

# Methane emissions from the oil & gas and coal industries: Similarities and differences

#### Prepared for:

#### **UN Economic Commission for Europe**

31st Session of the Committee on Sustainable Energy Mitigation of Methane Emissions from the Extractive Industries in Transition: Concrete Actions, Goals, and the Costs of the Process

#### Prepared By:

Clark Talkington, Vice President Advanced Resources International, Inc.

22 September 2022 Palais des Nations Geneva, Switzerland



## Methane emissions Oil and gas operations vs coal

#### Oil and gas CH<sub>4</sub> emissions

- Emitted from all industry segments
- Majority of facilities assumed to emit some CH<sub>4</sub>
- Oil and gas throughput does not necessarily equate to quantity of emissions
- Vented emissions (intentional) and leaks (unintentional)
- CH<sub>4</sub> emitted for safety, due to lack of infrastructure or no market
- Emission sources can be diffuse with emissions from millions of pieces of equipment
- Widely distributed across a large number of countries
- Includes onshore and offshore operations
- Includes large-scale events (e.g.,well blowouts, storage leaks, pipeline ruptures)
- Emissions from plugged/abandoned wells may total 5-10% of onshore production emissions but there is significant uncertainty
- Significant CO<sub>2</sub> emissions from venting and combustion

#### Coal mining CH<sub>4</sub> emissions

- Emissions primarily from coal production
- Not all coal mines are gassy
- Coal production and emissions are not always directly related
- Vented emissions only, no leaks
- CH<sub>4</sub> is a byproduct of mining and emitted for safety
- Emission sources are concentrated into a small number of vent shafts, degasification system, vent pipes
- Generally limited to major mining countries
- Onshore operations only
- Nothing comparable to O&G major events a major event would likely cause an explosion at the mine
- Abandoned mines believed to account for 10-20% of emissions from underground mines and abandoned mine methane (AMM) emissions are growing
- Very little CO<sub>2</sub> emissions



#### Full Supply Chain of the Oil and Gas Industry



#### **Production & Processing**

- Onshore Petroleum & Natural Gas
   Production
- Offshore Petroleum & Natural Gas Production
- 3. Total Crude Oil to Refineries
- 4. Petroleum Refining
- 5. Gathering and Boosting
  \*Data collection began in RY 2016
- Gas Processing Plant
   \*May contain NGL Fractionation equipment
- 7. Natural Gas Liquids (NGL) Supply

#### Natural Gas Transmission & Storage

- 8. Transmission Compressor Stations
- 9. Underground Storage
- 10. Liquified Natural Gas (LNG) Storage
- 11. LNG Import-Export Equipment
- Natural Gas Transmission Pipeline
   Data collection began in RY 2016

#### Distribution

- 13. Large End Users
- 14. Natural Gas Distribution
- Natural Gas & Petroleum Supply to Small End Users



## Onshore petroleum and natural gas exploration and production (E&P) segment

#### US Greenhouse Gas Inventory (GHGI)\*

- CH<sub>4</sub> emissions from
  - 47 sources at natural gas E&P operations
  - 40 sources at oil E&P operations
- Sources include:
  - drilling and completions
  - associated gas venting
  - pneumatic controllers and pumps
  - liquids unloading
  - storage tanks
  - dehydrators
  - leaks
  - compressors
  - well blowouts
  - other sources
  - uncombusted methane
  - Other

#### Onshore E&P CH<sub>4</sub>

96.6 MtCO<sub>2</sub>e net emissions\*

(6.3) MtCO<sub>2</sub>e reductions\*

~9300 Facilities\*\*

### US GHGI Equipment Counts\*

| 1,514,000 | pneumatic<br>devices |
|-----------|----------------------|
| 940,000   | oil & gas wells      |
| 650,800   | tanks                |
| 484,300   | separators           |
| 350,300   | meters of piping     |
| 153,000   | heaters              |
| 123,800   | pumps                |
| 52,100    | gas engines          |
| 38,000    | compressors          |
| 12,400    | dehydrators          |

Sources: \*Inventory of U.S. Greenhouse Gases and Sinks 1990-2019 US EPA



Source: US EPA

<sup>\*\*</sup>Enverus – Facility is defined as all onshore E&P operations at the basins level

## **Underground coal operations**



| US CMM Statistics |                                                              |
|-------------------|--------------------------------------------------------------|
| 350               | Working surface mines                                        |
| 167               | Gassy working UG mines                                       |
| 532               | Gassy abandoned UG mines                                     |
|                   |                                                              |
| 53.4              | MtCO <sub>2</sub> e net emissions                            |
| 34.5              | MtCO <sub>2</sub> e from UG mines                            |
| 6.4               | MtCO <sub>2</sub> e from surface mines                       |
| 6.6               | MtCO <sub>2</sub> e from post-mining                         |
| 5.9               | MtCO <sub>2</sub> e from abandoned mines                     |
|                   |                                                              |
| (15.7)            | MtCO <sub>2</sub> e recovered and used from working UG mines |
| (2.6)             | MtCO <sub>2</sub> e recovered and used from abandoned mines  |

Source: Inventory of U.S. Greenhouse Gases and Sinks 1990-2019 US EPA



## Monitoring, measurement of CH<sub>4</sub> emissions Oil and gas operations vs coal

#### Oil and gas CH<sub>4</sub> emissions

- Due to large number of sources, monitoring/measurement often uses combination of:
  - Emission factors
  - Optical gas imaging and remote sensing
  - Flow meters and sensors
- Low emissions from individual sources collectively adds up to large emission totals
- Some large emission sources can produce significant emissions, e.g., Associated gas venting, Well blowouts.
- Concentration of large emitters among IOCs, NOCs, and major independents has allowed regulators and industry to develop standards such as the Oil and Gas Methane Partnership

#### Coal mining CH<sub>4</sub> emissions

- Common measurement methods
  - Flow meters and sensors, especially at working UG mines
  - Emission factors
  - Decline curve analysis and statistical analysis at abandoned mines
- Measurement is normal practice for safety
- More focus on remote sensing of methane emissions in recent years
- Major emitting companies in the global coal industry less concentrated than oil and gas



## Mitigation of CH<sub>4</sub> emissions Oil and gas operations vs coal

#### Oil and gas CH<sub>4</sub> emissions

- O&G industry under significant scrutiny to reduce emissions
- Recovery of saleable product
- Mitigation actions within the normal competency of oil and gas facility operators
- Recovery and use of CH₄ requires
  - Market for the gas
  - Infrastructure such as sufficient pipeline capacity
- Economics are highly dependent on:
  - Price for natural gas
  - Incentives or carbon markets can help
- Flaring is used where recovery for sales is not possible
- Significant emission reductions are achievable, but 100% mitigation probably not possible: Upsets, Necessary blowdowns, Unintended events, Impossible to stop all leaks

#### Coal mining CH<sub>4</sub> emissions

- More attention has turned to the coal industry in recent years
- CH<sub>4</sub> is a byproduct of mining; industry focused on safety first
- Mitigation actions <u>are not normally</u> within the core competency of owner/operators
- Recovery and use of coal mine methane (CMM) seen as a source of revenue or cost-savings for the mine
  - Predominant use of CMM worldwide is power generation, not gas sales
  - Requires access to markets but CMM can also be used on-site
- Economics are highly dependent on:
  - Price for power, natural gas, LNG, and/or coal
  - Incentives or carbon markets can help
- Mining industry in some countries has begun flaring unused CH<sub>4</sub> but historically this has not been a standard practice due to perceived safety concerns
- Ventilation Air Methane (VAM) remains largest source of coal mine emissions, but few projects worldwide due to technical challenges and need for sustained high carbon prices
- Significant emission reductions are achievable, but 100% mitigation is not possible: Technical limits of mitigation equipment, Need to ensure safety



#### **Thank You**

Clark Talkington
Vice President
ctalkington@adv-res.com

Office Locations
Washington, DC
4501 Fairfax Drive, Suite 910
Arlington, VA 22203
Phone: (703) 528-8420

Knoxville, TN 1210 Kenesaw Ave. Suite 1210A Knoxville, TN 37919-7736

