

Objectives

NHTSA's Mission and Role

What We Know About Impaired Driving

Addressing What We Don't Know:
Addressing FARS Drug Data
Quality & Quantity

NHTSA's Mission and Role

Lives Lost in Crashes (2020)

38,824

People Injured in Crashes (2020)

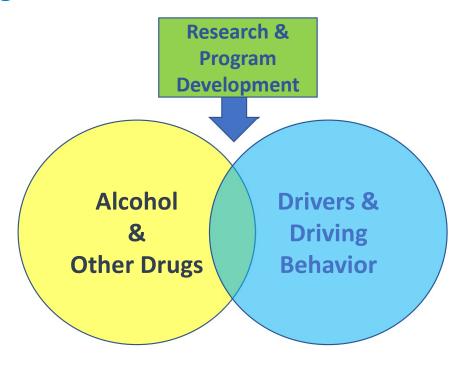
2,282,015

Police-Reported Crashes (2020)

5,250,837

Economic Costs
Of Motor Vehicle Crashes
(2018)

\$242 Billion


BEHAVIORAL SAFETY

DRIVERS
& OTHER
ROAD
USERS

NHTSA's Role

Federal Partners

- NIDA
- NIAAA
- SAMHSA
- CDC
- ONDCP
- NTSB
- FDA
- US DOJ

- Research Projects
- Evaluation Research
- Demonstration Programs
- Technical Support

Other Topics

- Older Drivers
- Novice Drivers
- Vulnerable Road
 Users
- Speeding
- EMS
- Drowsy Driving
- Distracted Driving
- Occupant Protection
- Criminal Justice

What We Know About Impaired Driving?

What Do We Know?

A complex problem

- Effects of alcohol on driving performance fairly well-known
- 50+ years of research and programmatic efforts on drugs

	Alcohol	Other Drugs			
Size of Effort	One type of drug	Many (illegal, OTCs, prescription)			
Research Efforts	Well-studied	Many, disparate			
Metabolism	Processes understood	Variable; many possibilities			
Effect on Driving Behavior	Strong correlation to poor performance	Uncertain Correlation			
Effect of High Doses	Greater decrements in performance	Unpredictable			

 specific drug concentration levels cannot be reliably equated with effects on driver performance

Addressing What We Don't Know

Research Questions & Projects

- Many research questions, limited resources
 - 18 impaired-driving-related research projects, that vary by
 - Research Question
 - Primary Research Method
 - Scale (e.g., scope, size of effort)
- Collaborating with our NHTSA Colleagues to address issues

Addressing What We Don't Know:

Addressing FARS Drug Data Quality & Quantity

Fatality Analysis Reporting System (FARS)

- A census of all police-reported fatal motor vehicle traffic crashes in the U.S. (50 States, DC, & Puerto Rico)
- Operated cooperatively with States

FARS Operations

- Eight State record sources
- > > 140 data elements coded into uniform data system
- Quality control checks
- Not all data is available
- Not all data elements are coded

FARS Drug Data ≠ FARS Alcohol Data

- Quantity nor Quality
 - States and NHTSA reporting on alcohol-related fatalities for 40 years
 - Imputation to estimate BACs
 - Testing, procedures are well-established
 - Testing rates vary by
 - Driver was fatality-injured or survived
 - State
 - Cost, time, resources

Summary of Fatal Crashes

Total Crashes

2020 Fatalities:
38,824

2019 Fatalities:
36,355

Alcohol-Impaired
Crashes

2020 Fatalities:
11,654

2019 Fatalities:
10,196

Drug-Involved Crashes

Source: Overview of Motor Vehicle Crashes in 2020 (NHTSA, 2022)

Limitations—FARS Data

Issue	Things to Work On
Quality	 limited drugs entered need specificity on specimen need info on testing panels and thresholds type of test not indicated need concentration amounts need positive and negative results need time/date of specimen collection non-representative survivors and decedents presence indicated not impairment
Quantity	 >testing of surviving and deceased drivers

FARS Drug Data: A Cautionary Note

- Many people are seeking answers about drugged driving
- Many look to NHTSA's FARS data
- ❖ NHTSA's FARS druginvolved data has many limitations
- New report coming soon

Understanding the Limitations of Drug Test Information, Reporting, and Testing Practices in **Fatal Crashes**

Amy Berning & Dereece D. Smither

(NHTSA) has collected data from all 50 States, the District of Columbia, and Puerto Rico on all police-reported fatal crashes on public roadways. NHTSA's National Center for Statistics and Analysis (NCSA) includes data from these fatal crashes in the Fatality Analysis Reporting System (FARS). This dataset pro-vides a wealth of information on fatal crashes, the roadways, vehicles, and drivers involved.

"Impaired driving" includes use of alcohol, or drugs, or both. drivers in fatal crashes. For crashes with missing alcohol data. NHTSA uses a statistical model called "multiple imputation" to estimate the BAC of a driver at the time of the crash. In contrast, the variables regarding drug test information in crashes its evolving. It does not include estimates for missing data or impairment levels and therefore needs further interpretation. This paper summarizes some of the complexities related to drug-involved driving, notes limitations of drug data collected in FARS, and presents challenges in interpreting, reporting, and analyzing the data.

Drug Presence Versus Drug Impairment

An important distinction to make when evaluating impaired driving data is the mere presence of a drug in a person's sys-tem, as compared to the person being impaired by a drug in his/her system. FARS drug data provides information about drug presence, rather than whether the driver was impaired by a drug at the time of a crash. Data identifying a driver as "drug positive" indicates only that a drug was in his/her system at the time of the crash. It does not indicate that a person was impaired by the drug (Compton & Berning, 2009). The pres-ence of some drugs in the body can be detected long after any impairment. For example, traces of cannabinoids (marijuana) can be detected in blood samples weeks after use. Thus, know-ing that a driver tested positive for cannabinoids does not necessarily indicate that the person was impaired by the drug at the time of the crash.

Since 1975, the National Highway Traffic Safety Administration In addition, while the impairing effects of alcohol are wellunderstood, there is limited research and data on the crash risk of specific drugs, impairment, and how drugs affect driving-related skills. Current knowledge about the effects of drugs other than alcohol on driving performance is insufficient to make judgments about connections between drug use, driving performance, and crash risk (Compton, Vegega, & Smither, 2009)

> Every State has enacted a law defining drivers who are at or above .08 grams per deciliter BAC as "legally impaired," but there are no similar, commonly accepted impairment levels for other drugs. Some State laws have established levels for some drugs at which it is illegal to operate a motor vehicle (Lacey, Brainard, & Snitow, 2010; Walsh, 2009). The alcohol laws are based on evidence concerning the decreased ability of drivers across the population to function safely at these BACs. Such evidence is not currently available for concentrations of other drugs. Additionally, not all drugs reported in FARS are illegal. Over-the-counter and prescription medications are also reported. The legal status of a drug is not a factor in determining a drug's potential for decreasing driving performance or

Differences in Drug Testing Procedures

There is no consistent policy or set of procedures between, or sometimes even within, States for drug testing. Considerable variation exists regarding who is tested; which drug is tested for type of test, cut-off levels, and equipment; and which bio-logical specimen (blood, urine, or oral fluid) is used. Some jurisdictions test only fatally injured drivers; others test all drivers involved in fatal crashes. Some jurisdictions test no on at all. As such, a jurisdiction that tests more drivers is likely drug-positive.

ber of drugs for which drivers are tested. Lab tests are costly A driver is more likely to be tested for drugs if there is infor-

NHTSA's Office of Behavioral Safety Research

1200 New Jersey Avenue SE., Washington, DC 20590

Improvements to Date

- Unlimited drugs allowed
- Updated specimen list
- Some variables renamed
- Identify positive & negative tests
- Reorganize drug list
- Software & training updates

Improvements to Come

- Add Test Type Variable
 - Screening Test, Confirmatory Test, Unknown
- Record data source
- Separate positive & negative test results

Longer Term Updates

- Time and date of
 - specimen collection
 - test performed
- Record concentration level of each drug
- Testing panel and detection threshold

Top 10 Leading Causes of Death in the United States in 2017, By Age Group¹ National Highway Traffic Safety Administration's National Center for Statistics and Analysis

R	Cause and Number of Deaths											
A		Toddlers	Young Children	Children	Youth	Young Adults	Other Adults		Elderiv		Years of Life	
K	Infants Under 1	1–3	4–7	8–15	16-20	21-24	25-34	35-44	45-64	65+	All Ages	Lost ²
1	Perinatal Period 11,000	Congenital Anomalies ^{a,5} 371	Malignant Neoplasms⁵ 346	Suicide 871	MV Traffic Crashes 3,129	Accidental Poisoning 3,852	Accidental Poisoning 16,478	Accidental Poisoning 15,032	Malignant Neoplasms⁵ 154,076	Heart Disease 519,052	Heart Disease 647,457	Malignant Neoplasms ⁵ 22% (9,430,293)
2	Congenital Anomalies⁵ 4,580	Accidental Drowning* 371	MV Traffic Crashes 268	MV Traffic Crashes 742	Suicide 2,812	MV Traffic Crashes 3,345	Suicide 7,948	Malignant Neoplasms⁵ 10,900	Heart Disease 112,760	Malignant Neoplasms⁵ 427,896	Malignant Neoplasms⁵ 599,108	Heart Disease 18% (8,016,939)
3	Heart Disease 304	MV Traffic Crashes 257	Congenital Anomalies⁵ 169	Malignant Neoplasms⁵ 704	Homicide 2,284	Suicide 3,091	MV Traffic Crashes 6,822	Heart Disease 10,401	Accidental Poisoning 25,288	CLRD⁵ 136,139	CLRD⁵ 160,201	Accidental Poisoning 6% (2,523,995)
4	Homicide 302	Homicide 251	Homicide ^b 152	Homicide 377	Accidental Poisoning 1,160	Homicide 2,476	Homicide 5,488	Suicide 7,335	CLRD⁵ 22,642	Stroke 125,653	Stroke 146,383	CLRD⁵ 5% (1,958,339)
5	Influenza/ Pneumonia 157	Malignant Neoplasms⁵ 237	Accidental Drowning ^b 152	Congenital Anomalies⁵ 292	Malignant Neoplasms⁵ 609	Malignant Neoplasms⁵ 658	Heart Disease 3,681	MV Traffic Crashes 5,096	Chronic Liver Disease 22,049	Alzheimer's 120,107	Alzheimer's 121,404	Suicide 4% (1,684,955)
6	Septicemia 147	Heart Disease 112	Exposure to Smoke/Fire 88	Heart Disease 173	Heart Disease 375	Heart Disease 499	Malignant Neoplasms⁵ 3,616	Homicide 3,351	Diabetes 21,313	Diabetes 59,020	Diabetes 83,564	Stroke 4% (1,605,127)
7	Stroke 100	MV Other/Non- Traffic Crashes ⁴ 110	Heart Disease 60	Accidental Drowning 171	Accidental Drowning 232	Accidental Drowning 202	CLRD⁵ 918	Chronic Liver Disease 3,000	Stroke 17,906	Influenza/ Pneumonia 46,862	Accidental Poisoning 64,795	MV Traffic Crashes 3% (1,419,930)
8	MV Traffic Crashes 80	Influenza/ Pneumonia 90	Influenza/ Pneumonia 56	CLRD⁵ 121	Congenital Anomalies ⁵ 176	Congenital Anomalies ⁵ 150	Diabetes 823	Diabetes 2,118	Suicide 16,543	Nephritis/ Nephrosis 41,670	Influenza/ Pneumonia 55,672	Diabetes 3% (1,319,549)
9	Nephritis/ Nephrosis 79	Exposure to Smoke/Fire 66	Stroke 40	MV Other/Non- Traffic Crashes ⁴ 103	Accidental Falls 94	Diabetes 148	Stroke 593	Stroke 1,811	MV Traffic Crashes 10,756	Accidental Falls 31,190	Nephritis/ Nephrosis 50,633	Chronic Liver Disease 2% (966,956)
10	Malignant Neoplasms⁵ 57	Stroke 53	MV Other/Non- Traffic Crashes ⁴ 33	Exposure to Smoke/Fire 88	Diabetes 92	Complicated Pregnancy 122	HIV 513	Septicemia 854	Septicemia 8,279	Parkinson's Disease 31,177	Suicide 47,173	Homicide 2% (903,678)
ALL ³	22,335	3,282	2,050	5,338	13,204	17,602	60,215	79,796	542,148	2,067,404	2,813,503	All Causes 100% (43,470,252)

For More Information About Our Traffic Safety Projects

Research in Progress

https://rip.trb.org/

Published Research (RosaP)

https://rosap.ntl.bts.gov/

Thank You!

dereece.smither@dot.gov