

Index compilation with online prices for household appliances and consumer electronics

STATEC

Meeting of the Group of Experts on Consumer Price Indices

7th of June 2023

Lucien May

Botir Radjabov

Background

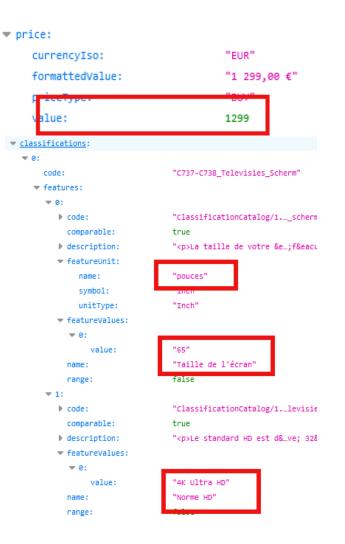
Introduction of Scanner Data in the CPI in 2018 Multilateral GEKS method introduced in 2021 (COICOP divisions 01 and 02)

Next step: Household appliances and Consumer Electronics

- Market research data for Luxembourg not available timely for CPI production
- No access to Scanner Data for a major retailer of consumer electronics

Bulk Scraping of the retailer's website for two years (prices and characteristics)

How to exploit this data source for the CPI?



Online data collection

- Access to the API of the retailer beginning of 2021
- Agreement with the retailer for scraping options (time, crawl-delay, frequency)

In practice:

- Retrieval of product sheets (.json files) for all products once per week
- Extractions of relevant information (internal classification, prices, product identifier, characteristics) in databases

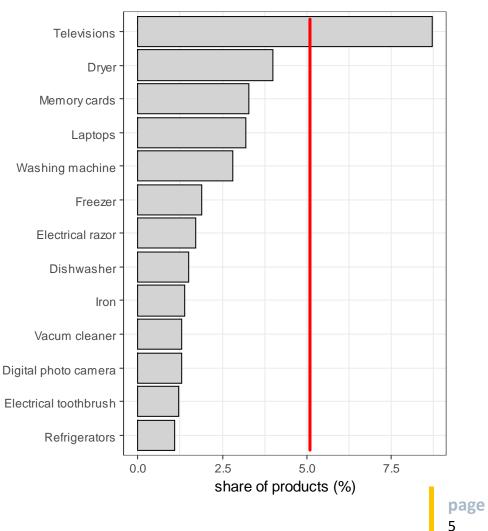
Bulk dataset

Starting June 2021:

- Weekly data of (offer) prices and characteristics of all products for sale (>9000 products per week)
- We experienced one *temporary access problem* in two years, due to an internal change of the retailer (solved in two days)

Mapping of internal retailer categories into COICOP (updated every month)

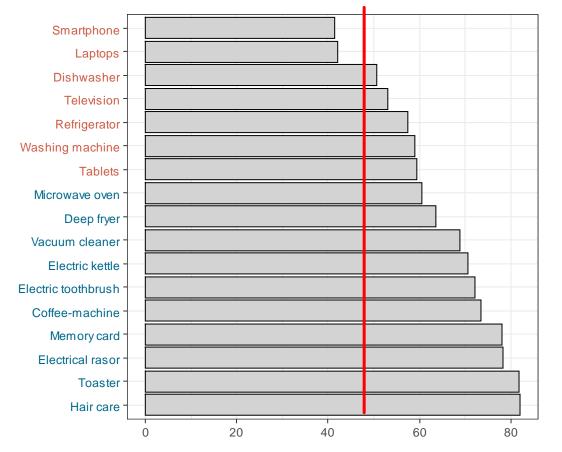
Online prices and in shop prices are the same No individualized pricing (price discrimination)



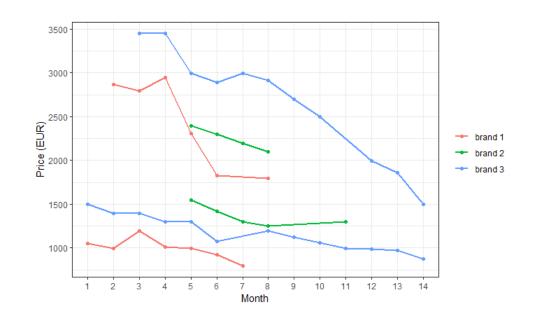
Price collection frequency

- For majority of products: No or one price change within a month
- Litte or no « dynamic pricing »
- Weekly data collection seems to be sufficient
- Monthly aggregated price p_i^t of a product *i* by

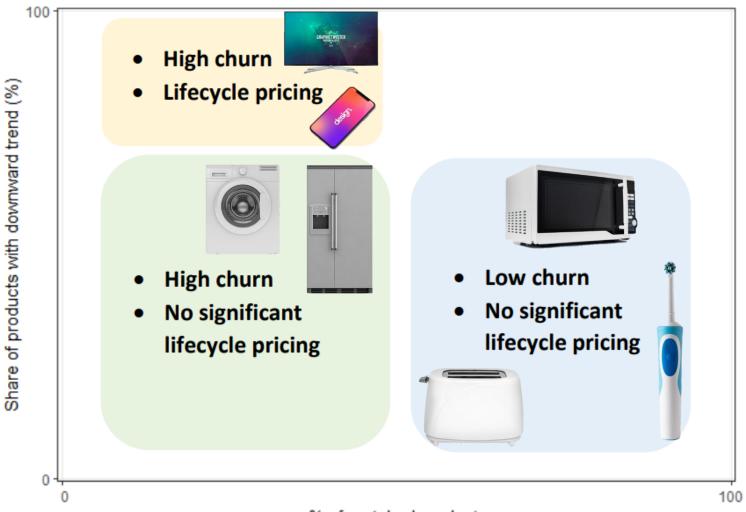
$$p_i^t = \frac{1}{L_{it}} \sum_{k=1}^{L_{it}} p_i^{t,k}$$


Average share of products with 2 price changes in a month or more

Assortment dynamics and lifecycle pricing


High churn for consumer electronics and big household appliances

Average matching rates over 6 months (in %)


Lifecycle pricing for consumer electronics

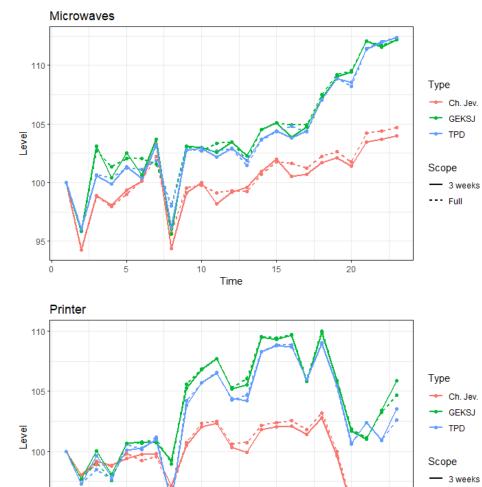
Televisions

page 6

Conceptual classification of product categories

Price index methods

« Low » churn product categories without lifecycle pricing

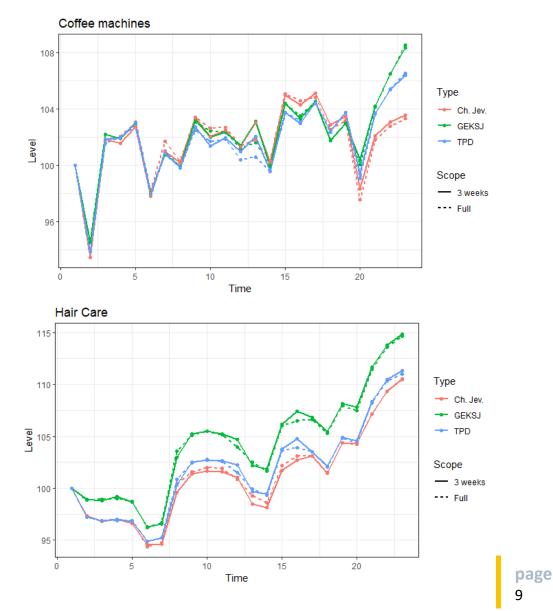

Small household appliances, electrical appliances for personal care, printers etc.

Chained Jevons Index	$I_{ChJ}^{0,t} = \prod_{j=1}^{t} I_{J}^{j-1,j}$
GEKS-Jevons Index	$I_{GEKS-J}^{0,t} = \prod_{j=0}^{T} (I_J^{0,k} I_J^{k,t})^{\frac{1}{T+1}}$
Time product dummy Index	$\ln p_i^t = \alpha + \sum_{t=1}^T \delta^t D_i^t + \sum_{i=1}^{N-1} \gamma_i D_i + \varepsilon_i^t \qquad I_{TPD}^{0,t} = e^{\widehat{\delta^t}}$ (OLS estimation)

 $I_{I}^{r,s}$ is the Jevons Index between periods r and s.

Results for some (low churn) product categories

--- Full


10

Time

5

15

20

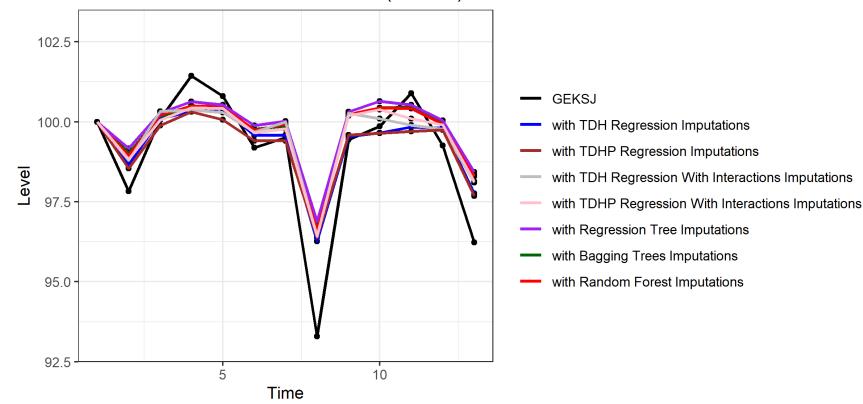
95

Price index methods

« High » churn product categories with lifecycle pricing

Tablets, laptops, televisions, smartphones etc.

Imputation Jevons Index	$I_{IJ}^{0,t} = \prod_{i \in U_M^{0,t}} \left(\frac{p_i^t}{p_i^0}\right)^{\frac{1}{2N_0} + \frac{1}{2N_t}} \prod_{i \in U_D^{0,t}} \left(\frac{\hat{p}_i^t}{p_i^0}\right)^{\frac{1}{2N_0}} \prod_{i \in U_N^{0,t}} \left(\frac{p_i^t}{\hat{p}_i^0}\right)^{\frac{1}{2N_t}}$	
Imputation Jevons GEKS (IJGEKS) Index	$I_{IJGEKS}^{0,t} = \prod_{j=0}^{T} (I_{IJ}^{0,k} I_{IJ}^{k,t})^{\frac{1}{T+1}}$	

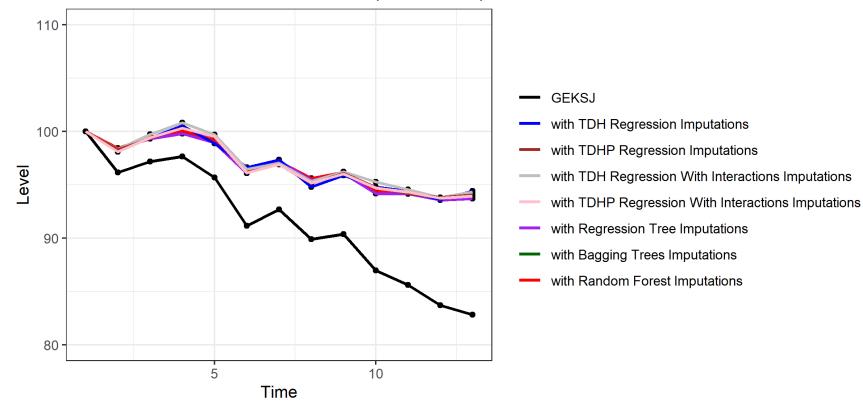

 \hat{p}_i^0 and \hat{p}_i^t are imputed prices of new and disappearing products

The chosen price imputation methods

Hedonic Linear Regression Based	Tree Based Price Imputation	
Price Imputation Methods	Methods	
Time Dummy Hedonic Regression	Regression Tree	
Time Dummy Hedonic Polynomial	Bagging Trees	
Regression		
Time Dummy Hedonic Regression	Dandam Faraat	
with Interactions	Random Forest	
Time Dummy Hedonic Polynomial		
Regression with Interactions		

Results for some (high churn) product categories

GEKSJ and IJGEKS Price Indices (Tablets)


Results for some (high churn) product categories

100 GEKSJ with TDH Regression Imputations 98 with TDHP Regression Imputations Level with TDH Regression With Interactions Imputations 96 with TDHP Regression With Interactions Imputations with Regression Tree Imputations with Bagging Trees Imputations 94 with Random Forest Imputations 92 10 5 Time

GEKSJ and IJGEKS Price Indices (Laptops)

STATEC

Results for some (high churn) product categories

GEKSJ and IJGEKS Price Indices (Televisions)

Which price imputation method is more accurate?

 \mathbf{R}^2 values of the Price Imputation Methods (average for 20 samples)

	Tablets	Laptops	Televisions
Time Dummy Hedonic	0.9727873	0.8898543	0.8913327
Regression	0.9727073	0.0090040	0.0913327
Time Dummy Hedonic	0.9820377	0.9004979	0.9254533
Polynomial Regression	0.9020377	0.9004979	0.9204000
Time Dummy Hedonic			
Regression with	0.9828617	0.9208489	0.9155837
Interactions			
Time Dummy Hedonic			
Polynomial Regression	0.9883839	0.9184804	0.9342877
with Interactions			
Regression Tree	0.9879692	0.9528261	0.9693565
Bagging Trees	0.9902542	0.9658194	0.9765517
Random Forest	0.9950604	0.9769152	0.9832115

Conclusion

New datasource of online data for household appliances and consumer electronics

Different price index methods need to be used for different product categories

« Low » churn product categories: GEKS-Jevons seems to be appropriate

« **High** » churn product categories with lifecycle effects require explicit quality adjustment methods

- Different price imputation methods give similar results
- Resource demanding

Future work: Analyse other product categories and splicing methods

STATEC

Institut national de la statistique et des études économiques

Thank you!

13, rue Erasme L-1468 Luxembourg

(+352) 247-84219

Ľ

info@statec.etat.lu

Lucien May lucien.may@statec.etat.lu

Botir Radjabov

botir.radjabov@ext.statec.etat.lu

statistiques.public.lu

