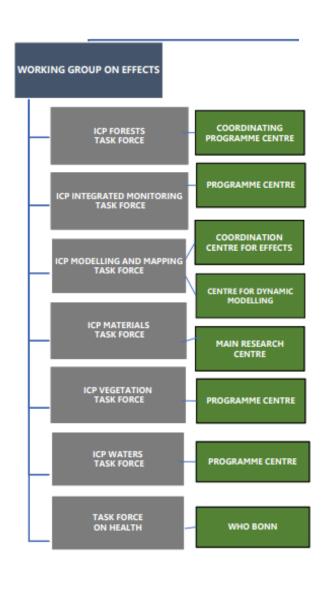


# 2021-2022 WGE activities

Isaura Rábago, Chair of the WGE


isaura.rabago@ciemat.es

**42<sup>nd</sup> session Executive Body** 

12 – 16 December 2022



# 2021-2022 Workplan: WGE activities



# Outputs of the 8<sup>th</sup> joint session of EMEP-SB and WGE

- Focus on GP review
- Monitoring, Modelling and Risk Assessment Activities
- Strategy for Science
- Election of officers





1.1.1.27. Consolidate existing evidence on health outcomes of exposure to air pollution

Report on methods for health risk/impact assessment of air pollution and cost-benefit analysis (update to HRAPIE project)

- Coordinated with the WHO Estimation of Morbidity from Air Pollution and its Economic
- Focus on: PM2.5, PM10, NO2, ozone and mortality, longterm effects, the WHO European Region
- New analyses and literature reviews planned
- HRAPIE-2 report expected by the end of 2023



### **TF - Health**

1.1.1.27. Consolidate existing evidence on health outcomes of exposure to air pollution

Update of tools for quantification of the health impacts of air pollution, including links to climate change mitigation

#### AirQ+

- Update of software parameters based on the WHO AQGs; improved Life Table module.
- New interface and name: Climate Mitigation, Air Quality and Health (CLIMAQ-H)
- Improved calculation methods of health and economic benefits of climate mitigation actions; updated default input data; greater flexibility to manipulate parameters; improved user-friendly interface
- Expected to be launched by the end of 2022



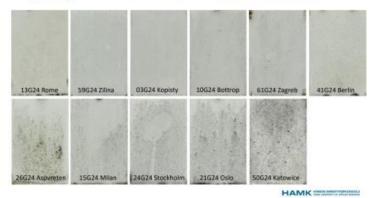


### Monitoring impacts on corrosion and soiling effects on materials

Carbon steel — unpolluted sites

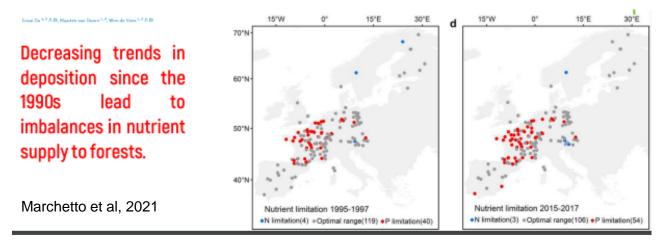
test site 33 test site 31 test site 45




- Results of corrosion and soiling data is available for carbon steel, weathering steel, zinc, aluminium (<u>corrosion</u>) and modern glass, limestone, marble and coil coated materials (<u>soiling</u>).
- A trend analysis including the new data and environmental data will be presented in 2023.



## Monitoring impacts on corrosion and soiling effects on materials


 A new exposure has also started with the aim of comparing long term data (2021-2029) for weathering steel and carbon steel.

#### Soiling of coil coated materials



After 4 years of exposure, soiling is evident

 Update of the Mapping Manual with <u>dose-response functions</u> for corrosion (carbon steel, weathering steel, zinc, aluminium) and soiling (modern glass, limestones, marble and coil coated materials) N deposition and its effects on forests ecosystem functions and services



- A small proportion of forests showed a shift toward N limitation. The trend was stronger in forests with a greater decrease in N deposition (Du et al, 2022)
- It is unclear how the nutritional status of these forests will change under changing climate and N deposition





Ndep and its effects on forests ecosystem functions and services

### Modelled EMEP vs. measured ICP Forests data

- In good agreement for sulphur and nitrate open field deposition, not for ammonium
- In good agreement with throughfall sulphur total deposition
- Large discrepancies in throughfall deposition of nitrate and ammonium

Collaboration between EMEP and ICP Forests regarding N deposition will continue









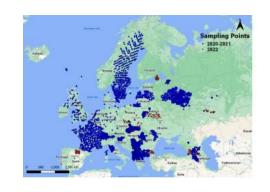
https://icpvegetation.ceh.ac.uk/

### Influence of CC on ozone impacts (Flux-based)

Changes in phenology -> Changes in timing of ozone accumulation

- Wheat varieties bred to maximise the shorter grain filling time may have higher stomatal uptake (more ozone sensitive?)
- For trees, increasing air temperature leads to earlier bud-break ('spring') and later leaf discolouration ('autumn') – longer growing season

#### **Ozone Risk Assessment**


Additional information and parameterization has been added to Chapter 3 of the Mapping Manual





## **Moss survey**

- Current survey 2020-2022: Call for data (HM, N POPs). Approximately 3500 sites sampled already
- Include pilot study on mosses as biomonitors of microplastics



#### **Review of Critical Levels for NOx**

- First workshop was held online, 24th May (37 participants from 12 countries).
- Online meeting in 2023 to update findings and plan the writing of the update
- Reporting back to the ICP Vegetation TFM in 2023





## Trends and spatial patterns in reactive N (1990-2016)

- Surface water NO3 levels and trends are mainly controlled by N deposition
- N deposition declines steeper than surface water NO3.
   catchments retain > 90% of N deposition



- Long term accumulation of N deposition may lead to N enrichment of soils and N saturation
- No evidence of ongoing saturation. Climate Change and ecosystem disturbance can cause higher N leaching in the future

### Biological recovery of surface waters



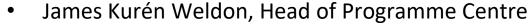
- Trends in aquatic macroinvertebrates and links with changes in water chemical recovery
- Tentative conclusions: Biological recovery is correlated with chemical recovery
- Recovery is slower in lakes than in rivers. Report in 2022





# **ICP - Integrated Monitoring**

### Completed relocation of ICP Programme Center from SYKE to SLU


- New ICP-IM website
- New IM Database: change of format to SQLite,
- Automated validation reports
- Updated manual



https://www.slu.se/en/icp-im

2021 data submission by 1<sup>st</sup> December 2022







- Martyn Futter, senior scientist and modeller
- Karin Eklöf, heavy metal specialist in IM
- Pernilla Rönnback and Hampus Markensten, IM data base











# **ICP - Integrated Monitoring**

https://www.slu.se/en/icp-im

### Extended IM monitoring in progress:

To include more ecosystems than forests

To facilitate multiple purposes of ecosystem reporting (NECD and habitat directive)

- Level 3: Full ICP IM site (monthly measurements, catchment as stated in the ICP IM Manual)
- Level 2: Plot scale with element budgets on other ecosystem types (monthly measurements)
- Level 1: Plot scale without element budgets. Focus on soil and vegetation

## Continued work on Hg and other HM

On-going collaboration with Environment and Climate Change Canada and the University of Toronto to install passive samples for gaseous Hg





# **ICP - Modelling and Mapping**

https://www.umweltbundesamt.de/en/Coordination\_Centre\_for\_Effects https://www.ivl.se/projektwebbar/centre-for-dynamic-modelling.html

### Review and revision of Empirical Critical Loads (N)

- Final report is available
- Process coordinated by CCE 2020-2022. 45 authors from ICPs (IM, M&M, W, F, Veg)
- Critical Loads ranges recommended in total 51 ecosystems. 9 new receptors. For 36 ecosystems the 2010 ranges have been adapted (of which most became lower based upon new evidence)



#### NH<sub>3</sub> Critical Levels

- Workshop hosted by CCE (March 2022): New scientific findings on the effects of ammonia on vegetation and Information exchange on ammonia monitoring (networks)
- Ammonia critical levels from 2006 are supported by the 2022 review

#### ICP – M&M Newsletter:

https://www.umweltbundesamt.de/en/news-0?parent=67248



# **ICP - Modelling and Mapping**

https://www.umweltbundesamt.de/en/Coordination\_Centre\_for\_Effects https://www.ivl.se/projektwebbar/centre-for-dynamic-modelling.html

### Ongoing activities on Critical Loads

- Update the database for landuse/ landcover for UNECE region
- Continuation of cooperation in the ad-hoc group on marine protection (AMP)
- Extension of the Critical Load background database to EECCA countries

### **Dynamic Modelling Activities**

- Modelling interactions between air pollution and climate change ->N and C: Expert workshop in 2023
- Modelling biodiversity changes to set CL for N: Draft Report in 2023
  - ✓ In collaboration with ICPs
  - ✓ Indicators & Response functions
  - ✓ Models to be used (data inputs, complexity, and applicability)





### **Additional WGE Activities**

### Common WGE portal

- 1st version developed by CDM (ICP M&M)
- Webpage centered around three themes: Monitoring, Modelling, Impact Indicators
- Gives information on whole WGE clustered around those themes
- Does not duplicate data, links to ICPs
- Further development in 2023

### Cooperation with eLTER Research Infrastructure

- Formal letter of cooperation between WGE and eLTER
- Next workplan will include items on cooperation with eLTER RI. ICP IM requested to identify potential lines of cooperation

#### Election of officers

New election of Chair in 2023

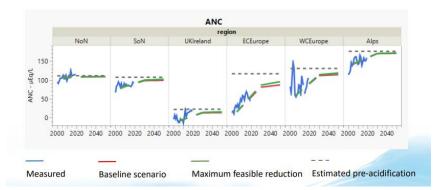




# Contributions to the GP review Report

### **Key messages on Effects (Annex I)**

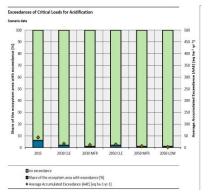
- Materials: <u>corrosion</u> decreased <u>significantly</u> since the early 1990s. For <u>soiling</u>, there is <u>no</u> decreasing trend after 1997 and larger areas in Europe are above acceptable levels.
- Risk of <u>acidification of freshwater ecosystems</u>: Despite large and effective efforts across
   Europe and North America, in some areas, air pollution <u>still constitutes a threat</u>
- <u>Eutrophication</u> is still <u>a threat for terrestrial ecosystems</u>
- The results confirm that <u>emission abatement actions are having their intended effects</u> on CL exceedances and ecosystem impacts.
- The temporal <u>developments of the exceedances</u> of the CLs indicated the <u>more effective</u> <u>reductions of S deposition</u> compared to N at the sites.
- <u>Eutrophication</u> is still <u>a threat for terrestrial ecosystems</u>





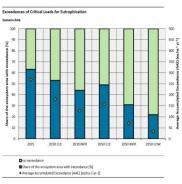

### **Future water chemistry**

Projected deposition levels for 2030 and 2050 will


- Give further reduction in surface water acidification
- Sulphate and nitrate concentrations will decline, and ANC will increase, but neither will reach pre-acidification levels
- Chemical recovery is largest where deposition has historically been highest, but this is still where levels are furthest from pre-acidification
- Climate change and interannual variability in weather will have greater effects on ANC as acid deposition declines, with unknown consequences for biological recovery





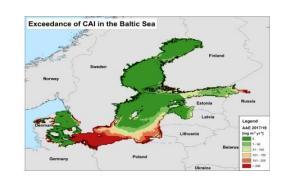



### **Exceedance of CL in Ecosystems**



Acidification

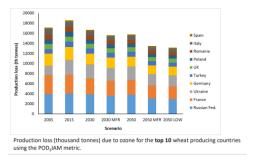
**For acidification,** the emission reduction of the different scenarios will help to <u>diminish risks for ecosystems substantially</u>

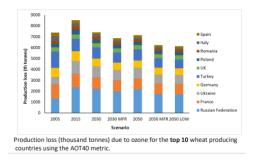



Eutrophication

 For eutrophication the projected emission reduction diminishes risks for ecosystems, but European ecosystems would still be exposed to nitrogen deposition beyond Critical Loads.

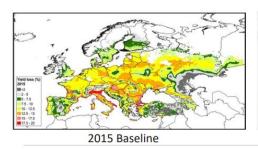
### **Exceedance of the Critical Atmospheric Input (CAI) of N to the Baltic Sea**

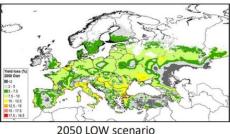

- A cooperation of the Ad-hoc Marine Group (AMP)
   with the RedCore-DG of HELCOM
- Even with MFR some exceedance remains in 2030;
- The EMEP SB/WGE Bureaux agreed to continue the work of AMP, work will be steered by the CCE






### Vegetation (Ozone)


 POD3IAM and AOT40 for wheat. Estimated yield losses decrease with stringent emissions scenario scenario – but significant production loss still






Greater losses in wheat when using the ozone flux metric (POD3IAM) compared to the AOT40 metric

POD1IAM for deciduous forests: Biomass losses are predicted to decrease with time
 (2005 estimated losses of 20-25% -> in 2050 LOW scenario, many areas reduce to 15-20%)

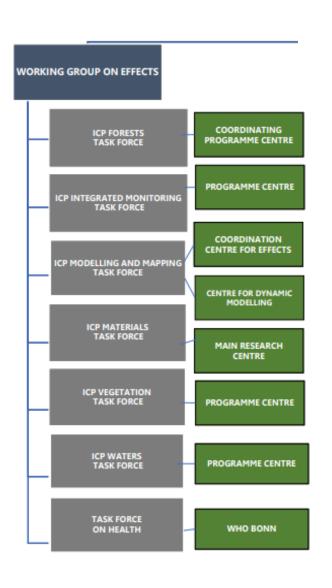








#### **Materials**


The analysis includes a comparison of measured data, scenario data and targets for corrosion and soiling at individual test sites.

- ✓ Results show that for some materials (i.a. carbon steel which is sensitive to SO2) 2050 targets <u>are</u> <u>expected to be reached</u> .....
- ..... while for other materials (i.a. modern glass which is sensitive to PM) 2050 targets are not expected to be reached in all areas.
- ✓ For some materials (i.a. limestone which is sensitive to several pollutants) it is necessary to improve the methodology (dose-response functions) in order to better predict corrosion data.





# 2021-2022 Workplan: WGE activities



- All activities are on-schedule
- Main focus on GP review.....
   Annex I,
   Annex II,
   complementary reports
- ... While keeping scientific activities on Monitoring, Modelling and Risk Assessment







# Thank you for your attention

#### More information @

8th joint session of EMEP & /WGE website

https://unece.org/info/Environmental-Policy/Air-Pollution/events/360936

ICPs and TF Annual Reports (UNECE website)

ICPs and TF Technical Reports (at TF and Programme Centers websites)

