Transmitted by the expert from
Informal document GRVA-14-37 Germany $14^{\text {th }}$ GRVA, 26-30 September 2022 Provisional agenda item 7

Justification for the UEBS proposal
(ECE/TRANS/WP.29/GRVA/2022/24)

General Motivation for the UEBS proposal

EC establishing ambitious direct vision requirements for heavy vehicles to address moving off accidents \rightarrow massive cab redesigns

- DE position: Reliable active safety systems possibly better in many aspects, no driver reaction to pedestrian required for avoidance
Accidents prevented by Active Safety

What is Active Vehicle Safety?

- Active Vehicle Safety

Avoidance of Accidents!

- Passive Vehicle Safety

Mitigation of Consequences

Can we make active safety as safe, robust and reliable as a window?

Overview of Scenarios - Crossing

CPFA50:
CPNA25
CPNA75 CPNC: Hidden Child ($5 \mathrm{~km} / \mathrm{h}$) Running ($8 \mathrm{~km} / \mathrm{h}$) Walking ($5 \mathrm{~km} / \mathrm{h}$) Walking ($5 \mathrm{~km} / \mathrm{h}$)

Test Results for Actros ABA5

Boundary Condition: General Safety Regulation 2

- The EU has fixed in their General Safety Regulation:
"Requirements should therefore be introduced to improve direct vision to enhance the direct visibility of pedestrians, cyclists and other vulnerable road users from the driver's seat by reducing to the greatest possible extent the blind spots in front and to the side of the driver. The specificities of different categories of vehicles should be taken into account."
- "Greatest possible extend" is not verifyable, so there seems to be at least some technical flexibility
- This interpretation will under the responsibility of GRSG

UEBS Strategy

- GRSG Discussions require a - still missing - definition of an active safety system (see GRSG-102, agenda item 4f discussions)
- Adjusting direct vision requirements for active safety vehicles requires information on expected performance

Strategy: establish a safe standard - produce a regulation with ambitious performance thresholds so all stakeholders can know what to expect

Before the accident, participants move orthogonal

View fixed in world
 View fixed on vehicle

Veh: $10 \mathrm{~km} / \mathrm{h}$ VRU: $5 \mathrm{~km} / \mathrm{h}$

Vehicle

„Reaction time blind spots!" (RTBS)

(for all impact positions, all VRU speeds)

- Human drivers need 1-1.2 seconds time to react to suddenly appearing obstacles

Driver cannot react to threats appearing in the areas shown on right side \rightarrow

- Typical crossing accidents will not be prevented with

10 km/h increased vision beyond the RTBS

- Key task of increased Direct Vision:
$5 \mathrm{~km} / \mathrm{h}$
 Prevent moving off accidents

GIDAS Accidentology: AEBS-HDV-SP-02-05 (CLEPA)

UN－R159（Moving Off Information System）Specs

（）When vehicle moving（ $<=10 \mathrm{~km} / \mathrm{h}$ ）：
－Inform for VRU：stationary up to longitudinally 10 km／h
－When vehicle stopped
－Inform for VRU：crossing 3－5 km／h
－In blue area as shown
$\gg=15$ lux ambient lighting

R159 shortcomings

Information requires timely driver reaction
Vehicle moving: only reacting to longitudinally moving / stationary VRU

Vehicle stopped: only reacting to crossing VRU 3-5 km/h
\rightarrow no wholistic requirements

- Gap between vehicle and blue area

Proposal - Perf Req's

Stationary

- Motion inhibit when VRU in dark blue zone (new!)
- Motion inhibit when VRU in orange zone (total: 1.5 m)
$\max 3.7$ m
Moving
- Avoid collision with all longitudinal VRU up to $10 \mathrm{~km} / \mathrm{h}$ vehicle speed
- Avoid collision with all crossing VRU $<=5 \mathrm{~km} / \mathrm{h}$ vehicle speed $<=5 \mathrm{~km} / \mathrm{h} \mathrm{0-100} \mathrm{\%}$ impact
- Avoid collision with all crossing VRU $<=5 \mathrm{~km} / \mathrm{h}$ vehicle speed $<=20 \mathrm{~km} / \mathrm{h}$ for center impacts (connection to R131-02, starting 20 km/h)

Robustness Requirements

\Rightarrow No lux limit \rightarrow not dependent on ambient lighting!
\rightarrow classifying RADAR, possibly $2 x$
\rightarrow low-cost LIDAR or ultrasonic for confirmation

- Rain/fog etc. should be ok for RADAR \& close distances
- No deactivation foreseen; automatic deactivation if sensors are covered with ice (similar to R151, R159)

Backup

Basics - Cross Traffic AEB

(Tests are carried out with different impact positions

- Impact position is controlled by the timing the dummy starts
(The lower the number:
- the later the dummy starts,
- the less time the dummy travels in front of the vehicle,
- the more demanding is the situation.

Basics - Cross Traffic AEB (2)

Conclusion: Close Proximity Vision is not relevant for crossing accidents! AEB VRU is relevant for crossing accidents!

Why no avoidance $0-100 \%$ impact at $10 \mathrm{~km} / \mathrm{h}$?

Pedestrian stopping distance
4. Vehicle stopping distance from $10 \mathrm{~km} / \mathrm{h}$:
\rightarrow stopping dist. 3 m , braking starts at $\sim 1 \mathrm{~s}$ TTC
2. Pedestrian: $5 \mathrm{~km} / \mathrm{h} \rightarrow$ distance travelled in 1 s approx. 1.4 m
3. Pedrestrian stopping distance is about $0.3-0.5 \mathrm{~m}$
4. Ped position when braking needs to start is before (!) the pedestrian has reached it's own stopping distance

Lower vehicle speed \rightarrow lower stopping distance:

1. stopping distance from $5 \mathrm{~km} / \mathrm{h}$:
\rightarrow braking distance 1.5 m , braking starts $\sim 0.5 \mathrm{~s}$ TTC
2. Ped.: $5 \mathrm{~km} / \mathrm{h} \rightarrow$ travels approx. 0.7 m in 0.5 s
3. Pedestrian stopping distance $\sim 0.3-0.5 \mathrm{~s}$
4. Pedestrian stopping distance $\sim=$ vehicle stopping distance, so vehicle needs to start braking when it is clear that pedestrian will not stop in time.

Why avoidance $20 \mathrm{~km} / \mathrm{h}$ vehicle speed?

1. Vehicle stopping distance from $20 \mathrm{~km} / \mathrm{h}$:
\rightarrow stopping dist. 13 m , braking starts at $\sim 2.5 \mathrm{~s} \mathrm{TTC}$
Center impacts

2. Pedestrian: $5 \mathrm{~km} / \mathrm{h} \rightarrow$ distance travelled in 1 s approx. 1.4 m
3. Pedestrian stopping distance is about $0.3-0.5 \mathrm{~m}$
4. But for center impacts:

Pedestrian is not able to prevent entering in vehicle path (orange line) when vehicle starts braking.

