneity effects on price levels and price differences. 

Intercept/categorical heterogeneity 

Partition 1 Partition 2 Partition 3 Partition 4 Partition 5 Partition 6 

No 

partition 

 

Size of a 

car 

Size of a 

car × Make 

Size of a car × 

Make × Model 

Size of a car × Make × 

Model × Driving 

Power 

Size of a car × Make × 

Model × Driving Power × 

Type of a car 

Slope heterogeneity categories 

Naive Typical Good or ‘Best’ 

No heterogeneity Size of a car Size of a car × Make 

 

Size of a car-indicator is formed with internationally used segment-variable which classify cars into standard, 

SUV1- and MPV2- cars according to seven size categories from M to F. We group them into following four 

size categories: {M, A, B} (‘Small), {C} (Normal), {D} (Big) and {E, F} (Maximum), which each includes 

their SUV- and MPV-models. SUV- and MPV-models are included into categorization by separate indicators, 

that are formed using ‘Make’ and ‘Model’ information. ‘Make’-indicator classifies cars into, e.g. ‘Audi’, 

‘BMW’, ‘Ford’ and its ‘Model’ into e.g. ‘A4’, ‘Series-5’, ‘Focus’. Indicator ‘Driving Power’ classify cars into 

five categories: Diesel, Electric, Hybrid, Gasoline and Others. ‘Type of a car’-indicator into estate and other 

 
1 SUV=sport utility vehicle   
2 MPV=multi-purpose vehicle 



type cars. All indicators and their cartesian product, i.e. ‘×’ in Table 3.1, form partition of disjoint sets with 

union of all observations.  

 

In Table 3.1, we define six competing partitions and three different specification of slope heterogeneity. We 

proceed using following three steps: In first step, we combine ‘naïve’ model with all five partitions, estimate 

them separately and test the equality between them hierarchically (i.e., Partition 1 vs. Partition 2, Partition 2 

vs. Partition 3, …). This step concludes the best partition in statistical sense. In second step, a naïve model is 

replaced by four equations based on ‘Size of a car’ categories, which are combined with the best partition 

selected in the first step. Price model from steps one and two are ‘nested models’ (certain linear restrictions on 

model two leads into model one) and their equality may be tested using standard F-statistics. This test is a 

measure of the loss of fit those results from imposing a linear restriction on price models of step two (see 

Greene, 1997, p. 343-344, 657). In third step, we estimate about 70 equations based on size and make of a car 

that are combined with the best partition selected in step one and two. The price models selected in each step 

(i.e., step one, two and three) are nested hierarchical models and their equality may be tested using the same 

F-test as before (see example: Suoperä and Vartia, 2011, p.21).  

 

3.1 The Price Model for Heterogeneously Behaving Cross-sections 
 

We start the analysis using the standard linearly additive price model in its most general representation: 

 

(1) 𝑦𝑖𝑗𝑡 = ∑ 𝑖𝑖𝑘𝑡𝛼𝑘𝑡
𝐾𝑗

𝑘=1 + 𝒙′
𝑖𝑗𝑡𝜷𝑗𝑡 + 𝜀𝑖𝑗𝑡,  

 

where the dependent variable 𝑦𝑖𝑗𝑡 = log(𝑝𝑖𝑗𝑡) is a log-price for statistical unit i belonging into equation j in 

time period t.  𝒙𝑖𝑗𝑡 is a E-dimensional vector of explanatory variables for equation j in time period t. 𝜷𝑗𝑡 is 

a E-dimensional vector of parameters presenting of mean changes in the log-prices y from a unit changes of 

x. The explanatory variables are measured in their original units of measurements meaning that equation (1) 

is specified as semilogarithmic. Each equations includes 𝐾𝑗 categorical indicator or dummy variables (i.e., 

size of a car, make, model, driving power, type of a car) 𝑖𝑖𝑘𝑡 that gets value 1 if belongs into certain category 

otherwise 0. The categorical variables form the partition of observations for any equation j. 

 

The price model is defined in its most general form because the sources of heterogeneity may be easily 

presented. Using simple algebra, the equation (1) may be represented as a sum of representative and 

deviation behaviors (heterogeneity effects): 

 

(2) 𝑦𝑖𝑗𝑡 = �̅�𝑡 + 𝒙′
𝑖𝑗𝑡�̅�𝑡 + ∑ 𝑖𝑖𝑘𝑡(𝛼𝑘𝑡

𝐾
𝑘=1 − �̅�𝑡) + 𝒙′

𝑖𝑗𝑡(𝜷𝑗𝑡 − �̅�𝑡) + 𝜀𝑖𝑗𝑡,  

 

where the representative behavior is �̅�𝑡 + 𝒙′
𝑖𝑗𝑡�̅�𝑡 and two sources of heterogeneity behaviors, that are 

categorial ∑ 𝑖𝑖𝑘𝑡(𝛼𝑘𝑡
𝐾
𝑘=1 − �̅�𝑡), k = 1,…, K (number of categories/stratums) and behavioral heterogeneity 

𝒙′
𝑖𝑗𝑡(𝜷𝑗𝑡 − �̅�𝑡). Interpretation of these two terms is presented in Vartia, (1979, 2008a); Suoperä and Vartia 

(2011, pp.6) and may be noted simply as 

 

 Categorial: 𝑖𝑖𝑘𝑡(𝛼𝑘𝑡 − �̅�𝑡) = 𝑐𝑖𝑘𝑡, for k = 1,…, K and 

 Behavioral: 𝒙′
𝑖𝑗𝑡(𝜷𝑗𝑡 − �̅�𝑡) =  𝒃𝑖𝑗𝑡 for j = 1,…, J. 

 

Before empirical solution of (2) we put all things together using deterministic mathematics and matrix 

notations for equation (2), that is 

  

(3a) 𝒚𝑡 = 𝑿𝑡𝜷𝑡
∗ + 𝑯𝑡𝟏𝑡+𝜺𝑡, where 𝑯𝑡 = [ 𝑪𝑡 𝑩𝑡] 

 

or more compactly as 

 

(3b)                    𝒚𝑡 = 𝒁𝑡𝝓𝑡+𝜺𝑡, where 𝒁𝑡 = [𝑿𝑡 𝑯𝑡 ] and 𝝓𝑡 = (𝜷𝑡 
∗′
 𝟏′

𝑡 )′, where 𝜷𝑡 
∗′

= (𝛼𝑡  𝜷𝑡)′ 



 

𝒚𝑡 is 𝑁𝑡-vector of log-prices, 𝑿𝑡 is (𝑁𝑡 ∗ (𝐸 + 1))-matrix having unity vector in the first column (constant) 

and rest columns are the E explanatory variables. 𝑯𝑡 matrix includes two heterogeneity matrices - 𝑪𝑡 is (𝑁𝑡 ∗
𝐾))-matrix including categorial heterogeneity covariates and 𝑩𝑡 is (𝑁𝑡 ∗ 𝐸)-matrix including behavioral 

slope heterogeneity covariates, that is 

 

 [

𝑦1𝑡

⋮
𝑦𝑁𝑡𝑡

 ] , 𝑿𝑡 = [
 1  
⋮
1

 

𝑥11𝑡 ⋯ 𝑥1𝐸𝑡

⋮ … ⋮
𝑥𝑁𝑡1𝑡 ⋯ 𝑥𝑁𝑡𝐸𝑡

] , 𝑪𝑡 =

[
 
 
 
 
𝒄1𝑡 𝟎 …
0 𝒄2𝑡 𝟎

⋮ ⋱ 
 𝟎 …

            
𝟎

… ⋮
⋱ 𝟎 

            𝟎 𝒄𝐾𝑡]
 
 
 
, 𝑩𝑡 = [ 

𝒃11𝑡 ⋯ 𝒃1𝐸𝑡

⋮ … ⋮
𝒃𝐽1𝑡 ⋯ 𝒃𝐽𝐸𝑡

] 

 

It is true that the estimation of equation (2) and (3) is impossible or at least difficult. Next, we show how it 

can be done using the OLS method. Looking carefully, the analysis from (1) to (3), one may understand our 

idea - the method reproduces separately specified price equations exactly in the observation level, but now in 

the mean-deviation re-parameterized form (3). The first part of it consists of the common behavior described 

by the mean parameter part of the equation and the second part the heterogeneity effects described by the 

covariates.  

 

3.2 The OLS solution for Heterogeneously Behaving Cross-sections 
 

The price models (1) are familiar Fixed Effects models (FE) (Hsiao, 1986, s.29-32) that we specify as 

semilogarithmic. The price equations for log-prices are specified as non-linear with respect to age of a car 

(years), mileage (ten thousand), power/weight ratio of a car and selling time (months). All explanatory 

variables of eq. (1) are listed in Table 3.2. 

 

Table 3.2: The exogenous variables used in the price models for used cars in Finland. 

Variable Description  

Categorical variables Size of a car × Make × Model × Driving Power × Type of a car or some special cases of 

these categorial variables (see Table 3.1). The size of a car is determined using 

international segment-variable:  

Small cars: Segment = {'A', 'A_SUV', 'B', 'B_MPV', 'B_SUV', 'M'} 

Normal cars: Segment = {'C', 'C_SUV', 'C_MPV'} 

Big cars: Segment = {'D', 'D_SUV', 'D_MPV'} 

Maximum size cars: Segment = {'E', 'E_MPV', 'E_SUV', 'F'} 

𝑥1 Gearbox type: If automatic 𝑥1 = 1, else 𝑥1 = 0. 

𝑥2 Towing hook: If towing hook 𝑥2 = 1, else 𝑥2 = 0. 

𝑥3 Service history: If service history is available 𝑥3 = 1, else 𝑥3 = 0. 

𝑥4 Cruise control: If cruise control 𝑥4 = 1, else 𝑥4 = 0. 

𝑥5 Selling time of a car, months. 

𝑥6 = 𝑠𝑞𝑟𝑡(𝑥5) Square root of the selling time of a car.  

𝑥7 Age of a car, years. 

𝑥8 = 𝑠𝑞𝑟𝑡(𝑥7) Square root of the age of a car.  

𝑥9 Mileage (ten thousand). 

𝑥10 = 𝑠𝑞𝑟𝑡(𝑥9) Square root of mileage. 

𝑥11 Power/Weight ratio of a car. 

𝑥12 = 𝑠𝑞𝑟𝑡(𝑥11) Square root of Power/Weight of a car. 

 



It is assumed, that  𝐸(𝜀𝑖𝑗𝑡|𝒙
′
𝑖𝑗𝑡) = 0 and 𝑉𝑎𝑟(𝜀𝑖𝑗𝑡|𝒙

′
𝑖𝑗𝑡) = 𝜎𝑗𝑡

2< ∞ and the error covariance matrices are 

diagonal for all j =1,…, J (number of equations) . Practically this means that the OLS estimation assumes 

homoscedastic, uncorrelated model errors with zero mean for all equations - normality of the model errors is 

not necessary for parameter estimation. According to the Frisch, Waugh and Lovell -theorem (Davidson & 

MacKinnon, 1993), the OLS –estimation of the slopes can always be carried out via categorially centralized 

variables. The constant term for category/stratum k is estimated by forcing the regression plane through the 

point of averages, that is  

 �̂�𝑗𝑡 = [∑ ∑ (𝒙𝑖𝑘𝑗𝑡 − �̅�𝑘𝑗𝑡)𝑘 (𝒙𝑖𝑘𝑗𝑡 − �̅�𝑘𝑗𝑡)
′

𝑖 ]
−1

∑ ∑ (𝒙𝑖𝑘𝑗𝑡 − �̅�𝑘𝑗𝑡)(𝑦𝑖𝑘𝑗𝑡 − �̅�𝑘𝑗𝑡)𝑘𝑖  

 �̂�𝑘𝑡 = �̅�𝑘𝑗𝑡 − �̅�′
𝑘𝑗𝑡�̂�𝑗𝑡, k ∈ j 

 

This method is computationally extremely effective especially when partition includes hundreds/thousands 

of categories/strata (see Suoperä & Vartia, 2011). After estimation of (1) for all j we may construct equations 

(2) and (3) and estimate them using the OLS method. These estimated models, based on the mean-deviation 

re-parameterization, are mathematically exactly equal in all arguments compared with the price equation (1) 

together taken – even the residuals are equal observation by observation. This is a known result mentioned 

shortly e.g., by Balestra and Nerlove in their introduction in Matyás and Sevestre (1996). They just simply 

state that the total sum of squares of one large seemingly unrelated regression model (SUR) reduces to the 

sum of squares summed over the equations. This means, that the separately estimated price equations by the 

OLS method are in fact equivalent to one large SUR estimation with diagonal covariance matrix. Therefore, 

minimizing the sum of squared residual first in the equation level is equivalent to the minimizing all of them 

at the same time in the mean-deviation re-parameterized form for all observations as a whole. So, the 

estimation of the price equation (3) reproduces exactly the average OLS-estimates and the unity coefficients 

(i.e., 1̂𝑡 = 1𝑡) for the covariances. The re-parameterization has a more central goal – the model (3) can be 

used to estimate the variance-covariance matrix for the estimates of the model (2) or (3). We end our analysis 

and show the variance-covariance matrix for the estimator of the model (3) by the OLS method. We know 

that the slope coefficients or linear estimator 𝝓𝑡 is a linear function of disturbances. When we have no 

stochastic 𝒁𝑡, that is 𝐸(𝜺𝑡|𝒁𝑡) = 𝟎, regardless of the distribution of 𝜺𝑡, the OLS estimator �̂�𝑡 is a best linear, 

unbiased estimator of 𝝓𝑡 and its variance-covariance estimator is 

 

(4) 𝑉𝑎𝑟(�̂�𝑡) = 𝜎𝑡
2(𝒁𝑡′𝒁𝑡)

−1, where 

 

                = 𝜎𝑡
2 [

(𝑿𝑡
′𝑿𝒕)

−1(𝑰𝒕 + 𝑿𝑡
′𝑯𝒕𝑹𝒕𝑯𝑡

′𝑿𝒕(𝑿𝑡
′𝑿𝒕)

−1) (𝑿𝑡
′𝑿𝒕)

−1𝑿𝑡
′𝑯𝒕𝑹𝒕

−𝑹𝒕𝑯𝑡
′𝑿𝒕(𝑿𝑡

′𝑿𝒕)
−1 (𝑿𝑡

′𝑿𝒕 − 𝑿𝑡
′𝑯𝒕(𝑯𝑡

′𝑯𝒕)
−𝟏𝑯𝑡

′𝑿𝒕)
−1]         

 

where 𝑹𝒕 = (𝑯𝑡
′𝑯𝒕 − 𝑯𝑡

′𝑿𝒕(𝑿𝑡
′𝑿𝒕)

−𝟏𝑿𝑡
′𝑯𝒕)

−𝟏
. This is a new result by which we may look at not only 

significance of parameters of representative behavior but also significance of any single heterogeneity 

variables, categorial and behavioral covariates that otherwise is impossible. We show some important 

properties of (4) when significant categorial or/and behavioral heterogeneity components are deleted. The 

whole mathematical and statistical story of this chapter is shown in Suoperä and Vartia (2011). 

 

3.3 Statistical inference of Price Models 
 

Now we turn into empirical analysis where we use statistical inference in selection of the best price model 

for hedonic quality adjusting. We proceed above mathematical/statistical analysis in spirit of the Table 3.1: 

First, we make statistical inference about partition/categorization of observations restricting behavioral slope 

heterogeneity 𝜷𝑗𝑡 = �̅�𝑡 for all j. We get four hierarchical tests about five different partitions and select the 

best one. Second, we relax the restriction 𝜷𝑗𝑡 = �̅�𝑡 and estimate price models according to three slope 

heterogeneity categories using the best partition/categorization selected in the first stage. We get two 

hierarchical tests about three different slope heterogeneity modelling and select the best one.  

 



The statistical inference - estimation and hypothesis testing - is based on the OLS estimation and hypothesis 

test on the well-known loss of fit test. We already know that the OLS estimator �̂�𝑡 is a best linear, unbiased 

estimator of 𝝓𝑡 that is chosen to minimize the sum of squared errors, SSE. Because the coefficient of 

determination 𝑅2 equals with 1 – SSE/SST, where the SST  = ∑ (𝑦𝑖𝑡 − �̅�𝑡)
2

𝑖 , the OLS estimator is in fact 

selected to maximize 𝑅2. This is the reason for our test – loss of fit. 

 

Now we go back to Table 3.1 and give necessary statistics for testing equality of price models, that is, 

number of observations (𝑁𝑡), categories (𝑘),  equations (J), restrictions (R), decrees of freedom of free 

model (𝐷𝑓𝑡) and the sum of squared errors (SSE). Our tests are based of hierarchic nested price models 

meaning that the models are nested with each other so that they can be obtained from each other by imposing 

suitable linear restrictions on parameters. Our test is  

 

 𝐹~ {(𝑆𝑆𝐸0 − 𝑆𝑆𝐸1)/𝑅} (𝑆𝑆𝐸1 𝐷𝑓𝑡⁄ )⁄  

 

where 𝑆𝑆𝐸0 is the sum of squared errors of the restricted model, 𝑆𝑆𝐸1 is the sum of squared errors of the free 

model, 𝐷𝑓𝑡 is the degrees of freedom of the free model and R is the number of linear restrictions. When the 

degrees of freedom for free model becomes large the F-statistics reduced into 𝜒𝑅
2-test, where R corresponds 

number of linear restrictions (see Greene 1997, p. 344 and p. 657). For example, a 1% critical value of 𝜒60
2 =

1.46 and becomes closer to one when R > 60. Table 3.3 shows necessary statistics for nested price models 

results for testing the significance of additional partition. 

 

Table 3.3: Testing the hypothesis of the categorial and behavioral homogeneity using hierarchical nested price 

models in year 2022. 

 

 Intercept/categorical heterogeneity  

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

 No 

categori-

zation 

 

Size of a 

car 

Size of a 

car × 

Make 

Size of a car 

× Make × 

Model 

Size of a car × Make 

× Model × Driving 

Power  

Size of a car × Make × 

Model × Driving Power 

× Type of a car 

𝑁𝑡 269663 269663 269663 269663 269663 269663 

𝑘 1 4 103 516 1189 1691 

J 1 1 1 1 1 1 

Parameters 12 12 12 12 12 12 

SSE 26886 22855 13545 6476 5928 5812 

  Model 1 

vs 2 

Model 2 

vs 3 

Model 3  

vs 4 

Model 5  

vs 4 

Model 6  

vs 5 

Test statistic  11896 1872 711 36.8 10.7 

 Slope heterogeneity categories 

 Model 6 ‘Naïve’ Model 7 ‘Typical’ Model 8 ‘Good or Best’ 

 No heterogeneity Size of a car Size of a car × Make 

𝑁𝑡 269663 269663 269663 

𝑘 1691 1691 1691 

J 1 4 74 

Parameters 12 48 888 

SSE 5812 5605 4908 



  Model 7  

vs 6 

Model 8  

vs 7 

Test statistic  206.5 45 

 

Table 3.4: Estimation results for model 7 and 8. 

 

 Model 8 Model 8 Model 7 Model 7 

Year 2020 2021 2020 2021 

Number of observations 287936 269663 287936 269663 

Number of equations 72 74 4 4 

Number of stratums/categories 1594 1691 1594 1691 

Degrees of freedom 285478 267084 286294 267924 

SSE 5401.6405077 4908.43633 6096.4446791 5604.5913163 

R2 0.9645034599 0.9675392005 0.9600517847 0.9630515476 

RMSE 0.1375550427 0.1355650208 0.1459258378 0.1446325907 

Constant 9.9126394001 9.8211262087 9.6028720349 9.6497628502 

 (0.0125144633) (0.0118472501) (0.0132567809) (0.0126661687) 

If automatic gearbox 𝑥1 = 1, else 

𝑥1 =0 0.0902673948 0.0923941505 0.0935819809 0.0986927146 

 (0.0006280357) (0.0006591217) (0.0006661904) (0.0007021883) 

If towing hook 𝑥2 = 1, else 𝑥2 = 0 0.0118209506 0.0113174535 0.0101699236 0.010722559 

 (0.0005717011) (0.0005829585) (0.0006070502) (0.0006220419) 

If service history is available 𝑥3 = 1, 

else 𝑥3 = 0 -0.010492392 -0.008856039 -0.009808606 -0.009576151 

 (0.0006760757) (0.0006586455) (0.0007173066) (0.0007027478) 

If cruise control 𝑥4 = 1, else 𝑥4 = 0 0.017682513 0.0190084745 0.0159907088 0.0161078885 

 (0.0006925544) (0.0006978619) (0.0007368138) (0.0007456235) 

Selling time of a car, 𝑥5 -0.000386744 0.0036841099 -0.000090959 0.0045121389 

 (0.0008966894) (0.0004936162) (0.0009512569) (0.0005266493) 

𝑥6 = 𝑥5
1/2

 0.0054383443 -0.012634214 0.0047894653 -0.015270555 

 (0.0030867169) (0.0019822649) (0.0032745562) (0.0021148394) 

Age of a car, 𝑥7 -0.138809764 -0.135251635 -0.144926668 -0.140582936 

 (0.0004627876) (0.0004667166) (0.0004908363) (0.0004980448) 

𝑥8 = 𝑥7
1/2

 0.2915511757 0.2950576677 0.3143214419 0.312142484 

 (0.0027085731) (0.0027962898) (0.0028720215) (0.0029842413) 

Mileage, 𝑥9 -0.033047764 -0.033221364 -0.029542445 -0.03080527 

  (0.0001519705) (0.0001555112) (0.0001611581) (0.000165791) 

𝑥10 = 𝑥9
1/2

 0.0180405738 0.026330353 -0.001833825 0.0129272658 

 (0.0011911371) (0.0012313394) (0.0012646921) (0.0013158057) 

Power/Weight ratio of a car, 𝑥11 12.089654612 9.8976375615 9.3307834547 9.2220969294 

 (0.1461774499) (0.1356128354) (0.1550967155) (0.1448799132) 

𝑥12 = 𝑥11
1/2

 -2.549090343 -1.520907481 -0.631702081 -0.671611542 

 (0.083681855) (0.0786039287) (0.0887347781) (0.0840297929) 

HE(𝑐𝑘𝑡), Categorial heterogeneity 1 1 1 1 

 (0.0009034596) (0.0009179413) (0.0009825843) (0.0010226122) 

HE(𝒃𝑗𝑡), Behavioral heterogeneity 1 1 1 1 

 (0.0009001723) (0.0009163475) (0.0014366229) (0.0015525605) 



 

Parameters for heterogeneity components - HE(𝑐𝑘𝑡) and HE(𝒃𝑗𝑡),  -  are presented by unity parameter. This 

operation is allowed, because all elements of the (k + E)-vector of covariates will estimate into ones and 

linear combinations of k- and E-vectors of ones may present by single unity. 

 

Some notes about the Table 3.3 and estimation of equations (1) and (3):  

1. A typical FE model is inadequate (model with detailed categories, no slope heterogeneity) and leads 

into biased estimates and biased quality adjusting in hedonic index numbers. Statistical inference for 

equations (1) to (3) suggest using most detailed categorial heterogeneity (1691 categories) and slope 

heterogeneity based on categorization of size of a car and make (74 equations). We call this model as 

heterogeneously behaving FE model.  

2. All parameters for explanatory variables in estimation of all j equations (1) will not estimate to 

statistically significant parameters. We do not exclude these variables because insignificant variables 

have no systematic significant effects on log-prices and on hedonic quality adjusting (estimation 

efficiency from exclusion of variables is minimal when decrees of freedom in estimation are large). 

3. Statistically and mathematically a single equation (3) coincides precisely the set of J equations – 

simply saying (3) is precise representation of the set of J equations (1), but now we may derive 

variance-covariance estimator for �̂�𝑡, which is a new result.  

4. Equation (3) is mathematically equal with (being different representation of (1)) the set of J equations 

in (1), where �̂�𝑡 = (�̂�𝑡 ,  �̂�𝑡
′ , �̂�𝑡

′)′. This means: First, that parameters for representative behavior �̂�𝑡 ,  �̂�𝑡
′  

are necessarily weighted averages (relative shares as weights) of �̂�𝑘𝑡,  �̂�𝑗𝑡
′ . Second, that parameters for 

the covariates (𝑐𝑖𝑘𝑡, 𝒃𝑖𝑗𝑡) must estimate into (k + E)-vector of ones.  

5. Estimation of (4) enables us to evaluate standard errors for any parameter of �̂�𝑡 – we may estimate 

separate t-statistic for each categorial variable (separate 1691 test for the partition) and for each 

behavioral covariate variable (here 12) to find significance ones. All behavioral covariate variables 

may be analyzed in isolation to find ‘winners’ and ‘losers’ compared with average representative 

behavior. This is fine property of (3) and (4), but hard to derive otherwise for heterogeneously 

behaving cross-sections (heterogeneously behaving slopes). 

6. According to the variance-covariance estimator (4) – one may, by exclusion of behavioral 

heterogeneity, lead to more efficient estimation of parameters, but omitting relevant variables 

(covariates) leads to estimates being efficient but biased.  

 

Interpretation of estimation results in Table 3.4 are familiar to most statisticians but we repeat them here. 

Estimate of four first indicator-type x-variables, accessories, directly itself tells their effect on log-prices. In 

equation (1) (or (3)) log-prices are specified for rest of the x-variables as non-linear with respect to selling 

time (𝑥5), age (𝑥7), mileage (𝑥9) and power/weight ratio (𝑥11) and additional interpretations are needed. We 

do this applying partial derivates for the equation (3) with respect to 𝑥𝑒-variables where e = 5, 7, 9, 11; that 

is for example for 𝑥5 (other x-variables similarly) 

 

 𝜕𝑦𝑖𝑡 𝜕𝑥𝑖5𝑡⁄ = 𝜕𝒁𝑡𝝓𝑡 𝜕𝑥𝑖5𝑡⁄ = �̂�𝑗5𝑡 + 0.5 ∗ �̂�𝑗6𝑡/𝑥𝑖6𝑡
1/2

, for all i ∈ j 

 

These partial derivates are evaluated for all observations i and variable 𝑥𝑒. We sort these partial derivates 

according to 𝑥𝑒-variables and classify them equidistantly into ordered cohorts. Then we average derivatives 

cohort by cohort and calculate cumulative sums of them. The results are presented in Figures 3.1 to 3.4 for 

the 𝑥𝑒-variables where e = 5, 7, 9, 11. The approach takes account slope heterogeneity of ‘size of a car × 

Make’-categorization and partial derivates are evaluated at realized points of 𝑥𝑒-variables so that we have 

together more than million partial derivates. The method is transparently interpreted and is based on standard 

economics. 

 

 

 



Figure 3.1: The price effect of selling time (months)       Figure 3.2: The price effect of age (years) on the  

on the average log-prices in year 2020 and 2021.            average log-prices in year 2020 and 2021. 

   

 

Figure 3.3: The price effect of mileage (ten thousand)     Figure 3.4: The price effect of power/weight ratio                                     

on the average log-prices in year 2020 and 2021.             (kW/kg) on the average log-prices in year 2020 and

                                              2021. 

 

Figures tell us: Selling time (𝑥5), age (𝑥7) and mileage (𝑥9) behave almost similarly for the years 2020 and 

2021 but power/weight ratio (𝑥11) not. This is caused by new markets for “plug hybrids” and fully electric 

cars that are still developing and find more stable practices – it seems that the price effects from high 

power/weight cars will be declined in time.   

 

We have analyzed the first part of hedonic method – the data generating process of log-prices in 

heterogeneously behaving gross-sections. Next step in this study continues into the hedonic quality adjusting.        

 
4 Combining Regression Analysis and Index Numbers 
 

Classical index calculation is based on bilateral price-links between commodities being comparable in 

quality – prices and quantities are measured for the same set of commodities and outlets. This means that the 

price modelling in chapter 3 is unnecessary for bilateral price-links because measured quality characteristics  

𝒙𝑖0 = 𝒙𝑖𝑡 for all 0, t and quality adjusting is not needed. In our case of used cars 𝒙𝑖0 ≠ 𝒙𝑖𝑡 and quality 

adjusting is necessary. Some notes about our price modelling in Chapter 3 combined with quality adjusting 

must be done. First, our price modelling is based on optimal solution, the best linear unbiased estimator 

  

 

 



(BLUE) under homoscedastic errors for heterogeneously behaving cross-sections. Second, this optimal 

solution does not only include slope heterogeneity but also optimal solution for partition of observations. The 

optimal OLS solution does not restrict into the correct size BLU estimates, but other optimal solutions may 

produce aggregating observations into category/stratum level. These optimal algebraic properties of the OLS 

are 

1. The residuals sum up to zero for all category/stratum. 

2. The conditional average equals with unconditional average for all category/stratum. 

3. The regression hyperplane passes through the means of dependent and independent variables. 

 

These three properties lead us into the optimal unbiased estimates of unconditional and conditional averages 

meaning that they both are estimated into the correct size without systematic errors. In our empirical analysis 

we use two averages – unweighted geometric and arithmetic averages. The aggregation rule for unweighted 

geometric average is trivial and is presented in most statistical and econometric textbooks. The conditional 

arithmetic average is more complicated and is presented first in Suoperä (2006, Annex 5, pp.31) and later in 

Vartia, Suoperä and Vuorio (2019), Suoperä and Vuorio (2019): Suoperä and Auno (2021) and Kaila, 

Luomaranta and Suoperä (2023). Both averages are unbiased and based on transparent algebra being 

consistent in aggregation, even aggregation for arithmetic averages are not independent of units of 

measurement. Our hedonic quality adjusting is based on these conditional and unconditional averages 

together with a well-known decomposition developed by Oaxaca (1973). Because our price modelling is 

applied for previous year data, our construction of hedonic index numbers, based on the Oaxaca 

decomposition, is based on the base strategy which is free of chain drift.  

 

We rely on: First the BLU estimates decided by statistical inference, second, unbiased conditional and 

unconditional averages, third, mathematically consistent and transparent Oaxaca decomposition even it is not 

unambiguous, four, consistent aggregation rules, fifth, drift free construction strategy of indices that are 

based on hedonic quality adjusting. A well-known time-dummy hedonic regression (see Summers (1973); 

Rao (2004)) or its weighted version in the sense of Diewert and Fox (2018) have little to do with above 

mentioned properties – first their link with the traditional index number theory is missing and second the 

weighted version of Diewert and Fox (2018) leads to parameter estimates whose statistical properties are 

unknown. We show transparently how these shortcomings may be corrected using well-known basic 

statistics, consistent aggregation clauses, some algebra, hedonic quality adjusting and several index number 

formulas and of course unbiased estimators. In our view these are preferable for statistical offices, since the 

methods are transparent, minimizes modeling assumptions, and are consistent with index number tradition. 

Our analysis herein follows the tradition of Koev (2003); Suoperä (2004, 2006); Vartia, Suoperä & Vuorio 

(2021): Suoperä & Auno (2021); Kaila, Luomaranta and Suoperä (2023). 

 

Our focus in the study is three-fold: In the first step, we aggregate estimated equations from observations 

into category level, stratums. In the second step we make for category/stratum aggregates and their 

econometric relations a well-known decomposition introduced by Oaxaca (1973). The last step is similar as 

traditional index numbers – the averaged category/stratum-level price decompositions are summed up using 

weights of index number formulas, that is ‘weights-by-economic-importance’-variable. We analyze two sets 

of index number formulae. The first set is based on formulas using old or new weights (asymmetrical 

weights) and are called as a basic set of index numbers (old weights: Laspeyres (L), Log-Laspeyres (l) and 

new weights: Log-Paasche (p) and Paasche (P)). The second set of index numbers include four formulae 

using symmetrical weights: Montgomery-Vartia (MV), Törnqvist (T), Fisher (F) and Sato-Vartia (SV). We 

call these index number formulae as excellent. For the fundamental analysis of these index number formulae 

see Vartia & Suoperä, 2018. The analysis therein is in logarithmic form. 

 
  



4.1 Algebra of Price-Ratio Decompositions 
 

We simplify our analysis into two-time case, the base period (t = 0, a previous year) and the observation 

month of a current year (t) analyzing only one stratum 𝐴𝑘 belonging into equation j. We use vector notations 

for our conditional and unconditional average prices and calculate the difference between two price models 

(0, t) in spirit of Oaxaca. The algebra for unweighted arithmetic average is based on logarithmic mean, L, 

developed by Leo Törnqvist (1935, p. 35) (see also Y. Vartia, 1976; L. Törnqvist, P. Vartia and Y. Vartia, 

1985, p. 44). We use logarithmic mean for aggregation of observations for unweighted arithmetic average 

(see Suoperä, 2006, pp.31). The algebra is presented here only for unweighted geometric average and its 

difference but is analogously presented also for unweighted arithmetic average in log-form (see Suoperä 

(2006, pp.31). We show first necessary weights in aggregation of unconditional and conditional averages and 

then their Oaxaca decompositions for estimated price models, that is (𝑛𝑘 is number of observations in 

stratum k) 

 

Table 4.1: Important statistics for hedonic quality adjusting for category/stratum k. 

Statistics Unweighted geometric average Unweighted arithmetic average  

Weights 
𝑤𝑖𝑘𝑡 =

1

𝑛𝑘
, ∀𝑖 ∈ 𝐴𝑘 𝑤𝑖𝑘𝑡 = 

𝐿(𝑝𝑖𝑘𝑡  ,1 )

𝐿(∑ 𝑝𝑖𝑘𝑡𝑖 , 𝑛𝑘)
, ∀𝑖 ∈ 𝐴𝑘 ,  

𝐿 means logarithmic mean 

Unconditional �̅�𝑘𝑡 = ∏ 𝑝𝑖𝑘𝑡
𝑤𝑖𝑘𝑡  =𝑒𝑥𝑝{∑ 𝑤𝑖𝑘𝑡𝑙𝑜𝑔(𝑝𝑖𝑘𝑡)𝑖 } �̅�𝑘𝑡=𝑒𝑥𝑝{∑ 𝑤𝑖𝑘𝑡𝑙𝑜𝑔(𝑝𝑖𝑘𝑡)𝑖 } ≡

1

𝑛𝑘
∑ 𝑝𝑖𝑘𝑡𝑖  

Conditional 𝑙𝑜𝑔(�̅�𝑘𝑡) = �̂�𝑘𝑡 + 𝒙′
𝑘𝑡�̂�𝑗𝑡  𝑙𝑜𝑔(�̅�𝑘𝑡) = �̂�𝑘𝑡

∗ + 𝒙𝑘𝑡
′ �̂�𝑗𝑡 ,  

where 𝒙𝑘𝑡
′ = ∑ 𝑤𝑖𝑘𝑡𝒙

′
𝑖𝑘𝑡𝑖  

 

Oaxaca decomposition: 

(5a)     𝑙𝑜𝑔(�̅�𝑘𝑡) − 𝑙𝑜𝑔(�̅�𝑘𝑜) = �̂�𝑘𝑡 + �̅�′
𝑘𝑡�̂�𝑗𝑡 − �̂�𝑘0 + �̅�′

𝑘0�̂�𝑗0 ↔ 

(5b)     𝑙𝑜𝑔(�̅�𝑘𝑡 �̅�𝑘0⁄ ) = {(�̂�𝑘0 + �̅�′
𝑘𝑡�̂�𝑗0) − (�̂�𝑘0 + �̅�′

𝑘0�̂�𝑗0)} + {( �̂�𝑘𝑡 + �̅�′
𝑘𝑡�̂�𝑗𝑡) − (�̂�𝑘0 + �̅�′

𝑘𝑡�̂�𝑗0)} ↔ 

(5c)     Price-ratio       = {Quality Corrections } + {Quality Adjusted Price Change conditional on �̅�′
𝑘𝑡}. 

 

Table 4.1 and equations (5a) to (5c) reveals what we have spoken about - our transparent simple algebra 

using optimal unbiased statistics. First, both averages satisfy three basic algebraic properties of the OLS 

method without systematic errors. Second, the slope estimates are BLUE under homoscedastic errors. Third, 

both averages are unbiased and consistent in aggregation. Fourth, the Oaxaca decomposition in (5b) is 

consistent and surprisingly the most optimal for our empirical application. Fifth, true price-ratio of averaged 

prices is decomposed into two parts: quality corrections and quality adjusted price change with comparable 

in quality, that is �̅�′
𝑘𝑡. Sixth, the Oaxaca decomposition in (5b) tell that the OLS estimation is necessary to 

apply only for time period 0 because unconditional and conditional averages equal for any category/stratum k 

because of algebraic property of OLS.  

 

Using unconditional and conditional averages in suitable manner, the equations (5) may represent by simple 

logarithmic price ratios as 

(6) 𝑙𝑜𝑔(�̅�𝑘𝑡 �̅�𝑘0⁄ ) = 𝑙𝑜𝑔(�̃�𝑘𝑡 �̅�𝑘0⁄ ) + 𝑙𝑜𝑔(�̅�𝑘𝑡 �̃�𝑘𝑡⁄ ), ∀ 𝑘, 0, 𝑡  

It is very simple and holds as an identity. On the left, we have the price-ratio of actual average prices. On the 

right, the first term is quality correction (QC) estimated using the base period valuation of characteristics 

(i.e., 𝑙𝑜𝑔(�̃�𝑘𝑡) = �̂�𝑘0 + �̅�′
𝑘𝑡�̂�𝑗0 and 𝑙𝑜𝑔(�̅�𝑘0) = �̂�𝑘0 + �̅�′

𝑘0�̂�𝑗0) and the second term is quality adjusted 

(QA) price change (i.e., 𝑙𝑜𝑔(�̅�𝑘𝑡) = �̂�𝑘𝑡 + �̅�′
𝑘𝑡�̂�𝑗𝑡 and (𝑙𝑜𝑔(�̃�𝑘𝑡) = �̂�𝑘0 + �̅�′

𝑘𝑡�̂�𝑗0) estimated using the 

base period valuation of characteristics (�̂�𝑗0) with characteristics being comparable in quality (i.e., �̅�′
𝑘𝑡, for 

all k and t). We construct the equation (6) for unweighted arithmetic and geometric averages. 



 

 
4.2 Index Number Formulas 
 

In price modelling all used cars are grouped together to form K categories, 𝐴𝑘 , 𝑘 = 1,… , 𝐾, which define our 

partition of observations, that is 𝐴 = 𝐴1 ∪ 𝐴2 ∪ …𝐴𝐾, where different 𝐴𝑘 categories are disjoint. Previous 

chapter ends our analysis into equation (6), where logarithmic price ratio of true actual averages (A) is 

decomposed into log-price ratios for quality corrections (QC) and quality adjusted (QA) price change. This is 

done for all categories, for which we define an index number formulas. We use a simple notation here for an 

index number   

 𝑃𝑓
𝑡 0⁄

= 𝑃𝑓(�̅�0, 𝒒0, �̅�𝑡, 𝒒𝑡), 

 

where �̅�0 and �̅�𝑡 are K-vector of average prices (geometric or arithmetic) and 𝒒0 and 𝒒𝑡 K-vector of 

corresponding quantities of sold cars. We define above price index for equation (6), that is 

 

(7a)         𝑒𝑥𝑝{∑ 𝑤𝑘,𝑓𝑘 𝑙𝑜𝑔(�̅�𝑘𝑡 �̅�𝑘0⁄ )} = 𝑒𝑥𝑝{∑ 𝑤𝑘,𝑓𝑘 𝑙𝑜𝑔(�̃�𝑘𝑡 �̅�𝑘0⁄ ) + ∑ 𝑤𝑘,𝑓𝑘 𝑙𝑜𝑔(�̅�𝑘𝑡 �̃�𝑘𝑡⁄ )} ↔ 

(7b)        𝑃𝑓,𝐴
𝑡 0⁄

=                           𝑃𝑓,𝑄𝐶
𝑡 0⁄

                   ∙                      𝑃𝑓,𝑄𝐴
𝑡 0⁄

 

 

The left side is the price index for average prices (A) for formula f for price-link from base period 0 to the 

period t. The first term in the right side is the price index for quality corrections (QC) and the last term price 

index for quality adjusted price changes (QA). Weights in equation (7a) for formulas are presented in Table 

4.2.  
 

Table 4.2: Weights for index number formulae (logarithmic forms). 

Basic formulae, see Vartia & Suoperä, 2017, 2018, 𝐿 means logarithmic mean, see Vartia, 1976a, p. 128 

Symbol and name of formula Weights of the formula 

Laspeyres, f = L 
𝑤𝑘,𝑓 = 𝑤𝑘,𝐿

0 =
𝐿(�̅�

𝑘𝑡
𝑞

𝑘0
, �̅�

𝑘0
𝑞

𝑘0
)

𝐿(∑ �̅�
𝑘𝑡

𝑞
𝑘0𝑘 , ∑ �̅�

𝑘0
𝑞

𝑘0𝑘 )
 

log-Laspeyres, f = LL 𝑤𝑘,𝑓 = 𝑤𝑘,𝑙
0 = 𝑣𝑘

0 𝑉0⁄  

log-Paasche, f = LP 𝑤𝑘,𝑓 = 𝑤𝑘,𝑝
𝑡 = 𝑣𝑘

𝑡 𝑉𝑡⁄  

Paasche, f = P 
𝑤𝑘,𝑓 = 𝑤𝑘,𝑃

𝑡 =
𝐿(�̅�

𝑘𝑡
𝑞

𝑘𝑡
, �̅�

𝑘0
𝑞

𝑘𝑡
)

𝐿(∑ �̅�
𝑘𝑡

𝑞
𝑘𝑡𝑘 , ∑ �̅�

𝑘0
𝑞

𝑘𝑡𝑘 )
 

Excellent formula, see Vartia & Suoperä, 2017, 2018), 𝐿 means logarithmic mean, see Vartia, 1976 

Törnqvist, f = T 𝑤𝑘,𝑓 = �̅�𝑘,𝑇 = 0.5 · (𝑤𝑘,𝑙
0 + 𝑤𝑘,𝑝

𝑡 ) 

Sato-Vartia, f = SV 
𝑤𝑘,𝑓 = �̅�𝑘,𝑆𝑉 =

𝐿(𝑤𝑘
𝑡 , 𝑤𝑘

0)

∑𝐿(𝑤𝑘
𝑡 , 𝑤𝑘

0)
 

Montgomery-Vartia, f = MV 
𝑤𝑘,𝑓 = �̅�𝑘,𝑀𝑉 =

𝐿(�̅�
𝑘𝑡

𝑞
𝑘𝑡
, �̅�

𝑘0
𝑞

𝑘0
)

𝐿(∑ �̅�
𝑘𝑡

𝑞
𝑘𝑡𝑘 , ∑ �̅�

𝑘0
𝑞

𝑘0𝑘 )
 

Fisher, f = F 𝑤𝑘,𝑓 = �̅�𝑘,𝐹 = 0.5 · (𝑤𝑘,𝐿
0 + 𝑤𝑘,𝑃

𝑡 ) 

 

Some notes are necessary: 

1. We define price-link form 0 → t meaning that we use the base strategy that is free of the chain drift. 

The base period is a previous year normalized as an average month and t a month of a current year. 



2. Our aggregation means here always ‘a weighted-by-economic-importance’-variable familiar to index 

numbers, i.e., weighting by 𝑤𝑘,𝑓. 

3. Price index is based on transparent and familiar traditional theory of index numbers. 

4. Quality corrections can be decomposed for E dimensional x variable-by-variable such that 𝑃𝑓,𝑄𝐶
𝑡 0⁄

=

𝑃𝑓,𝑄𝐶,𝑥1

𝑡 0⁄
∙ 𝑃𝑓,𝑄𝐶,𝑥2

𝑡 0⁄
∙ … ∙ 𝑃𝑓,𝑄𝐶,𝑥𝐸

𝑡 0⁄
 holds as an identity. 

5. We may construct index series not only for average prices (true averages and quality adjusted) but 

also for any single quality corrections or any combinations of them consistently. 

6. We use ‘a flexible basket’-approach that states ‘when the expenditure on a category tends to zero, 

then its effect on the index should vanish’ (Pursiainen, 2006, pp32). We make comparison’s only for 

categories having expenditures for both 0 and t. 

 

In Table 4.2 we gather all information that is necessary for calculation of hedonic price indices for equations 

(7). We analyze all index number formulae in logarithmic form, including Laspeyres, Paasche and Fisher 

(see Vartia, 1976, p.128). The aggregation of price changes or their decompositions in (6) and (7) are much 

simpler in additive form using ‘log’s’ – as in (7), they may simply transform back to indices. In empirical 

part we use two set of formulas – basic and excellent.  

 

 

5 Empirical Results for Category Averages and Hedonic Index Numbers 
 

The empirical results for price models are presented in chapter three. Now we proceed into empirical analyze 

of elementary aggregates, unweighted geometric and arithmetic averages, and their index number solutions 

based on Oaxaca decompositions. First, we show which average (arithmetic or geometric) should be selected 

as average statistics of relative change and second, does the formula matter.  

 

 

5.1 Arithmetic or Geometric Average as Mean Statistic  
 

Table 5.1 shows how much arithmetic and geometric averages deviate in aggregate level.  

 

Table 5.1: Arithmetic and geometric average prices (Euro) in year 2020, 2021 and 2022. 

Year Arithmetic average Geometric average 

2020 15416 11990 

2021 17214 13622 

2022 18742 14280 

 

Average prices are estimated from category averages using their frequencies as weights (i.e., relative shares). 

Averages deviate substantially being about 30 log-%. For more expensive makes and models the difference 

become even bigger indicating that geometric average is poor as official statistic as averages.  

 

 

5.2 Arithmetic or Geometric Average as Statistic of Relative Change 
 

We get back to equation (6) and show how closely relative changes of arithmetic and geometric averages are 

related. First, we regress relative change of arithmetic averages on relative changes of geometric averages 

(left side of eq. (6)). Second, we do the same for relative changes of quality adjusted average prices (second 

term right hand in eq. (6)). The model is the simplest regression 

 



 𝑦𝑘𝑡 = 𝜌 ∙ 𝑥𝑘𝑡 + 𝜀𝑘𝑡, 

 

where 𝑦𝑘𝑡stands for relative changes of arithmetic averages and 𝑥 for relative changes of geometric averages 

for price-links 0 → t and categories k = 1,… , K. Similar equation are applied also for corresponding relative 

changes of quality adjusted price changes. The estimator for 𝜌 is also nicely interpreted as 

 

 �̂� = 𝑟(𝑦, 𝑥) ∙
𝑠𝑦

𝑠𝑥
 

 

When the standard deviations of x and y are closely related, the estimator �̂� practically equals to correlation 

coefficient between x and y. In both OLS estimation we have 17935 observations (total number of categories 

in years 2020, 2021 and 2022) from price ratios and Table 5.2 presents the results.  

 

Table 5.2: Linear relation between price ratios of arithmetic and geometric averages. 

 𝑠𝑦 𝑠𝑥 �̂� 𝑟𝑥𝑦 𝑅2 
Actual price ratio left side of (6) 0,103 0,106 0,966 0,995 0,991 

Quality adjusted price ratio, second right term of (6) 0,182 0,179 0,9998 0,986 0,973 

  

Empirical results show that price ratios using unweighted arithmetic or geometric average prices are very 

closely related. Both 95 % fit plots for y include complete linear dependence meaning that statistically the 

choice between arithmetic or geometric average have no matter. The correlation coefficient tells the same 

story – they are close to one. Quite amazingly, although the arithmetic and geometric average prices deviate 

largely (see Table 5.1), their price ratios go ‘hand-to-hand’ – at least statistically. Next, we analyze 

differences between these averages using index numbers.  

 

 

5.3 Does Formula and Average matter in Index Compilation?  
 

All index numbers and index series are based on base strategy, where the base period is a previous year 

normalized as an average month and the observation period is a month of a current year. The strategy is free 

of chain drift. Our empirical analyze turns into two questions - ‘Does the formula matter in index 

compilation?’ and ‘Does the average matter in index compilation?’. We compare two sets of formulas, the 

basic and excellent (Vartia and Suoperä, 2017, see Table 4.2 and eq. (7)). All formulas are examined in log-

form. In this study our basic formulas are Laspeyres (L), log-Laspeyres (LL), Paasche (P) and log-Paasche 

(LP). L and LL formulas use asymmetric old weights and formulas P and LP new ones. The second set of 

formulas – excellent ones – uses symmetrical weights and are Fisher (F), Törnqvist (T), Montgomery-Vartia 

(MV) and Sato-Vartia (SV) (see Vartia & Suoperä, 2017, 2018). The following graphs show why they are 

excellent.  

 

The Figures 5.1-5.4 present all that is needed to make decisions about the formula and the average used in 

index compilation. Index series in Figures 5.2 and 5.4 are made using arithmetic and geometric average price 

ratios. Index series based on arithmetic and geometric averages deviate seriously but excellent formulas go 

‘hand-in-hand’ for both index series (both index series includes four excellent formulas). Our empirical 

results in previous chapter show that price changes based on arithmetic and geometric average prices are 

statistically almost ‘equal’ (95 % fit plots for y includes complete linear dependence) and correlation 

between them was 𝑟𝑥𝑦 = 0.995. Simple econometric modelling concludes: ‘statistically the choice between 

arithmetic or geometric average have no matter’.  

  



Figure 5.1: Index series for actual average prices                Figure 5.2: Index series for actual average prices 

for ‘Small Cars’ make ‘Honda’. Basic formulas:                 for ‘Small Cars’ make ‘Honda’. Excellent  

indices based on geometric are dotted and                           formulas: indices based on geometric are dotted 

arithmetic solid lines.                                                 and arithmetic solid lines. 

 

 

Figure 5.3: Index series for actual average                          Figure 5.4: Index series for actual average 

prices for ‘Small Cars’ make ‘MB’. Basic                          prices for ‘Small Cars’ make ‘MB’. Excellent 

formulas: indices based on geometric are dotted                formulas: indices based on geometric are dotted 

and arithmetic solid lines.                                               and arithmetic solid lines. 

 

Figures 5.2 and 5.4 tell that because of contingent nature of data, the index series based on arithmetic and 

geometric averages may occasionally seriously deviate. Statistically they are almost equal but not 

mathematically. Our selection for price concept of average statistic and index compilation is more 

interpretable using arithmetic average (see also Table 5.1). In Figure 5.1 and 5.3 we see that basic formulas 

are contingently biased (see Vartia and Suoperä, 2017, 2018) deviating seriously from each other. Basic 

formulas for complete data should never be used. 

 

 

5.4 Hedonic Index Numbers for Used Cars in Finland 

 

Next, we aggregate decomposition in equation (7) from K-category into total using only excellent formulas. 

In our empirical analysis excellent formulas are very closely related. This happens because all excellent 

formulas are quadratic approximations of Fisher for small changes in log-prices and log-quantities (Vartia 

and Suoperä, 2017, 2018, pp. 17-21). This seems to happen here also quite closely for moderate changes of 

  

  



log-prices and log-quantities. The same happens extremely closely for quality adjusted indices (solid lines in 

Figure 5.5).  

 

Figure 5.5: Hedonic index series for actual average          Figure 5.6: Hedonic index series for quality correc- 

prices (arithmetic) and quality adjusted prices for             tions for quality characteristics x (T_Qc = all) by 
excellent formulas F, T, MV and SV (solid lines).              Törnqvist formula. 

 

 

Figures 5.5 and 5.6 must be looked at together: For any excellent formula (F, T, MV and SV) difference 

between index series for actual average prices and quality adjusted prices equals with total quality correction. 

The most part the difference is explained by quality corrections of age of a car (𝑥7) and mileage (𝑥9) – sold 

cars are simply older and more driven at observation period. Other quality corrections 

(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5 and 𝑥11) have minor role (index series close to one in Figure 5.6). The Figures 5.5 and 5.6 

together are graphical presentation of equation (7b) for Törnqvist ideal formula, that is 𝑃𝑇,𝐴
𝑡 0⁄

= 𝑃𝑇,𝑄𝐶
𝑡 0⁄

∙ 𝑃𝑇,𝑄𝐴
𝑡 0⁄

. 

 

 

6 Conclusion 

 

We show, using statistical inference, how two sources of heterogeneity – categorial and behavioral – may be 

chosen hierarchically for the best price models for hedonic quality adjusting. By this statistical inference we 

empirically decide first the ‘best’ partition of observations and second the ‘best’ categorization of behavioral 

‘beta’ heterogeneity. The decision-making leads us into the optimal best linear unbiased estimates, BLUE, 

for fixed categorical and beta effects.  

 

We combine the BLU estimates with consistent aggregation rules and get unbiased parametric presentations 

for categorical averages. These K-categorical averages - arithmetic and geometric – both satisfy the well-

known algebraic properties the OLS method being also unbiased and optimal for making of hedonic index 

numbers. The price modelling ends to aggregation of relations from observations into K-category level with 

these averages. 

 

Oaxaca decomposition divides changes of actual average (arithmetic or geometric) price ratios into two 

parts: first, quality correction of quality characteristics and second, quality adjusted price changes. In the 

Oaxaca decomposition the base period is the previous year normalized as an average month. This enables us 

to use base strategy which is free of chain drift.  

 

For the base strategy we select ‘flexible basket approach’ to verify the principle of Pursiainen that states 

‘when the expenditure on a category tends to zero, then its effect on the index should vanish (Pursiainen, 

2006, pp32). In we combine heterogeneously behaving cross-sections with classical index number theory. 

  



This representation of ‘index numbers’ makes it possible to control quality changes of quality characteristics 

and remove quality differences from unbiased actual average price ratios.  

 

The making of hedonic index numbers, we use two set of formulas, the basic and excellent ones. We show 

that basic formulas using asymmetric weighting, are contingently biased and should not be used. Excellent 

formulas in the study uses symmetrical weighting giving excellent results. Using symmetric weights of these 

excellent formulas satisfies the principle of ‘a weighted-by-economic-importance’-variable optimally being 

mathematically transparent. According to the study, any excellent formula with arithmetic average can be 

selected for official statistics. 

 

 

  



 

References: 
 

Bailey M. J., Muth, R. F. and Nourse, H. O. ‘A Regression Model for Real Estate Price Index 

Construction’., JASA, vol. 58, 933-942, 1963. 

 

Case, K. E. and Shiller, R. J. ‘Efficiency of the Market for Single Family Homes’, American Economic 

Review, vol. 79, 125-137, 1989. 

 

Davidson & MacKinnon ‘Estimation and Inference in Econometrics’, New York, Oxford University Press, 

1993. 

 

Diewert E. and Fox K. ‘Substitution Bias in Multilateral Methods for CPI Construction using Scanner Data’ 

2018 

 

Greene, W. “Econometric Analysis”, Prentice-Hall International, Inc. (third ed.), 1997. 

 

Griliches Z. ‘Hedonic Price Indices for Automobiles: An Econometric Analysis 

of Quality Change’, Zvi Griliches (ed.) Price Indexes ad Quality Changes, 55-97, 1971. 

 

Hsiao, C. ‘Analysis of Panel Data’., Cambridge University Press, 1986. 

 

Kaila, J., Luomaranta, H. and Suoperä, A. Hedonic Price Index Number for Blocks of Flats and Terraced 

Houses in Finland’, 2023 (http://www.stat.fi/meta/menetelmakehitystyo/index_en.html). 

 

Koev, E. ‘Combining Classification and Hedonic Quality Adjustment in Constructing a House Price Index’, 

Licentiate thesis, Helsinki, 2003. 

 

Koev, E. & Suoperä A. ’Pientalokiinteistöjen (omakotitalojen ja rakentamattomien pientalotonttien) 

hintaindeksit 1985=100’, Helsinki, 2002. (in Finnish, Statistics Finland). 

 

Matyás, L. and Sevestre, P., Eds. “The Econometrics of Panel Data: Handbook of Theory and Applications, 

2nd ed. Dordrecht: Kluwer-Nijoff, 1996. 

 

Oaxaca, R. ‘Male-Female Wage Differentials in Urban Labour Markets’, International Economic Review, 

14, pp. 693-709, 1973. 

 

Practical Guide on Multilateral Methods in the HICP (2020, WTPD-model), EuroStat. 

 

Pursiainen, H. ‘Consistent Aggregation Methods and Index Number Theory’, 2005. 

 

Quigley, R. ‘A Simple Hybrid Model for Estimating Real Estate Price Indexes’, Journal of Housing 

Economics vol. 4, p. 1-12, 1995. 

 

Rao, D.S. P. ‘On the Equivalence of the Weighted Country Product Dummy (CPD) Method and the Rao 

System for Multilateral Price Comparisons’, Review of Income and Wealth 51:4, 2005, 571-580. 

 

Summers R. ‘International Comparisons with Incomplete Data", Review of Income and Wealth 29:1, 1973, 

pp. 1-16.  

 

Suoperä, A. ’Some new perspectives on price aggregation and hedonic index methods: Empirical 

application to rents of office and shop premises’, 2004, 2006 (unpublished, Statistics Finland). 

 

http://www.stat.fi/meta/menetelmakehitystyo/index_en.html


Suoperä A. & Auno V. ‘Hedonic Index Numbers for Rents of Office and Shop Premises in Finland’, 2021 

(https://www.researchgate.net/publication/350460207_Hedonic_Index_Numbers_for_Rents_of_Office_and_

Shop_Premises_in_Finland). 

Suoperä, A., Nieminen, K., Montonen, S. and Markkanen H. “Comparing Basic Averages, Index 

Numbers and Hedonic Methods as Price Change Statistic”, 2021 

(http://www.stat.fi/meta/menetelmakehitystyo/index_en.html). 

 

Suoperä, A. & Vartia, Y. ‘Analysis and Synthesis of Wage Determination in Heterogeneous Cross-

sections’, Discussion Paper No. 331, 2011. 

 

Vartia, Y., Suoperä, A. and Vuorio, J. ’Hedonic Price Index Number for New Blocks of Flats and 

Terraced Houses in Finland’, 2021 (http://www.stat.fi/meta/menetelmakehitystyo/index_en.html). 

 

Vartia, Y. ‘Relative Changes and Index Numbers’, Ser. A4, Helsinki, Research Institute of 

Finnish Economy, 1976. 

 

Vartia, Y. ‘Ideal Log-Change Index Numbers’, Scandinavian Journal of Statistics., 3, pp. 121- 

126,1976. 

 

Vartia, Y. ’Kvadraattisten mikroyhtälöiden aggregoinnista’, ETLA, Discussion Papers no. 25,1979. 

 

Vartia, Y. & Suoperä, A. “Index number theory and construction of CPI for complete micro data”, 2017 

(http://www.stat.fi/meta/menetelmakehitystyo/index_en.html). 

 

Vartia, Y. & Suoperä, A.  “Contingently biased, permanently biased and excellent index numbers for 

complete micro data”, 2018 (http://www.stat.fi/meta/menetelmakehitystyo/index_en.html). 

Vartia, Y. and Vartia, P. ‘Descriptive Index Number Theory and the Bank of Finland Currency 

Index’, Scandinavian Journal of Economics, vol. 3, pp. 352 . 364, 1985. 

 

Törnqvist, L. ‘A Memorandum Concerning the Calculation of Bank of Finland Consumption 

Price Index’, unpublished memo, Bank of Finland, 1935. 

 

Törnqvist, L. ’Levnadskostnadsindexerna i Finland och Sverige, Deras Tillförlitlighet och 

Jämförbarhet’, Ekonomiska Samfundets Tidskrift, vol. 37, 1–35, 1936.  

 

Törnqvist, L. & Vartia, P. & Vartia, Y. ‘How Should Relative Changes be Measured’? The 

American Statistician, Vol. 39, No. 1. pp. 43 - 46, 1985. 

https://www.researchgate.net/publication/350460207_Hedonic_Index_Numbers_for_Rents_of_Office_and_Shop_Premises_in_Finland
https://www.researchgate.net/publication/350460207_Hedonic_Index_Numbers_for_Rents_of_Office_and_Shop_Premises_in_Finland
http://www.stat.fi/meta/menetelmakehitystyo/index_en.html
http://www.stat.fi/meta/menetelmakehitystyo/index_en.html
http://www.stat.fi/meta/menetelmakehitystyo/index_en.html
http://www.stat.fi/meta/menetelmakehitystyo/index_en.html

