Informal document GRSG-124-05 (124th GRSG, 11–14 October 2022 Agenda item 18(e))

Electric Radiant Warmers for Energy Saving and Improved Comfort in EVs

Dr. Chungwon Cho

Director, Thermal Management System R&D Center Convergence Technology R&D Division Korea Automotive Technology Institute

CONTENTS

What is Radiation?

3 Type of heat transfer mode

Comparison of heater transfer mode

Туре	Medium	Heating rate	Efficiency for body warm-up	Heating range	
Convection	Fluid	Low	Bad at initial stage	Whole space	
Radiation	-	High	Good at local area	Local body	
Conduction	Conduction Solid		Very good at contact area	Local body	

Convection

- It takes time to heat up the medium and things
- Heating range is widen up easily

Radiation

- Direct heating up body
- Effective in only local body part
- → Good performance at initial heating

Why is the Radiation Important in EVs?

1. Effects of cabin heating on the EV range*

- Low waste heat to use in convectional HVACs → Driving rage decreases dramatically in heating condition

Combined Driving range (km) *

EV type	24℃ (climate control off)	-6.7℃ (climate control on)	35℃ (climate control on)
EV model 1 (2017)	204	101	161
EV model 2 (2018)	389	208	315
EV model 3 (2018)	225	154	198
EV model 4 (2017)	385	238	323
EV model 5 (2017)	200	127	163

Driving range reduction rate (%)

EV type		-6.7℃ (climate control on)	35℃ (climate control on)
EV model 1 (2017)	-	-50.4	-21.3
EV model 2 (2018)		-46.7	-19.0
EV model 3 (2018)	-	-31.4	-12.1
EV model 4 (2017)		-38.1	-15.9
EV model 5 (2017)		-36.3	-18.5

the Average the range reduction rate @cooling condition: 17%

the Average the range reduction rate @heating condition: 41%

Cabin heating energy is more than 3 time of that of cabin cooling

→ Significant reduction of driving range

We need new ways to solve it → radiation heating

Heat pump

- New refrigerant (CO2, R290)

Cabin

- Local heating/cooling

^{*}Electric Vehicle Range Testing, American Automobile Association(2019)

Why is the Radiation Important in EVs?

2. Thermal characteristics of vehicle cabins

Non-uniform distribution

Low thermal insulation (windshield, door glass)

- → large amount of heat loss
- → Non-uniform temperature field

Complex interior space (seat, handle)

→ Non-uniform wind speed

Uncomfortable feeling

Heat capacity effect of cabin and HVACs

→ Time required to reach room temperature after soaking at -7 °C or 35 °C : 20~30min

Increasing occupant discomfort

Vehicle cabins require high heating performance (~6kW) compared to its interior space → 41% decrease in driving range

Heating by Radiation

- Good at local heating
- Quick response time

Reduce required heating load

Non-uniform temperature field

Energy Consumption Experiment: HVAC vs Radiant Warmers

1. Experiment conditions (Convection vs Radiation)

- Test car
- Rear seat remodeling for surrounding radiant warmer
- Drive mode : idle
- Ambient T: -7°C

- Cloth & Skin T
 Energy consumption
 measurement
- Thermal sensation & comfort checking by 10 persons

HVAC mode

Warmer: off HVAC: on - FATC 32°C

Seat warmer on Foot heater on

RAD Warmer mode

Excluding all forced convection
 Effect

Warmer : on - Ts=const

HVAC: off

Seat warmer on Foot heater off

Energy Consumption Experiment: HVAC vs Radiant Warmers

2. Heating rate comparison

Number and gender: male 10

Age: 20s~ 50s

Averaged weight: 77kg Pre Soaking time: 1hr

Clothing insulation: 1.45clo (total)

Time to reach a specific point

	Chest Cloth Temperature 0°C→15°C	Chest Skin Temperature 32°C→33°C	Thermal Sensation Cold → neutral	Thermal Comfort Very Uncomfortable →neutral
HVAC	10 min	30 min	22 min	21 min
Warmer	7 min	20 min	19 min	16 min

 $[\]times$ X minute = Time taking X minute to reach to the specific point after HVAC or Warmer is turned on Ex) Cloth Temperature, HVAC \rightarrow 10 min : It takes 10 minute to reach 15°C after heating start

Energy Consumption Experiment: HVAC vs Radiant Warmers

3. Energy consumption up to neutral point of thermal sensation

Energy consumption (kWh) – Ambient Temperature -7°C

No.	Case	Time @neutral (min)	Power consumption @HVAC [kWh]	Power consumption @ RAD warmer [kWh]	Power consumption @foot auxiliary heater [kWh]	Power consumption @ climate seat [kWh]	Sum [kWh]
1	HVAC mode (auto max 32℃)	22	2.1	-	0.6	0.02	2.72
2	Radiant Warmer mode	19	-	0.7	-	0.02	0.72

Power consumption (kW) – Ambient Temperature -7°C

→ Consumption in warmer mode ~ 26% HVAC mode

No.	Case	Time @neutral (min)	Time averaged power consumption @HVAC [kW]	Time averaged power consumption @ RAD warmer [kW]	Time averaged power consumption @foot auxiliary heater [kW]	Time averaged Power consumption @ climate seat [kW]	Sum [kW]
1	HVAC mode (auto max 32°C)	22	5.81	-	1.65	0.06	7.52
2	Radiant Warmer mode	19	-	2.21	-	0.06	2.27

^{} typical small vehicles require 3~5kW power consumption for cabin heating**

[→] In case of small vehicle, A radiant warmer of about 1kW will be sufficient to increase thermal sensation level

Energy Consumption Test: Convection+Radiation

- 1. Complementary relationship between convection and radiation
 - HVAC (convection)

Radiant Warmer (radiation)

- 1. The more passengers, The more efficient
- Heating energy can be delivered to every passenger not evenly, but above a certain level
- 2. Slow air heating due to indirect heating and heat capacity
- Energy for cabin heating is much higher than that for body heating

1. The more passengers, The less efficient

More radiant warmers are required with the number of passenger

- 2. Quick body heating due to direct heat transfer
- Close installation to body can improve radiant heat transfer efficiency
- → Hybrid heating (convection + radiation) is effective for saving cabin heating energy

Energy Consumption Test: Convection + Radiation

2. Test of combination heating

- Test car
- 2 occupants condition

Convection (HVAC)

Radiation (RAD warmer)

Conduction (seat warmer)

- Driving range @ No cabin heating : 450km
 Driving range @ HVAC +Seat : 235km
- Driving range @ HVAC + Radiant warmer + Seat : 255km
- → Driving range can be improved by 9%
- → 1kW consumption in radiation heating ~1.7kW in convection heating
 (@ 2 passenger condition)
- → Radiation heating will become essential option for improving the driving range of EV in cold condition

