Outlier detection for alternative data sources

Mario Spina

- Background to data cleaning
 - Junk filters vs outlier detection
 - Main application & methods
- Results:
 - Second-hand cars
 - Rail fares
 - Discussion
- Future developments and conclusions

Background to data cleaning

- Introducing new, bigger data sources in CPI, bi-annual research
- Transforming rail fares and second-hand cars first
- New methods and techniques to ensure high-quality
- Adapting existing strategies to big data
- Data cleaning selects transactions used for index calculation

Junk filters vs outlier detection

Data cleaning consists of two underlying components:

Junk filter

Outlier detection

Determines observations out of scope by removing as example:

- 'minibus' from cars
- 'underground' fares from rail fares

More information on junk filters is available at this <u>publication</u>

Identifies products with extreme and potentially erroneous prices or price movements

We investigated three applications of outlier detection:

- Global (transaction-level, global distribution)
- Observation-level (transaction-level, product distribution)
- Relative-based (unit value-level, global distribution)

Main applications & methods

Methods explored in the publication:

Method	Fences
User-defined fence	LF, UF: Manually selected
Tukey (interquartile)	LF: Q1 – k*(Q3-Q1) UF: Q3 + k*(Q3-Q1)
Kimber	LF: Q1 - k*(Q2-Q1) UF: Q3 + k*(Q3-Q2)
k-sigma	LF: mean – k*sd UF: mean + k*sd
Benchmark	No fences

- Note: Q1, Q2, Q3 are the first, second or third interquartile respectively
- mean and sd are mean value and standard deviation of a gaussian distribution

- Explored a combination of applications and methods
- Second-hand petrol cars
 - Diesel cars in backup
- Rail fares

Results: second-hand cars

Methods of outlier detection explored with second-had cars

Approach	Method	Parameters	Flagged, petrol (%)	Flagged, diesel (%)
	No outlier detection			
Benchmark	removal	N/A	0	0%
		LF = 400,		
Global	User-defined	UF = 60000	0.91%	0.29%
	Tukey			
Observation	(interquartile)	k = 3	0.15%	0.10%
Observation	Kimber	k = 3	1.18%	0.89%
Observation	k-sigma	k = 3	0.21%	0.16%
		LF= 1/3,		
Relative	User-defined	UF = 3	0.03%	0.04%
	Tukey			
Relative	(interquartile)	k = 3	1.56%	0.96%
Relative	Kimber	k = 3	5.04%	3.41%
Relative	k-sigma	k = 3	0.90%	0.67%

Results: second-hand petrol cars

Global and observation-based methods

Results: second-hand petrol cars

Relative-based methods

Methods of outlier detection explored with rail fares

- Negligible impact of global outlier detection
- Observation-base strategy not applicable due to bimodal distributions

Туре	Method	Parameters	Flagged	Percent
Benchmark	No outlier detection	N/A	0	0%
		LF = 1/3,		
Relative	User-defined	UF = 3	132,796	0.02%
Relative	Kimber	k = 3	182,006,519	29.91%
Relative	k-sigma	k = 3	5,751,068	0.95%
Relative	Tukey (interquartile)	k = 3	145,194,524	23.85%

Results: rail fares

Relative-based methods

Index, Jan 2020 = 100

• Difference affected by narrow distribution of relatives

Difference, index points

We prefer relative-based outlier detection with a user-defined lower fence of one third and upper fence of 3

- Corrects potentially erroneous spikes
- Very mild change otherwise
- Removes minimal data
 - Reduces risk no-price-change bias
- Reduces outdated fences risk
- Avoids risk of poor fit
- Consistent across categories
 - Bespoke k parameter

Future developments & Conclusions

- Monitoring outliers and indices to avoid bias
- Account for genuine large relatives
- Exploring outlier detection on grocery scanner data
 - Investigating other methodologies

Future developments & Conclusions

- Presented <u>Outlier detection for rail fares and second-hand cars</u> <u>dynamic price data</u>
- Discussed potential strategies
- Relative-based outlier detection
 - Mild impact on indices
 - 0.25 and 0.03 index points for used cars and rail fares
- Future application to new data sources

Thanks for your attention!

Results: second-hand diesel cars

Global and observation-based methods

Results: second-hand diesel cars

Relative-based methods

