

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

MRV – what do we truly know?

Metrology perspective

Jarek Necki

Dep. of Physics and Applied Computer Science AGH – University of Science and Technology

Anatoli Smirnov Sabina Assan

EMBER

Methane Mondays

UNECE

virtual 21.02.2022

Metrology perspective

Emissions

CH₄ area flux (kg/(m²h) CH₄ release rate (kg/h)

CH₄ mole fraction (ppm) CH₄ release (kg)

CH₄ concentration (kg/m³) CH₄ mixing ratio (%)

Each variable – measurement result X – is obtained with uncertainty u(X)

e.g.
$$C = 1.2\%$$
 $u(C) = 0.2\%$

In most cases it means that there is a 68% Chance that real value of C is between 1% and 1.4% But still, there is 1/6 Chance that the mixing ratio is higher

Metrology perspective

CH₄ measurements – Precision accuracy

$CH_4(t_i) = C(t_i)$ Flow_rate (t_i)

• If, $C(t_i)=0.3\%$, $F_r(t_i)=10000m^3/min$ and u(C)=0.1% and $u(F_r)=100m^3/min$ then:

 $CH_4(t_i)=30m^3/min$, $u(CH_4(t_i))=10m^3/min$ when aggregated to yearly $CH_4(year)=11\pm8kt$ what means that any declared reduction by 20% can be true only with 50% chance!

$$U(C) = 0.1\%$$

Metrology perspective

Uncertainty

What does affect the uncertainty?

Variability

Precision Accuracy

Conditions

Representativeness in time and space?

Metrology perspective

Different methodology for:

Dusty

Space integration Supersaturation, high CO₂

Incidental emissions APEX requirements

Low mole fractions (2-200ppm) VAM mixing ratio 0 – 2%

Metrology perspective

Measurements techniques

Metrology perspective

20kUSD

What is available?

TDLAS - open path

1pcs

Retroreflectors

5 pcs

Low cost DAS • 10pcs

with bLM or IGM

Low cost •

Semiconductor Sensor

100 pcs

Anemometers 3D

0000

*

Wet conditions

(water trap may be required)

Dry conditions

APEX

MRV - what do we know?

Metrology perspective

Where can we measure?

TDLAS – open path 1pcs ♦
Retroreflectors 1 pcs

Low cost DAS 3pcs with bLM or IGM

Anemometers 3D (lowest level and outside)

Low cost Semiconductor Sensor 10 pcs •

Anemometers or Pitot tubes

Tracer release (ocassionally)

↑ The highest gallery input

Metrology perspective

Models

Wherever we can't do direct measurements

Lagrangian models
bLS
Follows the single particles
good for point receptor

Gaussian models
IGM
Follows the whole plume (averaged)
good for open path analyser

Metrology perspective

Verification

DIAL (lidar) 0.4M\$ one per country

CEAS (light, MIR)

40k\$ one per institution

DIAL, CEAS (heavy, MIR), ?\$ few per continent

CEAS (mobile, MIR, SWIR)

60k\$ one per institution