

ENERGY

Workshop: The path to climate neutrality

Building blocks of a new methodology for determining an economic mix of measures

UNECE Group of Experts on Energy Efficiency - TF Industry

18 January 2023, 14h00–16h00 CET (online)

Agenda

ENERGY

Tr.*+

	•	
5 min	Opening	Igor Litvinyuk Secretary, Group of Experts on Energy Efficiency
		Stefan M. Buettner Chair, Group of Experts on Energy Efficiency
		Diana WangStefan M. BuettnerColibritGroup of Experts on Energy Efficiency
10 min		1. Establishing clarity on terminology and identifying 'status quo'
20 min		2. Measures to reduce emissions: the main categories and how they differ
10 min		3. The role of opportunity costs, time, and external effects
20 min		4. A proposed approach to economic assessment: how it works and how it is applied?
30 min		5. Practice, application, and Q&A
10 min		6. Advanced application: scoring, ranking, and dynamic adaptation to changing environment
10 mins	Q&A and expert discussion	All
5 min	Closing	Stefan M. Buettner Chair, Group of Experts on Energy Efficiency
UNEC	E 18 January 20	 Workshop: Building blocks of a new methodology for determining an economic mix of measures

Opening & Housekeeping

Igor Litvinyuk

Secretary, Group of Experts on Energy Efficiency

Stefan M. Buettner

Chair, Group of Experts on Energy Efficiency

Diana Wang

ENERG

TX*+

Stefan M. Buettner

Chair, Group of Experts on Energy Efficiency

FNFRG

 \mathcal{T}

Defining different neutralities and what is needed to achieve them

Illustration based on UNECE GEEE-7/2020/INF.2

Reduction & compensation of:

CO₂ emissions

- CO₂ + non-fluorinated greenhousegases (CH₄, N₂O) + fluorinated GHGs (HFC, PFC, SF₆, NF₃)
- CO_2 + non-fluorinated GHGs + fluorinated GHGs + all other substances that negatively impact the environment and health e.g., particulate matter, soot, NOx, SO₂

Source: Buettner & Wang 2022

FNFRG

 \Rightarrow Clarity in terminology & its meaning, as well as targets is essential

ECE

ENERGY

Awareness of own emission footprint, requirements and regulations

- Determining energy-related emissions simple if consumption data per energy source and its composition are available
- Challenging to determine process-related emissions
- Familiarity with emission pricing systems and what they include is important (what emissions / energy-& process)

Three categories of measures to address the emissions footprint

Focusing on emissions that are primarily under the direct control of decision-makers in the company

- Reduction of greenhouse gases by adapting *how* one does business (efficiency and processes)
- Substitution of *what* one does business with (energy sources and materials)
- Offsetting the greenhouse gases emitted.

FNFRG

Why is a novel approach is needed for decarbonization

- Only measures paid off in short term being implemented
- micro level: product cycles, risk could be overlooked
- meso- or macro level: economically less efficient to apply the "traditional" payback time methodology
- costs of non-action, availability barriers, price risks for energy, emission prices not taken into account

Stefan M. Buettner

Chair, Group of Experts on Energy Efficiency

FNFRG

TR*+

ENERGY

TX ***

Overview of the six types of measures and their impact

Source: Buettner & Wang 2022

ECE

TR#

ENERGY

ECE

Tr.

ENERGY

ENERGY

Reference Scenario: Do not act

 \mathcal{T}^{*}

- *Economic one-off effect*: There are no investments.
- Lasting effect: Emissions levy vary from countries, incur additional cost.
- Conclusion:
 - neither emissions nor ongoing energy costs are reduced
 - noticeable additional ongoing costs can be incurred for the emissions released (depending on location and clients).
 - Depending on the pricing model, these costs per unit of emissions can vary.

Source: Buettner & Wang 2022

18 January 2023

Workshop: Building blocks of a new methodology for determining an economic mix of measures

Source: Buettner & Wang 2022

Stefan M. Buettner

Chair, Group of Experts on Energy Efficiency

Diana Wang

ColibrIT

FNFRG

ENERGY

System view: external factors with strong influence

Types of measures to be assessed in the context of:

- one's own objectives and
- the overall system in which one operates in

taking into account:

- legal and regulatory requirements
- geographical circumstances
- the availability on the market
- societal expectations
- impact of one's own choice of (non-)action

ENERGY

Share of renewable generation compared to share of energy consumed by industry

2019	Electricity (Totals)			Energy (Totals)			
Shares	Suppl	Supply		Supply		Final Consumption	
Regions [49]	renewables	low carbon	Industry	renewables	low carbon	Industry	
World	26%	36%	42%	14%	19%	29%	
OECD	27%	45%	32%	12%	21%	22%	
Non-OECD Total	25%	30%	49%	16%	19%	35%	
Non-OECD Americas	68%	70%	38%	34%	36%	28%	
Non-OECD Europe and Eurasia	19%	37%	42%	5%	12%	27%	
Non-OECD Asia (incl. China)	25%	29%	55%	14%	16%	43%	
Middle East	3%	3%	23%	1%	1%	28%	
Africa	21%	22%	38%	48%	48%	14%	
EU-27 [50,51]	34%	•	36%	20%		26%	
China	27%	32%	60%	10%	12%	49%	
Germany	40%	52%	45%	16%	22%	25%	
Italy	40%	40%	41%	19%	19%	21%	
Japan	18%	24%	36%	8%	12%	29%	
South Africa	5%	10%	52%	6%	8%	38%	
USA	18%	37%	20%	8%	18%	17%	

orange:

demand exceeds supply

yellow: supply almost meets demand

green:

demand is met by supply

low carbon = renewables + nuclear

Source: Buettner & Wang 2022 based on IEA World Energy Balances Highlights and Eurostat

18 January 2023

- Demand cannot be met at the present and could lead to price increases for green electricity tariffs.
- Severe events lead to reduced electricity supply, drives up the unit price for energy.
- Difficult to switch all energy needs to renewable or low-carbon sources, reasons as follows:
 - a) The gap to meet the industrial sector's needs is larger
 - b) alternatives are less mobile or require new infrastructures

ENERGY

- The availability of emission reduction certificates and credible climate protection projects is limited
- Increased risk of falling prey to dishonest projects.
- A shortage of skilled workers in the construction sector.
- Longer waiting times and higher costs for priority treatment are expected

Bottom line: Prioritise on-site actions

- 1. Build resilience against availability/price shocks
- 2. Reduce the risk of having to wait in line
- 3. Minimise the procrastination costs

ENERGY

Consideration of price fluctuations

economic mix of measures

- Market based system (EU ETS) and its forecasts for 2030
- fixed-price system with staggered increases (German nETS) that is charged on energyrelated emissions not covered by EU ETS

ENERGY

Consideration of price fluctuations

- energy and emission price developments influence how cost savings change over time
- various factors influence emissions and energy prices, but they can also influence each other
 - higher emission prices => rising demand for electricity from renewables =>increasing prices for green electricity
 - unless: expansion of renewable energies parallels rise in demand
 counteracting a price increase by augmenting supply.

Diana Wang

Tr*+

FNFRG

ENERGY

Tr.*+

A new economic efficiency calculation

For each energy source	First Step	Second Step
Energy amount	Energy amount Reference	Energy amount _{New}
Energy price	Energy Price Reference	Energy Price New
Emission amount (energy- related and process-related)	Emission amount Reference	Emission amount _{New}
Emission price	Emission Price Reference	Emission Price _{New}

ENERGY

TR##

A new economic efficiency calculation

$$Savings (N, E) = \sum_{t=1}^{N} \sum_{e=1}^{E} \left(Energy \ price_{Reference}(t, e) * Energy \ amount_{Reference}(t, e) - Energy \ price_{New}(t, e) * Energy \ amount_{New}(t, e) \right) + \sum_{t=1}^{N} \sum_{e=1}^{E} \left(Emission \ price_{Reference}(t, e) * Emission \ amount_{Reference}(t, e) - Emission \ price_{New}(t, e) * Emission \ amount_{New}(t, e) \right)$$

t: year, e: energy source

Equation 1. Calculation of aggregated savings for a measure option

27

ENERGY

A new economic efficiency calculation

1. Map the current situation by determining

TX*+

- the energy consumption and energy costs separated by energy sources,
- the emissions of the consumed energy, converted in CO2-equivalents, and the corresponding emission costs,
- the process-related emissions, converted in CO2-equivalents, and the associated emission costs

2. Make assumptions about

- the future development of energy prices
- the future development of emission costs
- the impact of the measure option

3. Calculate the aggregate savings

 $avings (N, E) = \sum_{t=1}^{N} \sum_{e=1}^{E} \left(Energy \ price_{htfgreence}(t, e) * Energy \ amount_{steference}(t, e) \\ - Energy \ price_{htfgreence}(t, e) * Energy \ amount_{wew}(t, e) \right) \\ + \sum_{t=1}^{N} \sum_{e=1}^{E} \left(Emission \ price_{htfgreence}(t, e) * Emission \ amount_{beffreence}(t, e) \\ - Emission \ price_{htfgreence}(t, e) + Emission \ amount_{wew}(t, e) \right)$

4. Calculate the Investment

- cost of acquisition
 - ongoing costs

Investment (N) = $\sum_{t=1}^{N} costs_{acquisition}$ (t) + $\sum_{t=1}^{N} costs_{ongoing}$ (t)

5. Assess the net savings

net savings (t) = Savings (t, E) – Investment (t) > 0

5 Minute Break

ENERGY

Applying the new economic efficiency calculation: examples for the six measure types

Assumptions:

TR##

- One energy source: electricity with an emission factor of 0.4 gCO₂-eq/kWh
- Energy price:
 0.20 EUR/kWh with a linear increase of 2 % per year
- 3. Emission price: 30 EUR/tCO₂-eq with an increase of 5.00 EUR per tCO₂-eq per year

ENERGY

TX **

Reference Scenario: No action is taken

Exemplary with assumed amounts and prices for energy and emissions.

Year	Energy amount Reference	Energy price Reference	Energy costs Reference	Emission amount Reference	Emission price Reference	Emission costs Reference	Total costs Reference			
	MWh	ct/kWh	EUR	tCO ₂ -eq	EUR/tCO ₂ -eq	EUR	EUR			
t _o	1,000	20.00	200,000	600	30.00	18,000	218,000			
t 1	1.000	20.40	204,000	600	35.00	21,000	225,000			
t ₂	1.000	20.81	208,080	600	40.00	24,000	232,080			
t ₃	1.000	21.22	212,242	600	45.00	27,000	239,242			
t ₄	1.000	21.65	216,486	600	50.00	30,000	246,486			
t 5	1.000	22.08	220,816	600	55.00	33,000	253,816			
				()						
t ₁₀	1.000	24.38	243,799	600	80.00	48,000	291,799			
	()									
t ₃₀	1.000	36.23	362,272	600	180.00	108,000	470,272			

Source: Buettner & Wang 2022

ENERGY

Measure type 1: Energy efficiency

TX

Exemplary scenario in which an energy efficiency measure is implemented.

Year	Energy amount _{New}	Energy price Reference	Energy costs _{New}	Emission amount _{New}	Emission price Reference	Emission costs _{New}	Total costs _{New}	Savings (N, E, t)
	MWh	ct/kWh	EUR	tCO ₂ -eq	EUR/tCO ₂ -eq	EUR	EUR	EUR
t _o	1,000	20.00	200,000	600	30.00	18,000	218,000	0
t ₁	700	20.40	142,800	480	35.00	16,800	159,600	65,400
t ₂	700	20.81	145,656	480	40.00	19,200	164,856	67,224
t ₃	700	21.22	148,569	480	45.00	21,600	170,169	69,072
t 4	700	21.65	151,541	480	50.00	24,000	175,541	70,946
t 5	700	22.08	154,571	480	55.00	26,400	180,971	72,845
				()				
t ₁₀	700	24.38	170,659	480	80.00	38,400	209,059	82,740
				()				
t ₃₀	700	36.23	253,591	480	180.00	86,400	339,991	130,282

Source: Buettner & Wang 2022

ENERGY

TX **

Measure type 2: process decarbonisation

Exemplary scenario in which a process decarbonisation measure is implemented.

Year	Energy amount Reference	Energy price Reference	Energy costs Reference	Emission amount _{New}	Emission price Reference	Emission costs _{New}	Total Costs _{New}	Savings (N, E, t)
	MWh	ct/kWh	EUR	tCO ₂ -eq	EUR/tCO ₂ -eq	EUR	EUR	EUR
t _o	1,000	20.00	200,000	600	30.00	18,000	218,000	0
t 1	1,000	20.40	204,000	550	35.00	19,250	223,250	1,750
t ₂	1,000	20.81	208,080	550	40.00	22,000	230,080	2,000
t ₃	1,000	21.22	212,242	550	45.00	24,750	236,992	2,250
t ₄	1,000	21.65	216,486	550	50.00	27,500	243,986	2,500
t 5	1,000	22.08	220,816	550	55.00	30,250	251,066	2,750
				()				
t ₁₀	1,000	24.38	243,799	550	80.00	44,000	287,799	4,000
				()				
t ₃₀	1,000	36.23	362,272	550	180.00	99,000	461,272	9,000

Source: Buettner & Wang 2022

18 January 2023

ENERGY

TX

Measure type 3: self-generation of renewable energy

Exemplary scenario in which a measure of type 3 is implemented.

Year	Energy amount _{New}	Energy price Reference	Energy costs _{New}	Emission amount _{New}	Emission price Reference	Emission costs _{New}	Total Costs _{New}	Savings (N, E, t)
	MWh	ct/kWh	EUR	tCO ₂ -eq	EUR/tCO ₂ -eq	EUR	EUR	EUR
t _o	1,000	20.00	200,000	600	30.00	18,000	218,000	0
t 1	500	20.40	102,000	400	35.00	14,000	116,000	109,000
t ₂	500	20.81	104,040	400	40.00	16,000	120,040	112,040
t ₃	500	21.22	106,120	400	45.00	18,000	124,121	115,121
t 4	500	21.65	108,243	400	50.00	20,000	128,243	118,243
t 5	500	22.08	110,408	400	55.00	22,000	132,408	121,408
				()				
t ₁₀	500	24.38	121,899	400	80.00	32,000	153,899	137,899
				()				
t ₃₀	500	36.23	181,136	400	180.00	72,000	253,136	217,136

Source: Buettner & Wang 2022

18 January 2023

Workshop: Building blocks of a new methodology for determining an economic mix of measures

35

ENERGY

TX **

Measure type 4: purchase of renewable energy

Exemplary scenario in which a measure of type 4 is implemented.

Year	Energy amount Reference	Energy price Reference	Energy costs Reference	Emission amount _{New}	Emission price Reference	Emission costs _{New}	Total Costs _{New}	Savings (N, E, t)
	MWh	ct/kWh	EUR	tCO ₂ -eq	EUR/tCO ₂ -eq	EUR	EUR	EUR
t _o	1,000	20.00	200,000	600	30.00	18,000	218,000	0
t 1	1,000	20.40	204,000	200	35.00	7,000	211,000	14,000
t ₂	1,000	20.81	208,080	200	40.00	8,000	216,080	16,000
t ₃	1,000	21.22	212,242	200	45.00	9,000	221,242	18,000
t ₄	1,000	21.65	216,486	200	50.00	10,000	226,486	20,000
t ₅	1,000	22.08	220,816	200	55.00	11,000	231,816	22,000
				()				
t ₁₀	1,000	24.38	243,799	200	80.00	16,000	259,799	32,000
				()				
t ₃₀	1,000	36.23	362,272	200	180.00	36,000	398,272	72,000

Source: Buettner & Wang 2022

ENERGY

TX

Measure type 5: compensation through certificates or projects

Exemplary scenario in which a measure of type 5 is implemented.

Year	Energy amount Reference	Energy price Reference	Energy costs Reference	Emission amount Reference	Emission price _{New}	Emission costs _{New}	Total Costs _{New}	Savings (N, E, t)
	MWh	ct/kWh	EUR	tCO ₂ -eq	EUR/tCO ₂ -eq	EUR	EUR	EUR
t _o	1,000	20.00	200,000	600	30.00	18,000	218,000	0
t 1	1,000	20.40	204,000	600	21.00	12,600	216,600	8,400
t ₂	1,000	20.81	208,080	600	24.00	14,400	222,480	9,600
t ₃	1,000	21.22	212,242	600	27.00	16,200	228,442	10,800
t ₄	1,000	21.65	216,486	600	30.00	18,000	234,486	12,000
t ₅	1,000	22.08	220,816	600	33.00	19,800	240,616	13,200
				()				
t ₁₀	1,000	24.38	243,799	600	48.00	28,800	272,599	19,200
				()				
t ₃₀	1,000	36.23	362,272	600	108.00	64,800	427,072	43,200

Source: Buettner & Wang 2022

ENERGY

TX

Measure type 6: carbon capture, storage, binding and use

Exemplary scenario in which a measure of type 6 is implemented

Year	Energy amount Reference	Energy price Reference	Energy costs Reference	Emission amount _{New}	Emission price Reference	Emission costs _{New}	Total Costs _{New}	Savings (N, E, t)
	MWh	ct/kWh	EUR	tCO ₂ -eq	EUR/tCO ₂ -eq	EUR	EUR	EUR
t _o	1,000	20.00	200,000	600	30.00	18,000	218,000	0
t 1	1,000	20.40	204,000	400	35.00	14,000	218,000	7,000
t ₂	1,000	20.81	208,080	400	40.00	16,000	224,080	8,000
t ₃	1,000	21.22	212,242	400	45.00	18,000	230,242	9,000
t ₄	1,000	21.65	216,486	400	50.00	20,000	236,486	10,000
t 5	1,000	22.08	220,816	400	55.00	22,000	242,816	11,000
				()				
t ₁₀	1,000	24.38	243,799	400	80.00	32,000	275,799	16,000
				()				
t ₃₀	1,000	36.23	362,272	400	180.00	72,000	434,272	36,000

Source: Buettner & Wang 2022

ENERGY

TR##

Economic effects of the sequence of implementation of measure types

Scenario 1: first measure type 1, second measure type 4

Year	Energy amount _{New}	Energy price Reference	Energy costs _{New}	Emission amount _{New}	Emission price Reference	Emission costs _{New}	Total Costs _{New}	Savings (N, E, t)
	MWh	ct/kWh	EUR	tCO ₂ -eq	EUR/tCO ₂ -eq	EUR	EUR	EUR
t _o	1,000	20.00	200,000	600	30.00	18,000	218,000	0
t ₁	700	20.40	142,800	480	35.00	16,800	159,600	65,400
t ₂	700	20.81	145,656	200	40.00	8,000	153,656	78,424
t ₃	700	21.22	148,569	200	45.00	9,000	157,569	81,672
t ₄	700	21.65	151,541	200	50.00	10,000	161,541	84,946
t ₅	700	22.08	154,571	200	55.00	11,000	165,571	88,245
				()				
t ₁₀	700	24.38	170,659	200	80.00	16,000	186,659	105,140
				()				
t ₃₀	700	36.23	253,591	200	180.00	36,000	289,591	180,682

Source: Buettner & Wang 2022

ENERGY

TR##

Economic effects of the sequence of implementation of measure types

Scenario 2: first measure type 4, second measure type 1

Year	Energy amount _{New}	Energy price Reference	Energy costs _{New}	Emission amount _{New}	Emission price Reference	Emission costs _{New}	Total Costs _{New}	Savings (N, E, t)
	MWh	ct/kWh	EUR	tCO ₂ -eq	EUR/tCO ₂ -eq	EUR	EUR	EUR
t _o	1,000	20.00	200,000	600	30.00	18,000	218,000	0
t 1	1.000	20.40	204,000	320	35.00	11,200	215,200	9,800
t ₂	700	20.81	145,656	200	40.00	8,000	153,656	78,424
t ₃	700	21.22	148,569	200	45.00	9,000	157,569	81,672
t ₄	700	21.65	151,541	200	50.00	10,000	161,541	84,946
t 5	700	22.08	154,571	200	55.00	11,000	165,571	88,245
				()				
t ₁₀	700	24.38	170,659	200	80.00	16,000	186,659	105,140
				()				
t ₃₀	700	36.23	253,591	200	180.00	36,000	289,591	180,682

Source: Buettner & Wang 2022

18 January 2023

Workshop: Building blocks of a new methodology for determining an economic mix of measures

40

ENERGY

TX

Example for possible measures on-site

Scenario 3: first measure type 1, second measure type 2, third measure type 3

Year	Energy amount _{New}	Energy price Reference	Energy costs _{New}	Emission amount _{New}	Emission price Reference	Emission costs _{New}	Total Costs _{New}	Savings (N, E, t)	
	MWh	ct/kWh	EUR	tCO ₂ -eq	EUR/tCO ₂ -eq	EUR	EUR	EUR	
t _o	1,000	20.00	200,000	600	30.00	18,000	218,000	0	
t ₁	700	20.40	142,800	480	35.00	16,800	159,600	65,400	
t ₂	700	20.81	145,656	430	40.00	17,200	162,856	69,224	
t ₃	125	21.22	26,530	200	45.00	9,000	35,530	203,711	
t ₄	125	21.65	27,061	200	50.00	10,000	37,061	209,426	
t ₅	125	22.08	27,602	200	55.00	11,000	38,602	215,214	
()									
t ₁₀	125	24.38	30,475	200	80.00	16,000	46,475	245,324	
()									
t ₃₀	125	36.23	45,284	200	180.00	36,000	81,284	388,988	

Source: Buettner & Wang 2022

ENERGY

Tr.*+

Example for possible measures off-site

Scenario 4: first measure type 4, second measure type 5

Year	Energy amount Reference	Energy price Reference	Energy costs Reference	Emission amount _{New}	Emission price _{New}	Emission costs _{New}	Total Costs _{New}	Savings (N, E, t)		
	MWh	ct/kWh	EUR	tCO ₂ -eq	EUR/tCO ₂ -eq	EUR	EUR	EUR		
t _o	1,000	20.00	200,000	600	30.00	18,000	218,000	0		
t 1	1.000	20.40	204,000	320	35,00	11,200	215,200	9,800		
t ₂	1.000	20.81	208,080	320	34,00	10,880	218,960	13,120		
t ₃	1.000	21.22	212,242	320	38,25	12,240	224,482	14,760		
t ₄	1.000	21.65	216,486	320	42,50	13,600	230,086	16,400		
t ₅	1.000	22.08	220,816	320	46,75	14,960	235,776	18,040		
	()									
t ₁₀	1.000	24.38	243,799	320	68,00	21,760	265,559	26,240		
()										
t ₃₀	1.000	36.23	362,272	320	153,00	48,960	411,232	59,040		

Source: Buettner & Wang 2022

ENERGY

TX

Cumulated ongoing energy and emission costs

Comparison of overall costs and savings of the scenarios 1, 2, 3 and 4.

	Total (ongoing) cos	ts [EUR]	Savings [EUR]			
	t 1 – t 5	t 1 – t 10	t 1 - t 30	t 1 – t 5	t 1 – t 10	t 1 – t 30	
Reference scenario	1,196,624	2,578,743	10,210,888	0	0	0	
Scenario 1	797,937	1,688,420	6,447,922	398,687	890,323	3,762,966	
Scenario 2	853,537	1,744,020	6,503,522	343,087	834,723	3,707,366	
Scenario 3	433,649	650,164	1,935,432	762,975	1,928,579	8,275,456	
Scenario 4	1,124,504	2,391,823	9,154,768	72,120	186,920	1,056,120	

Source: Buettner & Wang 2022

ENERGY

TX **

Cumulated ongoing energy and emission costs

Effect of measure types on energy and emission amounts

	Energy am	ount [MWh]	Emission amount [tCO ₂ -eq]			
	(total) remaining	for calculation	(total) remaining	for calculation		
Reference Scenario	1.000		600			
Measure type 1	700		480			
Measure type 2	1.000		550			
Measure type 3	1.000	500	400			
Measure type 4	1.000		200			
Measure type 5	1.000		600			
Measure type 6	1.000		600	400		

Source: Buettner & Wang 2022

ENERGY

Expenditure

TR.+

• Investment (N) = $\sum_{t=1}^{N} costs_{acquisition}(t) + \sum_{t=1}^{N} costs_{ongoing}(t)$

Equation 2. Calculation of aggregated investments for a measure option

• Savings $(N, E) - Investment (N) \ge 0$

Equation 3. Determining economic viability for a measure option within period of use.

- Savings $(t_{adj,payback}, E)$ Investment $(t_{adj,payback}) = 0$ Equation 4. Determining the adjusted payback time.
- net savings (t) = Savings (t, E) Investment (t) > 0; t < NEquation 5. Determining the net savings in (t), provided t < N

5. Practice, application, and Q&A

Diana Wang

Stefan M. Buettner

Chair, Group of Experts on Energy Efficiency

FNFRG

TX*+

Stefan M. Buettner

Chair, Group of Experts on Energy Efficiency

FNFRG

ENERGY

Selection of measures: combining economic efficiency and system view

Result of comparing scenarios and their outcomes:

- \Rightarrow it makes sense to prioritise on-site actions (1, 2, 3, 6)
- \Rightarrow crucial to keep an eye economic factors, but also on all external factors and act quickly to
 - (a) build resilience against availability-, price- and other shocks,
 - (b) reduce the risk of having to wait in line
 - (c) minimise the "procrastination costs" of missed savings opportunities.

ENERGY

Selection of measures: combining economic efficiency and system view

A "good" choice of measures is also subject to temporal changes:

If climate neutrality is to be achieved in the short term:

• focus on measures (4) and (5).

To minimise the costs of climate neutrality and build resilience initiate

- accompanying local efficiency measures (1)
- on-site energy generation (3).

These have a longer implementation horizon but generate the savings for

- measures against process emission (2)
- to capture (6) (process) emissions
- to reduce the purchase of energy from external sources (4) and offsets (5)

ENERGY On-site decarbonisation measures On-site decarbonisation measures direct reduction of the footprint offsetting the footprint Increased energy efficiency & productivity Carbon Capture, Storage & Utilisation 6 1 - CCS - Electricity - (Waste-)Heat - CCU - Cold - DACCS (also off-site) - Compressed Air Increased process efficiency 2 - Streamline process Off-site decarbonisation measures - (Prepare) process decarbonisation indirect reduction of the footprint Decentralized generation & storage 3 Purchase of clean energy 4 - Generation of renewable energies - renewable electricity, gas, heat, hydrogen, .. - Flexibilisation of energy demand - low carbon energy (i.e., nuclear) - Energy Storage offsetting the footprint Increased material efficiency & circularity +**Compensation measures** - Reduction of off-cut & waste - Purchase of emission allowances - Increase product life time - Climate protection projects - Substitution to lower emission raw materials

Source: Buettner & Wang 2022 based on EEP & Fraunhofer IPA

18 January 2023

ENERGY

Creating a ranking system to determine one's ideal mix of measures

Not only the economic performance of measures of relevance, but also how:

- a) it fits into the general (decarbonisation) strategy of the company, notably the **reason why** decarbonisation is pursued,
- b) it performs in respect to the company's **decision-making determinants** and
- c) its impact depends/builds on and interacts/is compatible with other measures,
- d) it contributes to company risks, production **risks or resilience** (if at all), and how
- e) effective it is to reach the **ambition level** (certain GHG savings by certain time).

ENERGY

Possible indicators of a scoring model / table (by variable type)

metric (years)	metric (figures)	binary or ordinal	nominal	filter	
useful life	net savings (t)	impact on resilience	type of measure	on-/off-site measure	
intermediate target investment height		risk of failure/to operations	requirement for measure	investment <	
target year	GHG savings	addressing motivators	type of emission addressed	cost per <	
adjusted payback time rank		meeting decision criterion	scope addressed	skills exist	
weighting factor		fits to strategy	description of measure	net savings (t) > 0	
score				adj.PT < useful life	
Definitions		optimise for (i.e.)			
\sum (weighting factors) =!	1	z = number of measures	goal achieved cheapest [or quickest]		
Score = \sum (weighting fa	ctor x measure score)	best impact on (resilience, image, risk, strategy,)			

Source: Buettner & Wang 2022

ENERGY

Economic measures whose useful life is shorter than the time span until the milestone year not unlikely.

Therefore: assessment of all economic measures to compile the ideal mix of measures for achieving

- intermediate objectives (i.e., a certain reduction target by 2030)
- the overall objective (*i.e., achieving net-zero by 2040*)
- sustaining the desired outcome (*i.e., maintaining a net-zero emission footprint infinitively*)

taking into account useful lives and changing prices.

ENERGY

Exemplary shape of ranking table extract (random figures)

Target Year	20XX		Milestone Target Year 20YY								
Measure	Тур e	Score	Rank	meeting decision criterion [Filter]	impact on resilience	address- ing motivato r	figure of numeric decision criterion	net savings (t)	GHG saved p.a.		depends on
Description	1-6	metric	[1 z]	[0;1]	[-1 ; 0 ; 1]	[05]	metric	metric	metric		
Example using <u>random</u> figures				cost per tonne saved < 150€/t _{CO2}		image	cost per tonne saved		energy - related t co2eq		
Weighting Factor	r				20%	10%	15%	25%	30%		
Solar PV	3	25.3	1	1	1	5	119.00€	100,812 €	200		(roof)space
Green Tariff	4	22.6	2	1	-1	3	2.65€	90,000 €	400		availability
EE-Measure	1	11.4	3	1	1	4	125.00€	45,487 €	120		skill
CO ₂ -allowance	5	10.9	4	1	0	0	45.00€	43,300€	200		availability
ProcessDecarb.	2	-47.2	5	0	0	3	200.00€	- 188,750 €	0		skill
CCUS	6	-238.7	6	0	0	1	250.00€	- 955,000 €	0		regulation

Source: Buettner & Wang 2022

Types 2 and 6 will become essential to address process emissions in the long term.

Conclusion & Closing

Stefan M. Buettner

Chair, Group of Experts on Energy Efficiency

FNERG

Tr.*+

Conclusion & Closing

ENERGY

- One-off and permant costs play a different role depends on the nature of one's own economic activity.
- The economic efficiency calculations need to be carried out for all available alternative actions.
- To evaluate the possible alternative actions, mapping economic aspects in a spreadsheet makes sense
- Political milestones and target dimensions are of great importance
- Changing the mix of measures in order to maintain net-zero state.
- Formulas stay robust despite different prices, policies and availabilities across the world.
- This tool is considered to be scientifically and technically sound for decision making and planning.
- Applying the principles and determinants described in this report allow one to determine one's optimal pathway to reducing the greenhouse gas footprint.

Upcoming Events

Conclusion & Closing

