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Research objective & problem statement

e Context:
* NSOs shifting to Alternative Data Sources (ADS), scale leading to adoption of Machine Learning (ML) for

classification
* Problem statement: misclassification is generally known to cause measurement error in statistics

* Classification could impact price statistics if (a) enough product relatives that have a different movement affect
the distribution of correctly classified price relatives; or (b) if enough product relatives that should be in a
category are absent from it, affecting the distribution of remaining relatives

* Misclassification may occur at one period, but could also build over time
* Authors are unaware of a comprehensive discussion on the impacts of misclassification on price indices within
the context of applying ML on ADS
* Objective: Study misclassification on key aspects of consideration when applying ML for production

a) Loolé at data labelling (or annotation) — as labelled datasets used for ML model training or validation of data in
production;

b) Evaluate how misclassification could impact the elementary indices: the building blocks of the CPI;
c) Evaluate ML model decay over time and how to mitigate it through model retraining;

d) Evaluate outlier detection strategies to flag products for manual review in order to improve ML model
performance

Sl Delivering insight through data for a better Canada




Research questions

 RQ1: How can human annotator consistency or inconsistency guide NSOs in designing labelling or validation
processes?

* Experiment: 3 annotators independently label each unique product in dataset 1 (next slide). If there is any disagreement, a 41" sees all
proposals and arbitrates the correct decision. Evaluate consistency between annotators, subjectivity in the annotation behaviour, and
heterogeneity in the categories.

* RQ2: Can misclassification affect an elementary price index?

* Experiment 1: Inject various levels of random misclassification into the data to see if an elementary prices index could be affected in
one reporting period;

* Experiment 2: Inject various levels of simulated misclassification (proxy of behaviour of real classifier) to see if a typical elementary
index shows movement different than the correct value.
* RQ3: Does performance of ML classifiers decline due to dataset drift?
* Experiment: Evaluate model decay and frequency of retraining appropriate to mitigate it

* RQ4: Which outlier detection methods are useful for NSOs to utilize to maintain classification performance?

* Experiment 1: Evaluate confidence outlier method (likely impactful as it's an application of Active Learning) and compare it against
random flagging method;

* Experiment 2: Compare a method for flagging products in small categories, and a certain price range (trial various percentiles) as
context for how many records are flagged and the level of F1 reached.

Poe] Chtsics Btatstque Delivering insight through data for a better Canada

Canada Canada




Data and methods

* Data: One web-scraped dataset obtained from scraping seven Canadian Clothing and recreation retailers:
* Subset 1: 19,569 unique product/retailer combination in four Clothing retailers were labelled to answer RQ1.

* Subset spans June 2018 — Dec 2019
* Subset 2: 155,254 unique product/retailer combinations and approximately 20m price observations from other additional
Clothing and Recreation retailers — utilized to answer RQ2-4
* Subset spans two periods;
* Initial period of June 2018-Dec 2019 (14,309 annotated, ML model predicted remainder and 100% validated)
* Second phase of Jan 2020-Dec 2021 (ML model predicted the whole and 100% validated)

* Methods:
* Misclassification — used for RQ2:
* Random (unbiased) — depictive of the concept, used on one period and one elementary index (jevons)
* Non-random (simulated) — designed to scale the misclassification a real ML model contains by setting proportions of mistakes —
and as a scale of overall misclassification is varied, the mistakes are assigned to the categories by this proportion
* Price index method — used for RQ2:
* GEKS-Jevons utilized as this method is preferred to bilateral methods and is used for unweighted web scrape data

* Supervised ML model — used for RQ3 and 4:

* Asthese research questions required retraining ML models we selected a representative one from the literature (and our
experience): Support Vector Machine (SVM) classifier, word tokenization, custom stop word removal, and TF-IDF vectorization
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GEKS Index for Single EA: 13 Month Window
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Impact of Model Retraining on Model Performance Decay: Retailer 1

Figure 1
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Results for RQ4: Which outlier detection methods are

useful for NSOs to utilize to maintain classification
performance? (1/3)

Takeaways:

* Fig. 1: Even a small amount of random flagging (flagging a
proportion of products for validation) is effective at bringing up
classifier performance with retraining

* Random flagging not efficient at catching misclassified
products

* Fig. 2: At same time, considering that there is a natural
accumulation of new products that are entering the monthly
sample (while some also leave), increasing levels of
misclassification will enter the sample. The sample
classification accuracy will approach that of the classifier.

* Random ﬂaﬁging leads to an improvement of the overall sample
that feeds the index.

* The decline is smooth over time compared to the more
pronounced monthly performance
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F1 Sample Weighted Comparison: New Products - Random Flagging
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— 4 F1 Sample Weighted Comparison: New Products - Uncertainty Flagging
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F1 Sample Weighted Comparison: Uncertainty vs Random Flagging

| / Figure 1

Results for RQ4: Which outlier detection
methods are useful for NSOs to utilize to
maintain classification performance? (3/3)
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Takeaways:

* Fig. 1: Comparing between random and uncertainty-based —
for almost the same proportion of records flagged, uncertainty
was more effective at bringing up classifier performance if the
dataset was used for retraining models. This aligns with the
confidence-based Active Learning method.
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* Uncertainty-based flagging would create biased datasets
however —and it is not recommended to use unbiased

datasets to evaluate model performance. It is recommended Comparison of Review Effort to Minimum F1 Score - Retailer 2
to combine confidence-based flagging method with a certain Figure 2
threshold of random (stratified) for unbiased model evaluation 1 outhier Method
* Fig. 2: Other outlier methods (flagging all products in small B ’ RN
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Discussion & Conclusion

e Our empirical case study showed that misclassification is present in all key steps of the lifecycle of
ML in price statistics and how it could be mitigated:

1. Annotators disagree and robust processes must be designed to mitigate this. A ‘ceiling” benchmark of
~92% is realistic based on our findings.

2. Misclassification can affect an elementary aggregate — both bias and variance could enter the index in
one representative reporting period. Misclassification could also build over time.

3.  Model decay is present, thus misclassification could grow over time if not addressed. Retraining
utilizing the data from a validation process could mitigate decay by bringing performance of the model
back up.

4.  Of several outlier methods for retraining available to NSOs — confidence-based method shown to be
most useful for retraining models. However as confidence-based flagging results in a biased dataset,
random flagging is recommended for evaluating model performance. Other flagging methods should
be useful for mitigating impacts on the price index — such as all products in small EA categories or
products with large price movements.
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Thank you!

Questions, feedback, ideas?

serge.goussev@statcan.gc.ca
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