

R

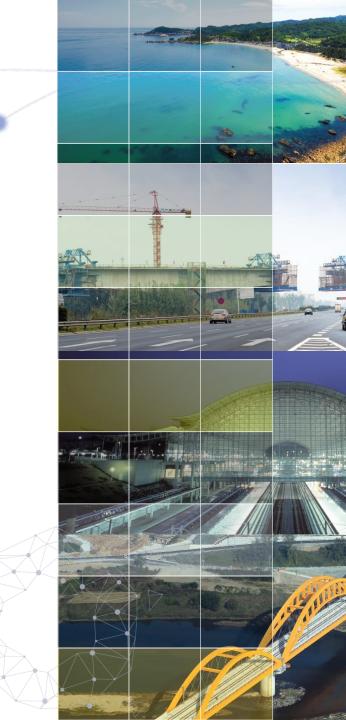
76th UNECE workshop: The impact of climate change on the railways: how to protect, adapt and mitigate

Climate Adaptation Actions

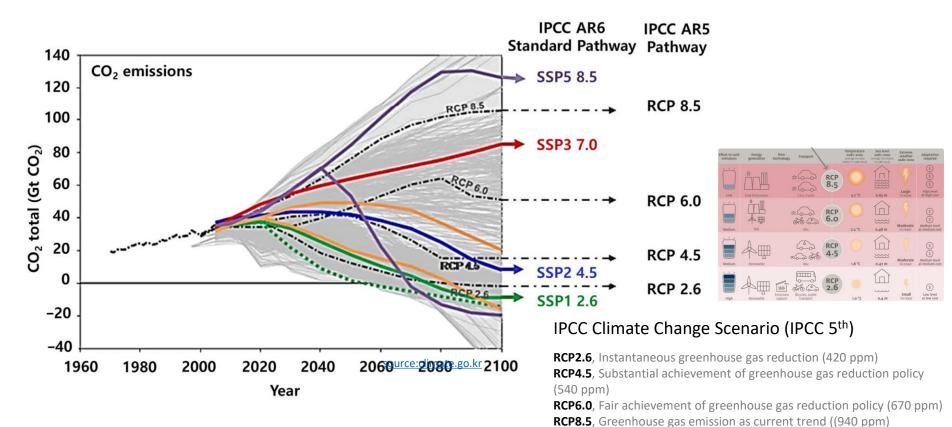
of Korea

2022.11.16

Cheul Kyu LEE Principle Researcher Korea Railroad Research Institute

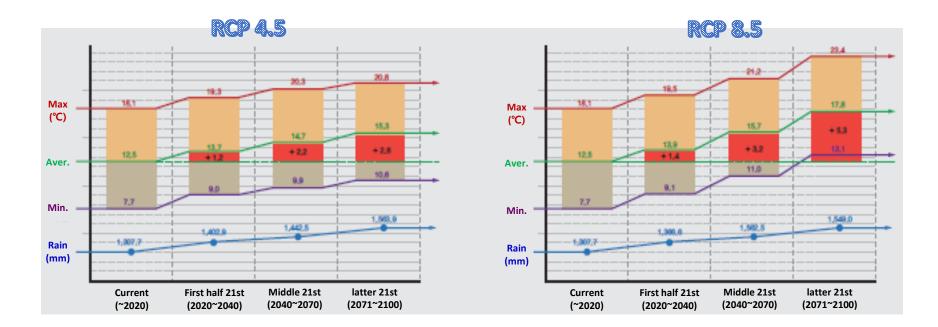


Ш

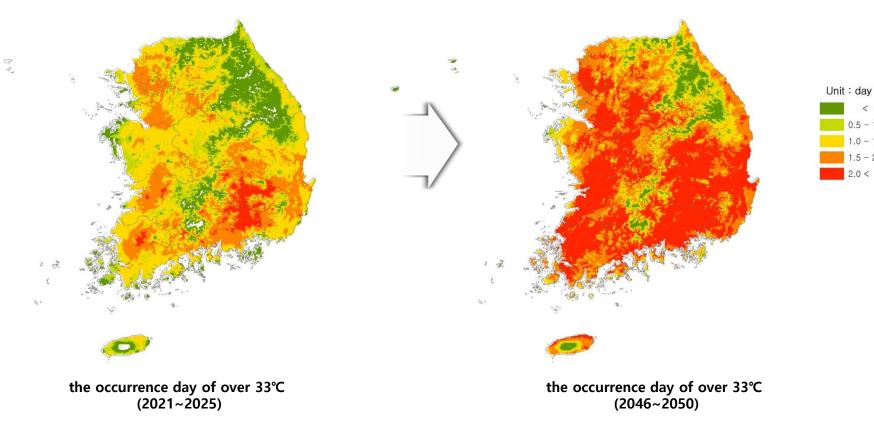

V CLIMATE ADAPTATION PROJECTS

GLOBAL

Fig. is well-known IPCC's SSP and RCP scenario. From Fig., different future awaits for us depends on whether there are efforts to turn down the line showing carbon emission is still increasing as things stand at present.
The number at each pathway means the amount of solar energy additionally absorbed in 2100
RCP 2.6 and RCP 8.5 will absorb additional energy by 2.6 W/m2 and 8.5 W/m2, respectively.



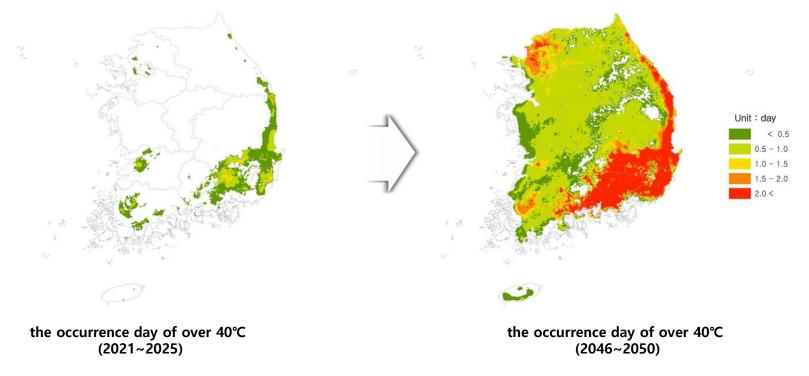
SOUTH KOREA


- © Climate change expectation results with RCP 4.5 and TCP 8.5
- o South Korea same trend which has been on the rise.
- Average annual temperature: has steadily increased
 - Average annual rainfall: has dramatically increased by the mid-21st century and then remained

Average annual windspeed: foresees similar with current weather

TEMPERATURE SIMULATION (NUMBER OF DAYS OVER 33°C)

- Right fig. shows above 33°C will be sustained for more than 2 days at most region in Korea
- At present, some places at south ease region have had this temperature



< 0.5 0.5 - 1.01.0 - 1.5 1.5 - 2.02.0 <

TEMPERATURE SIMULATION (NUMBER OF DAYS OVER 40°C)

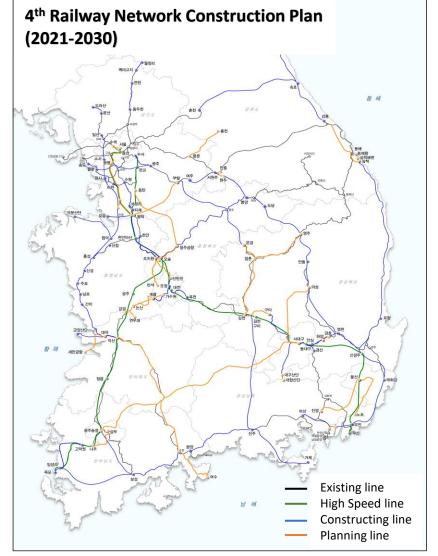
• From the simulation (occurrence day of over 40°C) like fig. using the RCP 8.5 scenario

- Themperature of some places at the south east region will be above 40°C for more than 2 day
- Currently, it is rare to find this phenomenon

T HEAVY RAIN CONCENTRATED AT THE CENTRAL PART IN THIS SUMMER

- Some underground metro station were waterloged.
 - Average annual precipitation of Korea: 1,200 mm
 - This summer (2022) precipitation: 380 mm/day, 140 mm/hr in Seoul
 - Highest precipitation recorded in Summer from Typhoon: 870mm/day in 2002

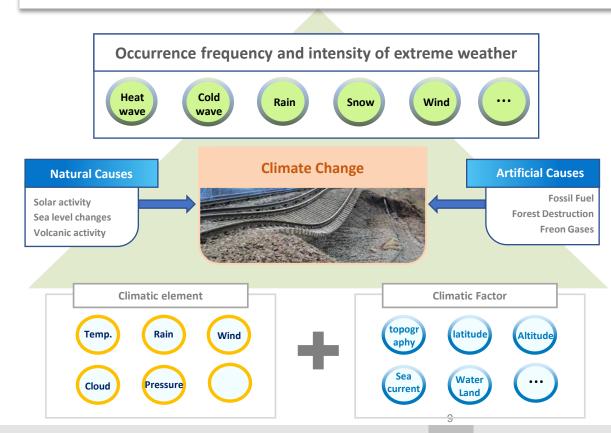
KOREA RAILWAY NETWORK (HIGH SPEED AND REGIONAL)


Total length of the railway : 4,274 km (as of 2019)

- 26 % increased in last 15 years
- 1.5 billion passengers used (2019)
- Passenger share : 15 %

Electrification: 72.9 % (3,116 km)

			(Km,%)
-	'10	'15	'19
Total Length	3,557.3	3,951.8	4,274.2
Electrification (%)	2,147.0(60.4)	2,805.4(71.0)	3,116.2(72.9)


Coastal Railway lines are also vulneralble from abnormal weather

CLIMATE CHANGE AND 2 IMPACTS TO RAILWAY

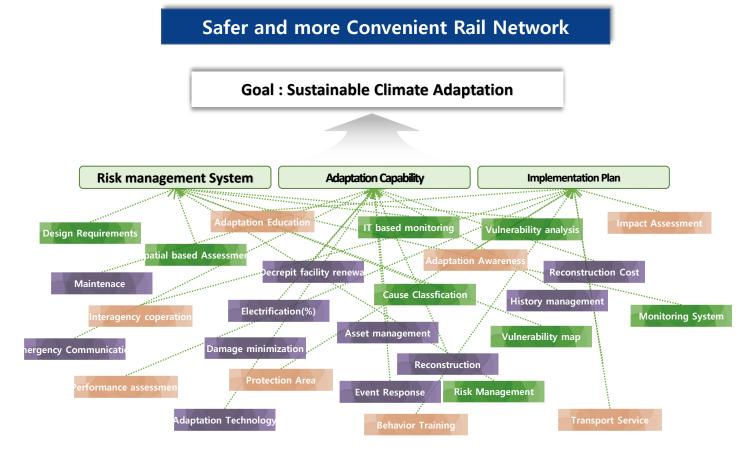
- Extreme weather happens with 2 causes: natural and artificial climate change results 2 impacts to railway: direct and indirect
 - Needs prevention efforts by each climate elements: Temp. Rain...

Disaster Probability Increase from extreme weather

Direct impacts

- 1. Loss of life
- 2. Loss of asset
- 3. Service discontinuity
- 4. Recovery Cost
- 5. Compensation

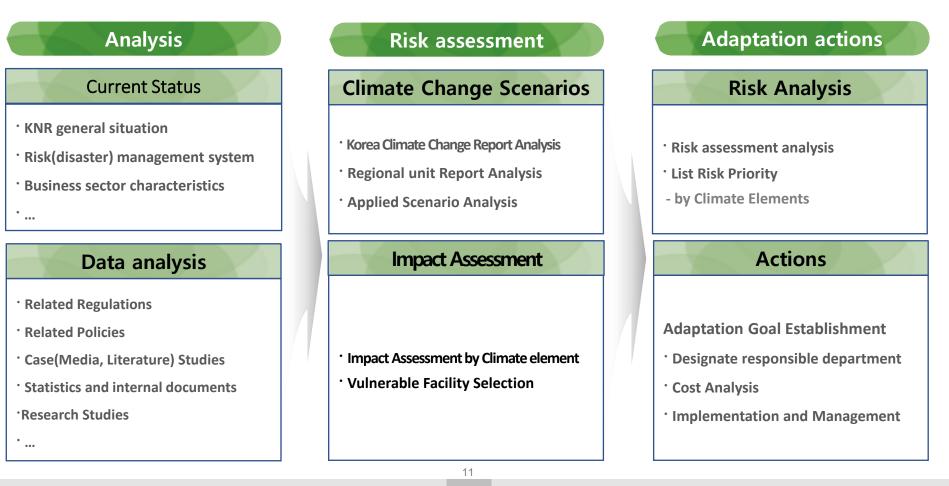
Indirect impacts


Negative effect to

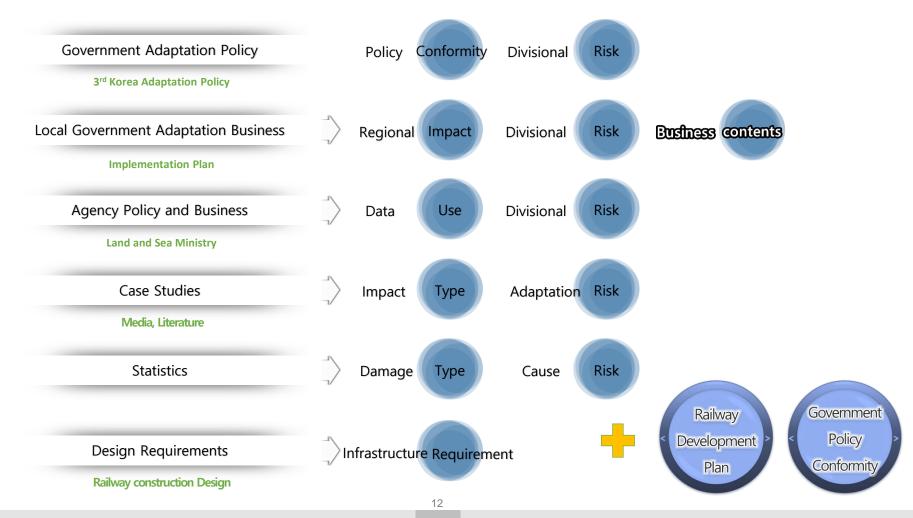
- 1. Transport discontinuity
- 2. Life quality
- 3. Competitiveness

FOR CONSTANT RAIL SERVICE UNDER ANY ABNORMAL CLIMATE

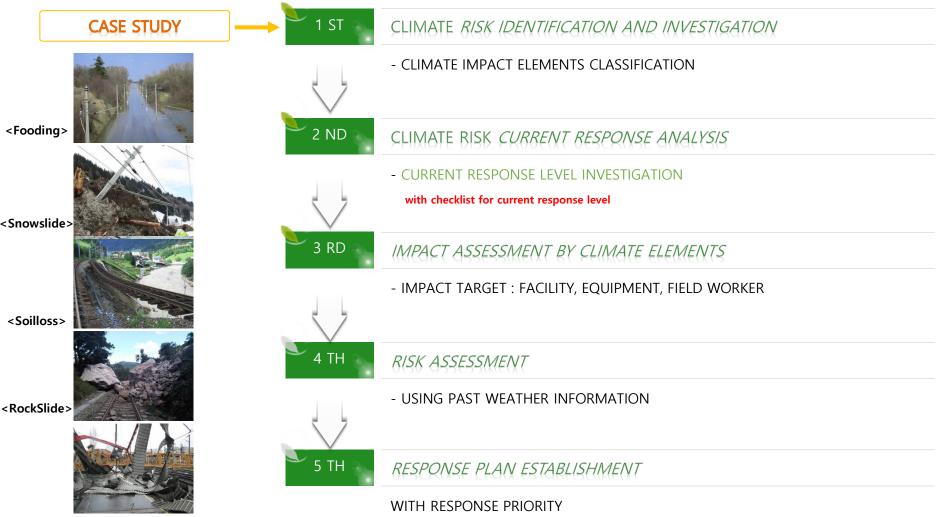
- © Korea Railway and Infrastructure Manager has built up Adaptation Strategy:
 - Climate Risk Management, Adaptation Capability and Implement Plan
 - Each strategies have detailed adaptation actions



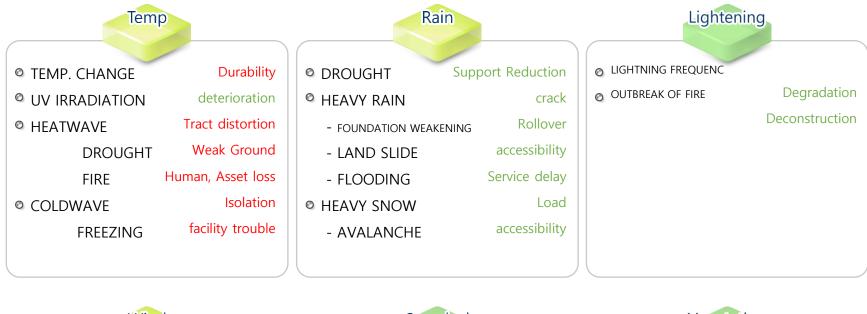
ADAPTATION ACTIONS (3 STEPS)


© Korea railway actions with 3 steps: Current Status Analysis-Risk Assessment-Adaptation actions

- With Vulnerability assessment by climate elements, Adaptation actions are implemented
- Vulnerability assessment with impact assessment by climate elements of temp., rain etc.


RAILWAY IS NATIONAL WIDE INFRASTRUCTURE

- © RISK ASSESSMENT TAKES INTO ACCOUNT OF CENTRAL, LOCAL GOVERNMENT AND MINISTRY
- TO COVER ALL RELATED RISKS EXPECTED FROM BY REGION WITH CLIMATE ADAPTATION



<Strong Wind>

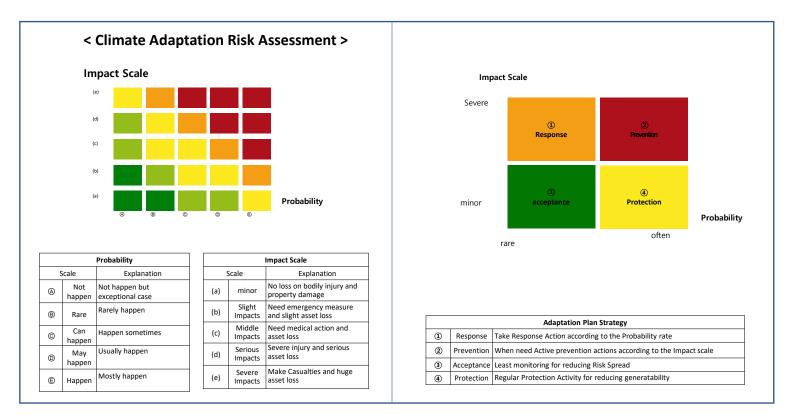
T RISK IDENTIFICATION BY CLIMATE ELEMENTS

DIFFERENT POTENTIAL RISKS BY EACH CLIMATE ELEMENTS

IMPACT ASSESSMENT

o done by each climate elements for each categories of railway infrastructure

- for example, in case heavy snow at track system, turnout system will be the most affected
- done by survey with experts of each parts of infrastructure


Level				_						
1st	2nd	3rd	Risk Types	Total	Average		•	Rail Track - Snow	Ballast track	
		Soil	ahumidity	106	1.54	2.18	1.58		ack	
			[®] Foundation Weakening	177	2.57			Rail		
		Structure	©Landslide	172	2.49			-	Ballast track	
			@Flooding	147	2.13			Turnout	Sleeper	
			ahumidity	77	1.12	1.54			Sicopo.	
Str		Intersection	[®] Foundation Weakening	115	1.67				\sim	
		Structure	©Landslide	117	1.70			Concrete track	Ballast track	
	Structure		@Flooding	115	1.67			Affiliate facility	Track bed	
Civil			ahumidity	73	1.06	- 1.61				
Engineering		Drainage		108	1.57					
Lingineering		Structure	©Landslide	126	1.83					
			@Flooding	136	1.97			Concrete track	Ballast track	
			ahumidity	83	1.20			Track System	Affiliate facility	
_				119	1.72	1.69		Concrete treak		
		Affiliate	©Landslide	132	1.91			Concrete track	Concrete track	
		Facility						Sleeper	Rail	
			@Flooding	132	1.91					

RESPONSE PRIORITY

© When making Response Priority,

- 2 factors considered: Probability and Impact scale
- These factors are acquired and quantified throughout survey from workers
- And, by multiplying two factors, response priority is determined

INFRASTRUCTURE MANAGER

- As adaptation action,
 - Need to match Classification Hierarchy of infrastructure components to manage
 - Develop history management system using GIS technology for maintenance
 - And operate smart safety system to monitor vulnerable fields

INFRASTRUCTURE MANAGER

Also take into consideration of government railway network construction plan with

- Buildup the safety standard to prevent from abnormal lighting (occurrence frequency and intensity) as Electrification Increased
- Analysis causes of damages at vulnerable area
- Renewal of old facilities

INFRASTRUCTURE MANAGER

Igher Design Requirements of infrastructure

- For the safety measurements against any abnormal climate
- Take the most severe climate elements in the last 40 years into Design consideration
- with extending application of monitoring system for soundness maintenance

CURRENT RESPONSE ACTION

• With the results of risk assessment, response actions of Korea railway are like follows

- Different response action are applied to each infrastructure facility by climate elements
- For example, for the heat wave case,
- 1) temperature sensing system buildup is key response action for track
- 2) however, for signal system, maintenance improvement is more appropriate

Climate Element	Facility	Major Risk	Response		
Heat Wave	Civil Engineering	 Need to renew Response Plan due to over Design requirements 	Prevention And Response	 Revision Design Requirements Temperature Monitoring system buildup High Durable parts application 	
	Track	 Need to renew Response Plan due to over Design requirements 	Prevention	 Monitoring system buildup Maintenance system improvement Control the operation as temperature variation 	
	Architect	 Need to renew Response Plan due to over Design requirements 	Prevention	Cooling and heating system improvementIsolation buildup	
	Electricity	• Need to renew Response Plan due to over Design requirements		 Revision Design Requirements Insulation at connection Cooling and heating system improvement 	
	Signal	Need a plan for minimizing hazard	Prevention And Response	 Maintenance system improvement Anti-Disaster Drill buildup 	
	Communicati on	• Need a plan for minimizing hazard	Prevention	 Monitoring system buildup High Durable parts application Decrepit renewal 	

05 Climate Adaptation Projects

Goal	Detailed Goal	Detailed Projects	
		1-1-1. construction of event & damage cause classification	In Process
	1-1. Efficient Asset Management	1-1-2. Adaptation response database	New
1.	1-2. Integrated IT system	1-2-1. History management system	In Process
Climate Risk	1-3. Monitoring System	1-3-1. IT connected safety management	In Process
Management		1-3-2. Sensoring-based monitoring system	In Process
System		1-3-3. Spatial information based impact assessment	New
		1-4-1. Adaptation project	New
	1-4. Assessment System	1-4-2. Implementation monitoring system	New
2.		2-1-1. Review of design requirements of each facility	In Process
	2-1. Buildup Design Requirement	2-1-2. Review of construction requirements	In Process
	2-2. Buildup Response Capability	2-2-1. Emergency management monitoring system	In Process
Buildup		2-2-2. Event Response Scenario and manual	In Process
Climate		2-2-3. Event Response Drill	In Process
Adaptation Capability		2-3-1. Decrepit facility Renewal	In Process
	2-3. Prevention System	2-3-2. Vulnerable Area designation and management	In Process
	2-4. Experts Training	2-4-1. Adaptation technology development	In Process
3.		3-1-1. Adaptation Experts and management department	New
Implementatio	3-1. Reeducation	3-1-2. Adaptation Department	New
	3-2. Awareness	3-2-1. Participation of regional the people and the government consultative group	In Process
n	3-3. Impact Assessment	3-3-1. Adaptation impact assessment	New
Platform	3-4. Connected Response	3-4-1. Emergency communication system	In Process

Appreciate for your attention

cheul@krri.re.kr

(5)

SESSERE S

15 11