

Symposium on The Future Networked Car

(Geneva, Switzerland, 3 March 2016)

IoT Security issues related to the future Networked Car

Koji Nakao
Distinguished Researcher,
Network Security Research Institute, NICT
(Yokohama National University with Prof. Yoshioka)

Contents

- 1) IoT problems in relation to the networked car
- Observing current IoT Attacks
- Analyzing IoT Attacks
- Understanding Infected IoT devices

2) Key findings and Conclusion

Scanning observation by <u>nicter-Atlas</u>

Recently, "scanning to Port 23 (telenet)" is getting larger!!

- •Capturing packets through dark-net in real time basis.
- •Color indicates the protocol types.

Telnet (23) attacks on Darknet have rocketed

Attacking hosts are IoT devices

Devices are inferred from

In the case of Connected Car, More Attack Surfaces can be recognized and many IoT devices will be located in the car!

http://gigaom.com/2013/08/06/ciscos-remedy-for-connected-car-security-treat-the-car-like-an-enterprise/

Why IoT devices?

- 24/7 online
- No AV
- Weak/Default login passwords
- with global IP address and open to Internet

We would like to know...

Malware

- What kind of malware?
- How many different kinds?

Targets

What IoT devices are targeted?

Monetization

What the attackers do after compromising these devices?

We propose the first honeypot for IoT

Our Challenges

Honeypot

Sandbox: IoTBOX

- Emulating diverse IoT devices
- Handling to capture malware of different CPU architectures

 Handle to run malware of different CPU architectures

Emulating different devices (IoTPOT)

Different Banner

 Scanning Internet on port 23 to get different banners

Different User ID/Pass

- Obtain weak/default ID/Pass by web search
- Always accept/reject incoming challenges
- Accept after several challenges

Different Interactions

- Learn from actual devices
- System with general configuration for embedded devices

(E.g., OpenWRT or Debian based embedded OS)

IoTPOT results

• During 122 days of operations [April 01 to July 31 - 2015]

900,394 Malware Download Attempts

Malware of 11 different CPU architectures

93% of downloaded binaries are new to Virus Total (2015/09)

Analyzing attacks

Intrusion

Pattern of User ID/Password challenges

Infection

Telnet Command Sequences from Attacker

Monetization

Behaviors of second stage malware (i.e. binaries and shell scripts)

Example 1: DDoS (DNS Water Torture attacks)

Cache DNS server at ISP

9a3jk.cc.zmr666.com? elirjk.cc.zmr666.com? pujare.cc.zmr666.com? oiu4an.cc.zmr666.com?

Authoritative DNS for "zmr666.com"

Infected devices

Example 2: Click fraud

Infected devices imitates user clicks to advertising web sites

Example 3: Stealing credential from PPV (Pay Per View)

For Understanding Infected IoT devices, looking back on devices visiting IoTPOT

- We scan back on port 23/TCP and 80/TCP
 - More than 60 type of devices visit us

Web interfaces of devices attacking us

AS with more than 1,000 infected Devices

Categorizing device types

- Surveillance Group
 - IP Camera
 - DVR (Digital Video Recorder)
- Networking Related Devices
 - Router
 - Gateway
 - Modem
 - Bridge
 - Security Appliance
- Telephone System
 - VoIP Gateway
 - IP Phone
 - GSM Router
 - Analog Phone Adapter
- Infrastructure
 - Parking Management System
 - LED display control system

- Industrial Control System
 - Solid State Recorder
 - Internet Communication Module
 - Data Acquisition Server
 - BACnet I/O Module
- Personal
 - Web Camera
 - Personal Video Recorder
 - Home Automation Gateway
- Broadcasting Facility
 - Digital Video Broadcaster
 - Digital Video Scaler
 - Video Encoder/Decoder
 - Set Top Box
- Other
 - Heat Pump
 - Fire Alarm System
 - Disk Recording System
 - Optical Imaging Facility
 - Fingerprint Scanner

Attacks observed in IoTPOT from the following data source last year (2015).

Time Stamp visiting IoTPOT: 2015-03-09 and 2015-03-14 Country (IP) from Italy HTTP Title:

Web2Park - Amministrazione

Web2Park®

Smart+Connected City Infrastructure Management: IoT Use Cases

Smart+Connected City Parking

Give citizens live parking availability information to reduce circling and congestion

Smart+Connected City **Traffic**

Monitor and manage traffic incidents to reduce congestion and improve livability

Smart+Connected City
Safety & Security

Automatically detect security incidents, shorten response time, and analyze data to reduce crime

Smart+Connected City Location Services

Provide view of people flow data to aid planning and leverage location data for contextual content and advertising

Smart+Connected City

Lighting

Manage street lighting to reduce energy and maintenance costs

City Parking

Improve Traffic and Reduce Congestion

Presentation in ITU-T by Mr. Mikhail Kader

Smart+Connected City Parking: How It Works

Smart+Connected Parking: High-level Architecture

Sensor and video-enabled parking management for cities

- 1 Streetline sensor gateway
- 2 Cisco IP Camera
- 3 Cisco Wireless Mesh Network for connectivity
- 4 Streetline parking data and analytics application
- 5 Video analytics for violation detection
- 6 Streetline citizen application to find real-time parking availability and payments
- 7 Streetline
 enforcement
 application for parking
 enforcement officer

Key findings and Conclusion

Malware

- At least 6 DDoS malware families target IoT devices via Telnet
- Malware samples of 11 different CPU architectures are captured
- 93 % of samples are new to Virus Total
- One family has quickly evolved to target more devices with as many as 9 different CPU architectures

Targets

• More than 60 types (361 models) of IoT devices are infected

Monetization

- 11 types of DDoS attacks
- Scans (TCP/23,80,8080,5916 and UDP/ 123,3143)
- Fake web hosting
- Click fraud attacks
- Stealing credential of PPV

<Key Security Controls>

- Threat observation and analysis
- Malware/intrusion detection
- 3. Software Remote Update (ITU-T)
- 4. Data Confidentiality
 - Light-weight crypto
- **Appropriate Authentication and** Access control
- Incident handling and Information (threat) sharing

IoT devices **Environments** The Networked Car environments

In the connected car environment, *Malware Infection* to the Car Components (IoT devices) should be carefully considered!!

Introduction of draft Rec. X.itssec-1 "Scope"

Example: data flow of remote update

Thank you for listening Q&A

Contact: Koji Nakao (ko-nakao@nict.go.jp)