Gas + RES Integration: Enhancing Energy Security Resilience and Accelerating Decarbonization

Abel Enríquez

Gas Expert

Index

UNECE

- 1. Trends for Variable Renewable Energy (VRE) and Gas
- 2. Integration of VRE into the Energy System
- 3. Options to Integrate VRE

Gas as Enabler of VRE

4. What's next:

Hybrid System / Sector Integration

Renewable and Low Carbon Gases

5. Recommendations

Trends for Variable Renewable Energy (VRE)

Global weighted average LCOE from utility-scale renewable power generation technologies (2010 and 2023);

Source: UNEP

Source: IRENA World Energy Transitions Outlook 2022

Trends for Variable Renewable Energy (VRE)

Trends for Variable Renewable Energy (VRE)

2030

HBiomass CCS

Wind Offshore

Gas

2020

2040

2050

30 0 00 25 000 2030 20 0 00 RE: 76% VRE: 60% 15 000 2018 RE: 33% 10 0 00 **VRE: 15%** 5000 0 2030 2050 2018 Where we need to be (1.5-S)

Electricity capacity (GW)

35 000

Global Electricity - Total Installed Capacity

2050

RE: 92% VRE: 73%

Source: IRENA – World Energy Transitions Outlook 2022

Source: UNECE – Pathways to Sustainable Energy, 2020

2050 2010

2020

Hydro

CSP

Oil

2030

2040

2050 2010

Wind Onshore

HOIL CCS

Biomass

2010

Coal

HGas CCS

Geothermal

2020

2030

2040

PV

Coal CCS

Nuclear

Integration of VRE into the Energy System

Source: Sample - Actual Case – Small Solar Operator in Spain

Integration of VRE into the Energy System

Source: IEA 2019

7

Options to Integrate VRE

Options to Integrate VRE

UNECE

Property	Open cycle gas turbines (OCGT)	Combined cycle gas turbines (CCGT)	Hard coal-fired power plant	Lignite-fired power plant				
Most commonly used power plants								
Minimum load (% P _{Nom})	40-50%	40-50%	25-40 %ª	50-60%				
Average ramp rate (% P _{Nom} per min)	8-12 %	2-4 %	1.5-40 %	1-2 %				
Hot start-up time (min) or (h)	5–11 min ^b	60-90 min	2.5-3 h	4-6 h				
Cold start-up time (min) or (h)	5–11 min ^c	3-4 h	5-10 h	8–10 h				
State-of-the-art power plants								
Minimum load (% P _{Nom})	20-50%	30-40 % (20 % with SC ^d)	25°-40 % ^f	359-50 %				
Average ramp rate (% P _{Nom} per min)	10-15 %	4-8%	3-6%	2-6 ^h %				
Hot start-up time (min) or (h)	5–10 min ⁱ	30-40 min	80 min-2.5 h	1.25 ⁱ -4h				
Cold start-up time (min) or (h)	5–10 min ⁱ	2-3 h	3-6 h	5 ^k -8 h				

Comparison of technical characteristics between coal-fired and gasfired power generation technologies

Full lifecycle emissions intensity of global coal and gas supply for power generation, 2018

Source: IEA Methane Tracker (2019)

Source: IRENA

Gas as Enabler of VRE Integration: Case Studies

Source (1) : Italy' National Energy and Climate Plan (Dec 2019);

9); Source (2): Clean Energy Wire;

Gas-fired power generation role to integrate Solar PV in all cases

Power production (MWh) from a solar power plants in Spain in two different moments of the same day(MW)

Source: REE

Solar eclipses similar to that one of 20 March 2015 will occur again. In 2026 there will be a total eclipse in Europe.

- Regarding installed PV, Solar Power Europe foresees 250
 GW PV in 2026
- At that point in time, the flexibility provided by gas-fired power plants will be <u>critical</u> to maintain the energy system operation

Solar Eclipse trajectory 20 March 2015; Source: ENTSOE

Gas-fired power generation role to integrate Solar PV in all cases

...and 100% Electrification is Not Possible

		2015 Baseline	2050 Scenario 1	2050 Scenario 2	2050 Scenario 3
Total EU	EU economy decarbonisation vs 1990	22%	80%	90%	95%
economy	Direct electrification rate	22%	38%	48%	60%
	-				
Total transport	Direct electrification rate	1%	29%	43%	63%
		s i ⊒iji	- ,		 .
Total buildings	Direct electrification rate	34%	45%	54%	63%
Total industries	Direct	33%	38%	44%	50%
	electrification rate				

Source: Eurelectric; "Decarbonisation Pathways" (2018)

Efficient Energy Transition: Efficient Transport of Energy

The transmission of energy in a well developed gas infrastructure offers a more efficient solution in terms of volumes, costs and visual impact

		Britned (NL- UK) Power wire - cable	BBL (NL – UK) Gas pipeline
	Length	235 km	260 km
7	Budget	600 M€	550 M€
	Capacity (NL→UK)	1 GW	20 GW

The gas system:

- transports "x" times more energy than the power system.
- deals with strong seasonality and demand variability.

Example: Annual gas and electricity consumption in NL

1 pipeline of 48" is able to pass on the same energy as 8 high power lines

NECE

Gas Storage: Large Capacity, also for seasonal use

Figure 3. Available storage technologies, their capacity and discharge time.

Electricity storage in the EU: ~30 TWh (almost all is hydro pump storage)

Gas storage in the EU: 1131 TWh, represents 21% of annual gas consumption in EU; Flexibility: 22 TWh of withdrawal capacity

Renewable and Low-Carbon Gases: backbone for the future Energy System

Renewable and Low-Carbon Gases: backbone for the future Energy System

To increase EU's Energy resilience and security of supply, EU will speed up development of renewable energy electricity & renewable gases, developing an EU Integrated Energy System.

- Biogas will be able to cover 75% of Danish gas consumption in 2030.
- In 2034, biogas production is expected to be able to fully meet Danish gas demand on an annual basis.

Recommendations (1/2)

- Recognise the value of the flexibility provided by gas-fired power plants
 - Take advantage of the existing gas flexibility: substantial amounts of VRE can be integrated by unlocking existing flexibility rather than by investing in new costly assets

Take into account the future impact of VRE

- Implement an adequate regulatory framework for VRE integration
- Be flexible in the planning process
- Get ready in advance for short-term imbalances

Promote sectoral integration

- Set up a policy and regulatory framework to enable a Hybrid Energy System
- Foster research, development and innovation

Recommendations (2/2)

Clarify the regulatory framework for renewable and low-carbon gases

- Widen the concept of "renewable energy" and introduce a "new gases" terminology
- Establish principles for
 - transporting new gases (hydrogen, biomethane and others) whilst maintaining a non-fragmented market where all gases can be traded
 - managing gas quality in a proper way
- Implement standardised GOs/certificate frameworks across the UNECE region
- Support the development of a hydrogen market
- $\overline{\mathfrak{T}} \cdot \mathbf{D}$ Deploy a digitalization environment
- Share knowledge and experiences across the UNECE region

THANK YOU For your attention

