

# Expanding the use of Big Data for CPI in Japan

## Seitaro Tanimichi, Takuya Shibata Statistics Bureau, Japan

Meeting of the Group of Experts on Consumer Price Indices, 7-9 June 2023, Geneva, Switzerland

# Outline

## Background

# Web Scraping data: hotel charge

- Scanner data
- Study for further expansion



# Background

2000-base: Scanner data for "desktop computers" and "laptop computers"

2005-base: Added scanner data for "cameras"

2010-base: Included scanner data of "tablet computers" to "laptop computers"

2015-base: Separated "tablets computers" from "laptop computers"



2020-base: Web scraping data for "hotel charges" "airplane fares" "charges for package tours to overseas"

Scanner data for "video recorders", "PC printers" and "TV sets"



A questionnaire survey to examine

- $\checkmark$  trends in purchasing methods,
- $\checkmark$  time to make reservations,
- ✓ accommodation plans,
- $\checkmark$  selection of collection websites, etc.

#### Also

Conducted price collection and index production by web scraping on a trial basis
 Compared with the index by conventional price surveys

Capturing the price trend of internet sales grasped the price trend of hotel charges
 Web scraping can stably collect prices from each travel booking website
 A huge number of internet sales prices were accurately reflected in the indices

Web scraping contributes to the improvement of indices



## Web Scraping (hotel charges) : Price collection sites

|                    |                        | RESERVATION TIME |                                    |                                |         |                  |
|--------------------|------------------------|------------------|------------------------------------|--------------------------------|---------|------------------|
|                    | N = 2,448              | Within a<br>week | One to<br>three<br>weeks<br>before | One month<br>or more<br>before | Unknown | Total            |
| RESERVATION METHOD | Called hotels directly | 3%               | 4%                                 | 5%                             | 1%      | 13%              |
|                    | Website of hotels      | 2%               | 7%                                 | 12%                            | 1%      | 21%              |
|                    | Travel booking site    | 7%               | 21%                                | 29%                            | 2%      | <mark>59%</mark> |
|                    | Over the counter       | 0%               | 1%                                 | 2%                             | 0%      | 3%               |
|                    | Others                 | 0%               | 0%                                 | 1%                             | 0%      | 1%               |
|                    | Unknown                | 0%               | 0%                                 | 1%                             | 2%      | 3%               |
|                    | Total                  | 12%              | 33%                                | 50%                            | 6%      | 100%             |



## Web Scraping (hotel charges) : Accommodation plan

÷

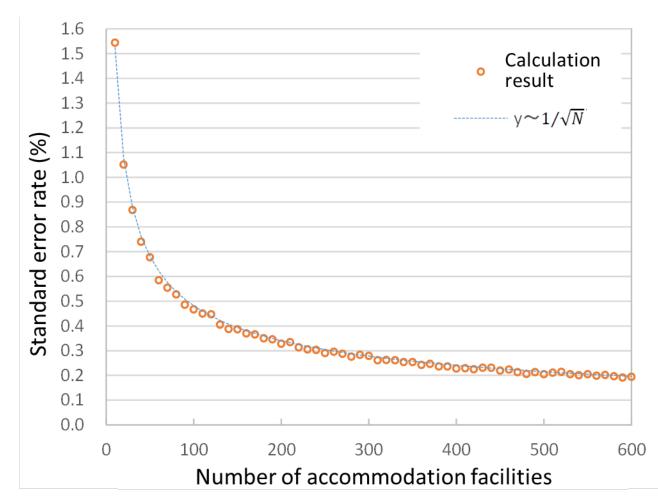
| N = 2,448                            | Western-<br>style rooms | Japanese-<br>style rooms | Japanese-<br>Western<br>style rooms | Others | Total |
|--------------------------------------|-------------------------|--------------------------|-------------------------------------|--------|-------|
| No meals                             | 24%                     | 4%                       | 1%                                  | 1%     | 29%   |
| With breakfast                       | <mark>24%</mark>        | 3%                       | 1%                                  | 0%     | 29%   |
| With breakfast and dinner            | 11%                     | <mark>22%</mark>         | 7%                                  | 0%     | 40%   |
| Breakfast, lunch and dinner included | 1%                      | 1%                       | 0%                                  | 0%     | 2%    |
| Others                               | 0%                      | 0%                       | 0%                                  | 0%     | 0%    |
| Total                                | 60%                     | 30%                      | 9%                                  | 1%     | 100%  |



# Web Scraping (hotel charges) : Price collection time

Prices are collected, in principle, at the beginning of the month, two months before the accommodation date

As for one month before the accommodation date,


Long-term web scraping conducted between August 2017 and March 2018 (for 30 accommodation facilities)

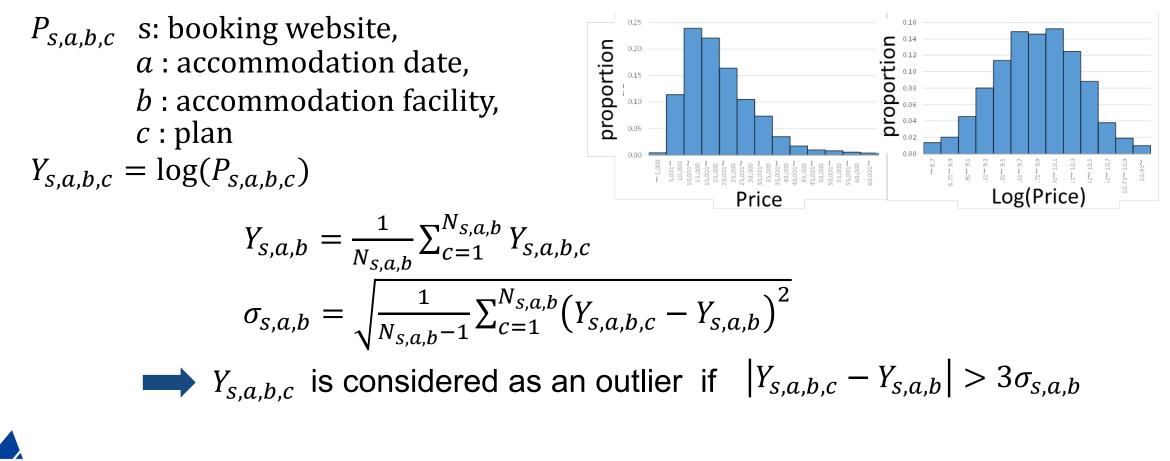
- Prices for about 10% of accommodations four months ahead and about half of accommodations six months ahead were not listed on the booking website
- Seasonal limit on the advanced reservation, a gap at the time of change of the fiscal year

# Web Scraping (hotel charges) : Accommodation Facility

#### About 400 representative accommodations facilities are selected

- While price collection by web scraping does not require consideration of the upper limit of the number of target facilities caused by resource constraints, unrestricted access to websites to obtain prices is not possible in light of the load on the website.
  - ➔ It is necessary to set an appropriate number of target facilities.
- In the pilot study, the standard error rate of the average price for the increase in the number of facilities almost stopped decreasing and leveled off when the number of facilities exceeded 400






# Web Scraping (hotel charges) : Calculation of indices

Using a two-month data set for the current month (t) and the previous month (t - 1) the price indices are calculated according to the following procedures (1) to (4)

#### (1) Exclusions of outliers

Statistics Bureau of Japan



# Web Scraping (hotel charges) : Calculation of indices

#### (2) Creation of a data table

- Average prices for each booking website(s), accommodation date(a), and accommodation facility(b) are calculated,
- Data table with these as attributions is created

$$Y'_{s,a,b} = \frac{1}{N'_{s,a,b}} \sum_{c=1}^{N'_{s,a,b}} Y_{s,a,b,c}$$

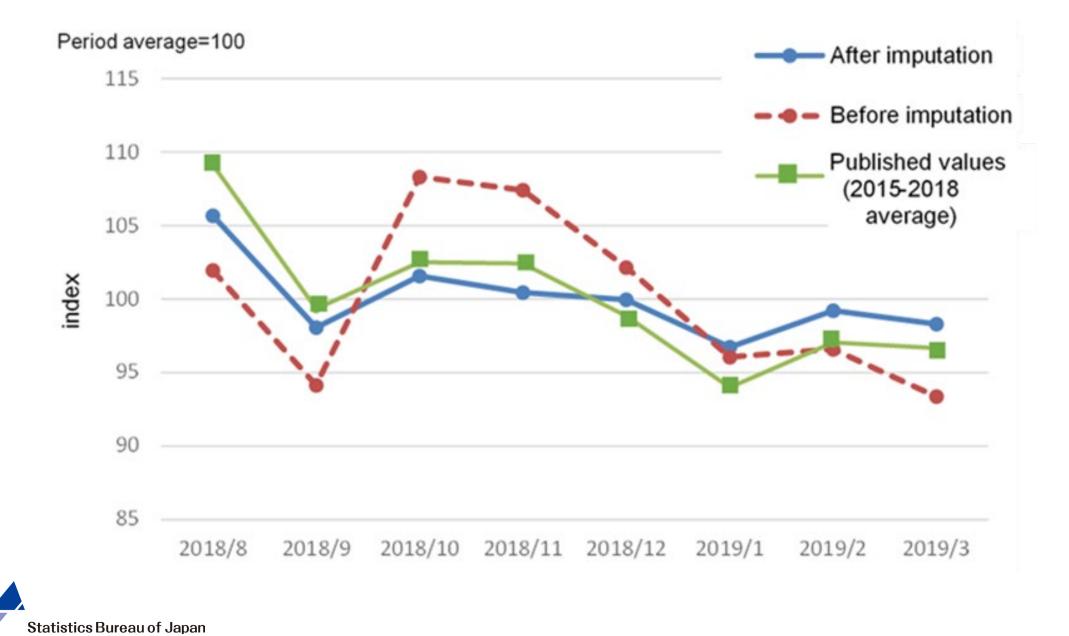
(3) Missing value imputation : Next Slide

(4) Calculation of index

- Data set after imputation is used to calculate average prices for the current month (t) and the previous month (t 1), respectively.
- These price relatives are multiplied by the price index for the previous month to calculate the price index for the current month.

$$P_{t} = \left(\prod_{s,a,b} P_{t,s,a,b}\right)^{\frac{1}{N_{t}}} = \exp\left[\frac{1}{N_{t}}\sum_{s,a,b}\log(P_{t,s,a,b})\right] = \exp\left[\frac{1}{N_{t}}\sum_{s,a,b}Y'_{t,s,a,b}\right]$$
$$I_{t} = I_{t-1} \times \frac{P_{t}}{P_{t-1}}$$




# Web Scraping (hotel charges) : Missing value imputation

| Accommodation<br>date (X <sub>a</sub> ) | Booking<br>site (X <sub>S</sub> ) | Facility<br>(X <sub>b</sub> ) | Log Average<br>Price (y) |  |
|-----------------------------------------|-----------------------------------|-------------------------------|--------------------------|--|
| 2018/12/1                               | А                                 | Х                             | 9.51                     |  |
| 2018/12/1                               | А                                 | Y                             | 9.61                     |  |
| 2018/12/1                               | А                                 | Z                             | 9.75                     |  |
| 2018/12/1                               | В                                 | Х                             |                          |  |
| 2018/12/1                               | В                                 | Y                             |                          |  |
| 2018/12/1                               | В                                 | Z                             |                          |  |
| 2018/12/1                               | С                                 | Х                             | 9.58                     |  |
| 2018/12/1                               | С                                 | Y                             | 9.69                     |  |
| 2018/12/1                               | С                                 | Z                             | 9.85                     |  |
| 2018/12/2                               | A                                 | Х                             | 9.65                     |  |
| 2018/12/2                               | A                                 | Y                             | 9.66                     |  |
| 2018/12/2                               | А                                 | Z                             |                          |  |
| 2018/12/2                               | В                                 | Х                             | 9.49                     |  |
|                                         |                                   |                               |                          |  |

|   | Accommodation<br>date (X <sub>a</sub> ) | Booking<br>site (X <sub>S</sub> ) | Facility<br>(X <sub>b</sub> ) | Log Average<br>Price(y) |
|---|-----------------------------------------|-----------------------------------|-------------------------------|-------------------------|
|   | 2018/12/1                               | А                                 | Х                             | 9.51                    |
| , | 2018/12/1                               | А                                 | Y                             | 9.61                    |
|   | 2018/12/1                               | А                                 | Z                             | 9.75                    |
|   | 2018/12/1                               | С                                 | Х                             | 9.58                    |
|   | 2018/12/1                               | С                                 | Y                             | 9.69                    |
|   | 2018/12/1                               | С                                 | Z                             | 9.85                    |
|   | 2018/12/2                               | А                                 | Х                             | 9.65                    |
|   | 2018/12/2                               | А                                 | Y                             | 9.66                    |
|   | 2018/12/2                               | В                                 | Х                             | 9.49                    |
|   |                                         | •••                               |                               |                         |

 $Y'_{s,a,b} = \alpha + \beta_a \cdot x_a + \beta_s \cdot x_s + \beta_b \cdot x_b + \varepsilon$ 





12

|                               | 2015-Base method<br>(field collection)                                           | 2020-Base method<br>(web scraping)                                                          |
|-------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Collection<br>conditions      | Prices on Friday and Saturday<br>of the week including the 5th of<br>every month | Prices of 1st to 31st of every<br>month purchased two months<br>in advance of accommodation |
| Number of<br>collected prices | 640                                                                              | About 1 million                                                                             |



Hotel charges

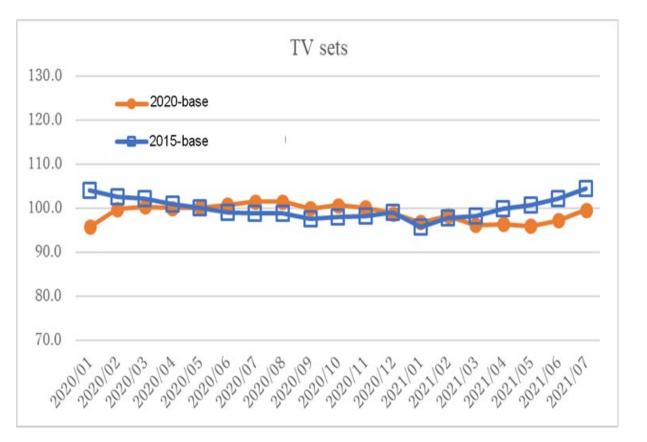


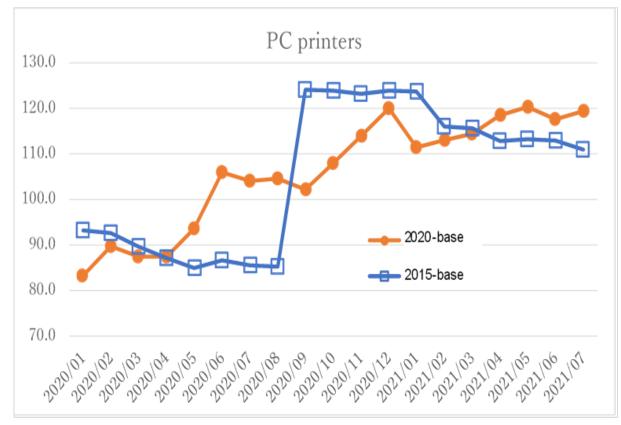
## **Use of Scanner data**

TV Sets
 hedonic model

PC printers, video recorders
 fixed-specification method

| Specifications             | Examples                                |  |  |  |  |
|----------------------------|-----------------------------------------|--|--|--|--|
| Release month              | Year, Month                             |  |  |  |  |
| Tuner shape                | Separate type, Integrated type, None    |  |  |  |  |
| Screen size                | 3-inch type to 75-inch type             |  |  |  |  |
| Number of pixels displayed | 1366x768, 1920x1080, 3840x2160, etc.    |  |  |  |  |
| D connector                | D4x1, D5x1, None                        |  |  |  |  |
| PC input                   | D-Sub, None                             |  |  |  |  |
| Communication terminal     | LAN, None                               |  |  |  |  |
| Card slot                  | SDXC, None                              |  |  |  |  |
| HDD capacity               | 0 GB to 2,000 GB                        |  |  |  |  |
| Internet                   | Capable, Incapable                      |  |  |  |  |
| Wireless function          | IEEE802.11a/n, None                     |  |  |  |  |
| Audio output               | 10W+10W, 3W+3W, 5W+5W, etc.             |  |  |  |  |
| HDMI connector             | 0 to 4                                  |  |  |  |  |
| Link function              | Available, Unavailable                  |  |  |  |  |
| Drive speed                | Constant speed, Double speed            |  |  |  |  |
| Recording media            | HDD (external), HDD (internal/external) |  |  |  |  |
| High definition canable    | 4K/2K, 8K, High-definition, Full high-  |  |  |  |  |
| High-definition capable    | definition, Incapable                   |  |  |  |  |
| Hybrid cast                | Capable, Incapable                      |  |  |  |  |





#### **Use of Scanner data**

|                                          | 2015 Base<br>(field collection)                                                                      |     |                    | 2020 Base<br>(Scanner data)           |                 |                  |
|------------------------------------------|------------------------------------------------------------------------------------------------------|-----|--------------------|---------------------------------------|-----------------|------------------|
| Collection time<br>and price             | Price on any one of Wednesday,<br>Thursday or Friday of the week including<br>the 12th of each month |     |                    | Prices from 1st to 31st of each month |                 |                  |
| ltem                                     | VideoPCrecordersprinters                                                                             |     | Video<br>recorders | PC<br>printers                        | TV sets         |                  |
| Number of<br>collected product<br>models | 6                                                                                                    | 1   | 8                  | 23                                    | 46              | 600              |
| Number of stores<br>for collection       | 186                                                                                                  | 172 | 186                | About<br>2,600                        | About<br>2,600  | About<br>2,600   |
| Number of collected prices               | 186                                                                                                  | 172 | 186                | About<br>30,000                       | About<br>80,000 | About<br>240,000 |



#### **Use of Scanner data**







# Study for further expansion of the use of big data

- It is necessary to accelerate the use of big data for the CPI
  The items under consideration include white goods, foods, medical supplies, daily necessities, and clothing
- For clothing, we are considering web scraping to collect prices for items such as one-piece dresses, slacks, and children's trousers
- As web scraping data for clothing contains a large number of related products, it is necessary to extract equivalent products from these products
- The necessary codes and names are often not present, it is difficult to filter them mechanically (and not practical to extract them manually)
- →Currently studying the construction of a machine learning model for automatically classifying products based on product descriptions (about 100 to 400 words) and image information





