

Air quality and health in Central Asia: *Air quality standards, air quality assessment and data gaps*

United Nations Environment Programme (UNEP)

Katherine Hall, Regional Air Quality Consultant in Central Asia, UNEP Central Asia Office

Air Quality and Health in Central Asia

	Deaths attributable to air pollution (2019)*	
Country	Number	Percentage of total deaths
Kazakhstan	12,039	9
Kyrgyzstan	4,159	12
Tajikistan	7,455	15
Turkmenistan	3,608	11
Uzbekistan	30,096	15

*Institute for Health Metrics and Evaluation (IHME), 2022. Univ 2022. Global Burden of Disease 2019: GHDx

Air Quality Standards in Central Asia

- Comprehensive index of atmospheric air pollution (IZA)
- Not in line with the latest science or international accepted standards

Air Quality Index (AQI)

US AQI

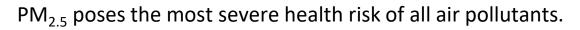
Daily AQI Color	Levels of Concern	Values of Index	Description of Air Quality
Green	Good	0 to 50	Air quality is satisfactory, and air pollution poses little or no risk.
Yellow	Moderate	51 to 100	Air quality is acceptable. However, there may be a risk for some people, particularly those who are unusually sensitive to air pollution.
Orange	Unhealthy for Sensitive Groups	101 to 150	Members of sensitive groups may experience health effects. The general public is less likely to be affected.
Red	Unhealthy	151 to 200	Some members of the general public may experience health effects; members of sensitive groups may experience more serious health effects.
Purple	Very Unhealthy	201 to 300	Health alert: The risk of health effects is increased for everyone.
Maroon	Hazardous	301 and higher	Health warning of emergency conditions: everyone is more likely to be affected.

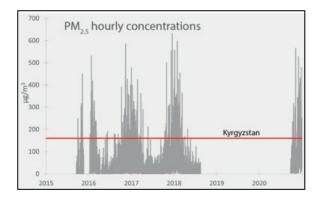
environment programme

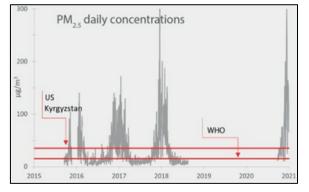
- AQI provides actionable information on air quality
- Based around concentrations of ozone, PM2.5, PM10, CO, SO2, and NO2
- Transitions in Central Asia
 (Kazakhstan, Kyrgyzstan?,
 Uzbekistan?)
- Real time monitor priority pollutan

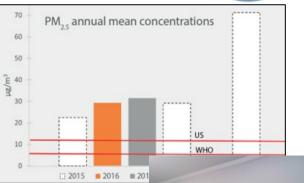
Low cost sensors...?

- Actionable information
- Indicative information on air quality
- Dense networks provide a map of air quality
- Affordable

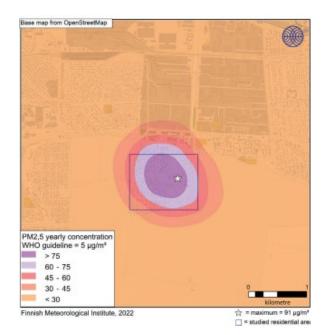

Air Quality in Bishkek: Assessment of emission sources and Roadmap for improving air quality management

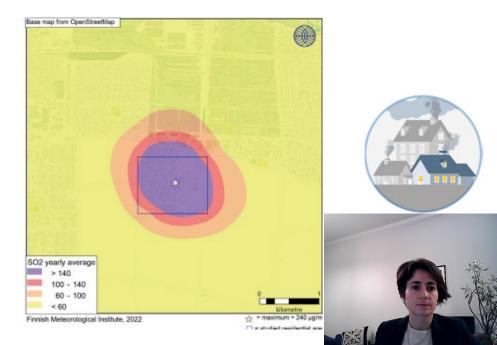

AIR QUALITY IN BISHKEK SESSMENT OF EMISSION SOURCES AND ROAD MAP FOR SUPPORTING AIR QUALITY MANAGEMENT

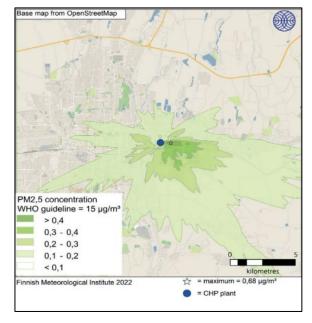

October 2022


Reducing concentrations of fine particulate matter (PM_{2.5}) is the highest priority.

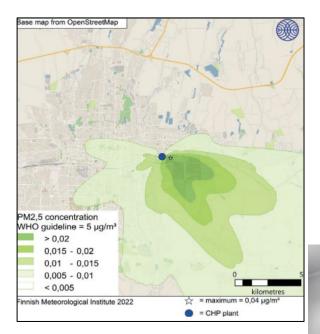
Air quality in Bishkek







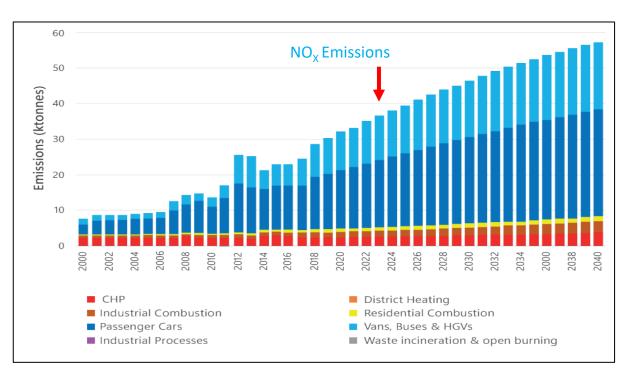
The most dangerous levels of fine particulate matter (PM2.5) pollution are caused by residential heating with (sulphur-rich) coal during the wintertime exacerbated by poor mixing conditions of the air.



Emissions from the CHP have a limited impact on ground-level air pollution in Bishkek

Average annual $PM_{2.5}$ concentration

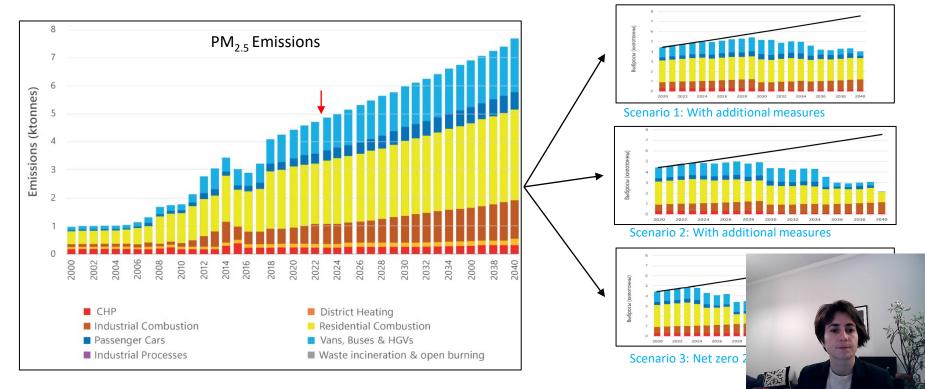
Average daily PM_{2.5} concentration



Transport is another key source of pollution in Bishkek

Burning waste impacts air quality

- Emissions from the Bishkek landfill
- Emissions from uncontrolled waste burning



What about air pollution emissions in the future?

Emissions of all key pollutants are expected to grow significantly towards 2040 under a 'business as usual' scenario

NG

Thank you!

Katherine Hall, Regional Air Quality Consultant in Central Asia, UN Central Asia Office <u>katherine.hall@un.org</u>

United Nations Environment Programme UN building, 303 Baizakov street 050040, Almaty, Kazakhstan

