

Table of Content

Presentation of AM steel production Group

The AM carbon neutrality plan

Three pathways

- Electrical steelmaking
- Gas based steelmaking
- Carbon based steelmaking
 CCU and CCS are complementary

The ArcelorMittal steel production group

Largest steel producers (in mt crude steel)

* Source: Worldsteel

Steel is a product of the past that has largely contributed to our current standard of life

And will continue to do so on our road to Carbon Neutrality...

Steel: a product of the past and for the future

Fig. 1. Energy demand and intensity of the global iron and steel industry (2000-2018).

Steelmaking = generating 7% of the anthropogenic emissions

Page 5 15/03/2022 Confidential

Steel: a product of the past and for the future

[Steel supports a Sustainable Circular Economy]

- Steel is fully recyclable (magnetic) -> real C-footprint = 0,86 t CO₂/T
- It can be produced in a carbon neutral way
- Steel is base material to install equipment for renewable technologies

Sustainable development The ArcelorMittal carbon neutrality plan Climate Impact ArcelorMittal ca 200mt CO2 Emissions

The 3 pathways of the ArcelorMittal decarbonation plan

"Our ambition is to significantly reduce our carbon footprint."

Climate Action Report 1 May 2019 ArcelorMittal

https://www.worldsteel.org/media-centre/industry-member-news/2019-member-news/ArcelorMittal-publishes-first-Climate-Action-report.html

AM: decarbonation plan

3 pathways

AM: decarbonation plan: pathway 1

Electrical steelmaking using low carbon electricity:

Confidential

3,000

AM: decarbonation plan: pathway 2A + B

Gas based steelmaking, able to use hydrogen:

$$Fe_2O_3 + CH_4 -> 2Fe + 2H_2O + CO_2$$

 $Fe_2O_3 + 3 H_2 -> 2Fe + 3 H_2O$

ArcelorMittal: Smart Carbon Usage: pathway 3

Principles of the ArcelorMittal Carbon Neutrality plan In conventional steel making

Separation of the chemical energy of the gasses allows to re-use it instead of burning it

CO/CO₂ separation pilots :

0

Carbon2Value : pilot project 2018 – 2020

INTERREG sponsored project

Capture of 0,5 t/h CO2 from 1.100 Nm³/h BF-gas to study feasability

Steelanol: PSA 100.000 Nm³/h (320 kT CO₂/a) ArcelorMittal

CCU plant and pilots:

Steel2Chemicals Naphtha From BF gas and COG

LanzaTech

FReSMe MeOH from BF Gas

CCU is an enabler of CCS: MeOH LCA shows the complementarity of CCU and CCS

Current EU-grid

Grid Emission Intensity = 0.25 t CO₂/MWh

If all of the steel mill gas is converted, the CO₂ abatement potential is :

- CCU = 360 kg/t by MeOH-production (30%)
- CCS = 740 kg/t by storage of the CO_2 (70%)
 - 400 kg/t of the steel gas CO₂
 - 340 kg/t of the electricity CO₂

Total abatement = 1.100 kg/t

Need for renewable electricity = 1,1 MWh/t steel

