

Deploying a text classification service

Instituto Nacional de Estadísticas - Chile

November 2021

Contents

- Motivation
- **2** The model
- **3** Deployment of the model

2. Motivation

Duplicated efforts

Many teams are carring out similar classification tasks

- Occupation Economic activity Production
- Consumption

The challenge

- To create one single platform for text classification
 - datasets
 - methodology (algorithm, quality measures, etc.)
 - programming language

```
a_1, \underbrace{\frac{-6}{2}}_{\text{sup}} = \dots 1428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428
```


Building of the datasets

- We created 2 train datasets
 - Economic activity
 - Occupation
- Trained analysts labelled records
- ~ 50.000 records for economic activity
- ~ 30.000 records for occupation
- 90% of records was labelled twice

2. The model

- 4 strategies were tested and the selected one was:
 - Neural net with GRU architecture
 - Spanish word embeddings for text representation

Economic activity (1 digit classification)

modelo	acc	macro	micro	weighted
seq_1d	0.9384	0.8757	0.9384	0.9386
tfidf_1d	0.9327	0.8658	0.9327	0.9330
emb_simple_1d	0.9274	0.8641	0.9274	0.9280
emb_gru_1d	0.9327	0.8694	0.9327	0.9328

https://github.com/dccuchile/spanish-word-embeddings

Occupation (1 digit classification)

modelo	acc	macro	micro	weighted
seq_1d	0.8858	0.8599	0.8858	0.8855
tfidf_1d	0.8684	0.8362	0.8684	0.8686
emb_simple_1d	0.8793	0.8519	0.8793	0.8807
emb_gru_1d	0.8989	0.8796	0.8989	0.8990

- 4 models were created
 - Occupation 1 digit
 - Occupation 2 digits
 - Economic activity 1 digit
 - Economic activity 2 digits

https://github.com/inesscc/ineclassifiers

Sharing the models

keras::save_model_hdf5(model, "awesome_model")

Dependencies

 Also, sometimes it is neccesary to create a virtualenv in a specific directory

Dependencies

- Even in the case the user is able to install the dependencies, the output may not be the same
 - R version
 - Packages version
 - OS

Dependencies and reproducibility

2. Deployment

First idea: R package

R package (library) containing the model

Better than sharing the raw files

This strategy still relies on the user setup

Upload the model to a server with all the dependencies

We can provide a service through an API

The user needs only a tool to make a requests

["aseador en oficinas", "médico clínica Las Condes"]

```
library(httr)
library(feather)
caenes <- read_feather("src/data/split_train_test/test.feather")</pre>
request <- httr::POST("http://143.198.79.143:8080/predict",
                 encode = "ison",
                 body = list(text = caenes$glosa_caenes[1:10],
                               classification = "caenes",
                               digits = 1
httr::status_code(request)
response <- httr::content(request)</pre>
```

```
[[1]]
[[1]]$codigo_int
[1] 13
[[1]]$cod_final
[1] "N"
```


Adventages of this solution

- The user does not requiere any dependence
- The output will be always the same (reproducibility)
- Different programming languages

Efficiency considerations:

- The government has a duty to reduce the public expenditure
- •We have to avoid duplicated efforts and expand the automation
- •We are exploring the posibility to open this API to provide a service to the general public (statistical offices, universities, NGOs, private sector).

Technical considerations:

- We have to keep in mind the harmonization across the official statistics
- It is very important monitoring changes in the fieldwork methodologies (questionnaires, data collection conditions, etc).
- Our predictions can be affected by those changes.

- kilehmannm@ine.gob.cl: Klaus Lehmann Senior Analyst
- ifaglonij@ine.gob.cl: Ignacio Agloni Project Manager
- https://github.com/inesscc

THANKS GRACIAS

