

Progress Study on Impact of E-mobility on Emission Reduction in Thailand

Yossapong Laoonual, PhD

Mobility & Vehicle Technology Research Center (MOVE)

King Mongkut's University of Technology Thonburi (KMUTT)

Inter-regional Workshop on Electrification of Mobility-Challenges and opportunities for transport, energy and

spatial planning

Organized by The United Nations Economic Commission for Europe (UNECE)

5 September 2022

Geneva, Switzerland

Council for Decarbonising Transport in Asia

"The Path to Zero: A Vision for Decarbonised Transport in Asia"

In our vision for 2050, the mobility needs of all citizens are met with zero-carbon options that are integrated in a seamless, efficient and convenient manner.

National Electric Vehicle Policy Committee

Chaired by Deputy Prime Minister Official order by office of Prime Minister on 7 Feb 2020

Key Drivers

- Air Pollution Reduction
- Greenhouse Gases Reduction
- New Industry Creation

Visions : Thailand becomes the **global production** and **supplier hub** for electric vehicles and automotive parts.

Goal at 2030: 30% Zero Emission Vehicle (ZEV) production by 2030 in Thailand

Local Production Promotion

National Incentive Schemes

- EV Investment Scheme by Board of Investment
- Reduce Import Tax/ Excise Tax for vehicles and auto parts

Infrastructure Preparation

- Special electricity price for public charging operators
- Planning public charging station locations (under planning)

Usage Promotion

- Cheaper annual vehicle registration fee
- Government EV fleet policy
- User subsidy

Current national EV policy and strategies in Thailand

Current EV Status in Thailand

Source: Department of Land Transport Infographic by Electric Vehicle Association of Thailand (EVAT) KMUTT study on $PM_{2.5}$ and CO_2 emissions reduction under national policy

Current status of vehicle registration in Thailand

KMUTT study on $PM_{2.5}$ and CO_2 emissions reduction under national policy

The analysis results are under review, please do not reference.

Source: A Feasibility Study on the Replacement of Current Diesel Vehicle by Electric, CNC, and Euro 6 Exhaust Emission Standard Vehicles in the Bangkok Metropolitan Region for Ambient PM2.5 Concentration Reduction, Funded by National Research Council for Thailand joint with National Institute of Development Administration (NIDA), 2022.

Accumulative Bus Registration in Thailand

Source: Department of Land Transport

KMUTT study on transition to electric bus

CO₂ reduction by electric bus promotion (well-to-wheel)

Based on the considered scenarios, after 2035 all new registered bus are powered by CNG or electricity.

The projection of the baseline scenario was based on *ratio of buses* registered in Thailand in 2022.

Emission factor

Electricity (Consumption): $481 \text{ gCO}_2/\text{kWh}$ Electric bus: 589 gCO₂/km CNG bus: 1937 gCO₂/km Diesel bus: 2073 gCO₂/km

The analysis results are under review, please do not reference. Source: UNESCAP, Study report for transitioning to electric public transport (bus) in Thailand, 2022. 8

KMUTT study on transition to electric bus

B/C ratio

Total Cost of Ownership and Cost-Benefit Analysis

Type of bus	Without carbon	With carbon
	tax benefit	tax benefit
Diesel	0.97	0.97
CNG	1.20	1.21
Electric (6 THB/kWh)	1.12	1.24
Electric (3 THB/kWh)	1.36	1.45

- Energy cost is one of the most influential factors that impact the overall cost.
- TCO of the electric bus was the lowest if the electricity cost remain 3 THB/kWh.

The analysis results are under review, please do not reference.

*Electricity cost

Source: UNESCAP, Study report for transitioning to electric public transport (bus) in Thailand, 2022.

KMUTT study on transition to electric bus

Break-even point analysis of Diesel, CNG and Electric bus (6 THB/kWh)

Electric bus can *reach* the *break even point* within 11 *years*.

• The *main barrier* to

implementing new Electric
bus is investment cost at the
1st year which approximately 3
times higher compared to the
other.

The analysis results are under review, please do not reference.

Source: UNESCAP, Study report for transitioning to electric 10 public transport (bus) in Thailand, 2022.

- Following the 100%ZEV at 2035 scenarios, it can help reducing PM2.5 and CO₂ emissions in 2050 by 58.3 and 61.2 percent, respectively, compared to the BAU scenario.
- Following the *Electric bus strategy scenarios by 2035*, it can help reducing CO₂ emissions in 2050 from 50 Mt/year to 15 Mt/year, respectively.
- TCO of the electric bus is found to be the lowest when receive the *subsidy of electricity cost* and *carbon tax benefit*.
- The transition to electric mobility in public transport can be accelerated, the support from government is needed ex. electricity cost and carbon price.

Thank you

Yossapong Laoonual, Ph.D.

E-mail: yossapong.lao@kmutt.ac.th