

HYDROGEN ENERGY IN THE RUSSIAN FEDERATION

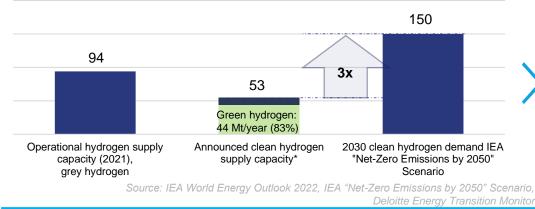
Konstantin Grebennik

Head of Hydrogen development division

March 2023

Hydrogen - vital element for neutral carbon economy

REA RUSSIA ENERGY AGENCY


«...hydrogen and its derivatives will contribute **10%** *of total emissions reductions by 2050...and* **12%** *of final energy demand»*

IRENA World Energy Transition Outlook 2022

«...hydrogen and hydrogen based fuels (enable) to avoid up to **60 Gt CO2** emissions in 2021-2050 in the Net zero Emissions Scenario»

IEA Global Hydrogen Review 2021

Global operational and announced clean hydrogen supply capacity (August 22) vs. expected demand (Mt / year)

Barriers

- Administrative
- lack of uniform standards
- legislation restrictions
- protectionism policy

Technological

- low TRL on critical technologies
- complicated delivery (lack of carriers, pipelines, ammonia production capacity)
- · electrolysers capacity shortage
- safe use conditions

Economical

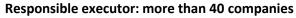
• LCOH is still very high to compete with conventional sources of energy

Climate

Additional leaks of methane and hydrogen can negate the effect of reducing GHG emissions

* Includes ambitions that are in a very early stage (i.e. projects with an ambition set, but without specific plans – high uncertainly), planned projects that are pre-FID and planned projects that are post-FID

Production		Storage and transportation		Application
9 1.Steam methane reforming	 11.Chemical absorption of CO2 by alkanolamines 	9 21.Compression H ₂ (CGH ₂)		35.Alkaline fuel cells (AFC)
 2.Autothermal reforming of methane 	12.Adsorption separation	9 22.Liquefaction H ₂ (LH ₂)	 26.Containers for LH2 transportation 	36.Proton exchange membrane fuel cell (PEMFC)
6 3.Carbon dioxide methane reforming	5 13.Membrane separation	 23.Hydrogenation/ dehydrogenation (LOHC) 	9 27.Capacities for LOHC	7 37.Phosphoric acid fuel cell (PAFC)
 4. Decomposition of methane (catalytic) 	8 14.Cryogenic separation	24.Ammonia technologies (decomposition of ammonia)	9 28.Containers for NH3	38. Solid oxide fuel cell (SOFC)
 5. Decomposition of methane (plasma-assisted) 	9 15.Alkaline Electrolyzer	 25.Methanol technologies for H2 storage 	9 29.Containers for methanol	39.Molten carbonate fuel cell (MCFC)
9 6.Coal gasification	9 16.PEM Electrolyser	7 30.Metal hydride storage of H2		7 40. Direct-methanol fuel cell (DMFC)
7.Gasification of veg. raw materials and solid waste	5 17.AEM Electrolyser	31. Inorganic hydrogen carriers		41. Direct Ammonia Fuel Cell (DAFC)
6 8.Processing of veg. raw materials and solid waste	7 18.SO Electrolyser	32.Geological storage facilities		6 42. GTCC on methane-hydrogen mixture
9. Thermochemical cycles	19.DO Electrolyser	9 33.Low pressure vessels	9 34. Hydrogen pipelines	7 43.Gas burners and boilers on methane-hydrogen mixture
10.Thermoelectrochemical cycles	20.Photolytic decomposition of water			9 44.Ammonia technologies (synthesis of ammonia)
				7 45. Obtaining hot-briquetted iron (HBI)
cale of technological readiness levels (TRL) TRL in the		e world in 2022 CO2 capture technologies		7 46.Methanol technologies (CO2-based syntheses)
RL<4 TRL4 TRL5 TRL6 TRL7 TRL8 TRL9 1. Name of the technology Priority technology				


High technology roadmap "Development of hydrogen energy" until 2030

Responsible: Deputy Chairman of the Government of the Russian Federation **Responsible ministries:** The Ministry of Energy and the Ministry of Industry and Trade

Leading companies: Gazprom PJSC and Rosatom State Corporation

Technological map List of the most significant and promising technologies

Targets and Action plans

In two sub-directions of hydrogen energy development and decarbonization of industry and transport:

- 1. based on natural gas
- 2. based on nuclear industry technologies

General action plan

improvement of industrial safety during the exploitation of hydrogen equipment and transport regulation of requirements for hydrogen industrial products, its standardization and certification

- elaboration of the necessary regulatory framework to support and stimulate the development of hydrogen projects
- development of hydrogen infrastructure, training and international cooperation

Развитие водородной энергетный ча период до 2020 года, утвержаенную еценсиение междолостепникой рабочей трупци по развитию в Российской Федерации водородной энергетных, основным механизмом реданзации гоглашений. 3. Предоставить Заместителю Предослателя Правительства

 Предоставить Заместителю Председателя Правительства Российской Федерации Новаку А.В. право подписания, изменения и расторжения соглашений, подготовленных в соответствии с типовой

Hydrogen projects

Production

Storage and transportation

SMR+CCS facility Sakhalin Region

Operator: Rosatom

Production and supply of lowcarbon "blue" hydrogen carbon capture and storage (CCS) facility planned capacity >100 000 t/year of hydrogen

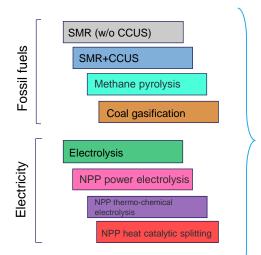
Process Equipment of Cryogenic Complexes Moscow region

Operator: H2 Invest

Large-tonnage liquefaction units Liquid hydrogen storage tanks and tank-containers

Application

Transport applications: (KAMAZ, Russian Railways, TMH)



<u>Snowflake International Arctic Station</u> Moscow Institute of Physics and Technology (MIPT)

100% ecological fullyautonomous hydrogen energy solutions for the future environmental lifesupport technologies in remote areas in the Arctic.

Carbon footprint regulatory standards without restrictions on source or technology

Many countries developed their own clean hydrogen standards without distinguishing between production technologies

UK, Low Carbon Hydrogen Standard Policy < 2.4 kg CO2-eq/kg

EU, EC Delegated regulation act (07 Feb.23) <3.38 kg CO2-eq/kg H2, 70% lower than predefined fossil fuel comparator

US, DOE Clean Hydrogen Production Standard <4.0 kgCO2e/kgH2

China, Standard and Assessment for Low-carbon Hydrogen, Clean Hydrogen and Renewable Hydrogen Energy <4.9 kgCO2e/kgH2

It is necessary to define common approaches to the classification of "low-carbon" hydrogen based on a single methodology for calculating the carbon footprint

Thank you!