
# Establishment of the national training center for nearly Zero Energy Buildings (nZEB)



Energy Institute Hrvoje Požar



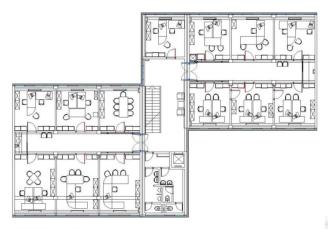
#### **Structure and timeline of PDP-nZEB**





#### **Project components**

- Component 1 Project management
- Component 2 Analysis of the current state of the building and development of the new nZEB design
  - Energy audit in progress (pending cost optimal analysis for energy efficiency measures)
  - Feasibility studies (HVAC system in development, building digitalization and energy storage system in process of approval)
  - Detailed analysis of the structure seismic analysis (Faculty of Civil Engineering)
  - Building main design for deep retrofit
- Component 3 Deep retrofit of an existing public building to achieve the nZEB standard
- Component 4 Establishment of the National training center for nZEB




#### About the building

- Office building (5 floors + basement)
- 85 employees
- Usage time: 8-10 hours/day, 5 days/week

| Useful heated area              | $A_k$   | m²              | 2.061    |
|---------------------------------|---------|-----------------|----------|
| The volume of the heated area   | V       | m <sup>3</sup>  | 6.998,70 |
| Heated air volume               | $V_{e}$ | m <sup>3</sup>  | 5.670,25 |
| Total area of building envelope | $A_f$   | m <sup>2</sup>  | 2.320,30 |
| Building shape factor           | $f_0$   | m <sup>-1</sup> | 0,33     |





TLOCRT 3. KATA



#### Thermal characteristics of the building envelope

| Index                                                    | Surface area (m²)   | U (W/m²K) | U <sub>max</sub> (W/m <sup>2</sup> K) |
|----------------------------------------------------------|---------------------|-----------|---------------------------------------|
|                                                          | Carrace area (iii ) |           | According to legislation              |
| VZ1 – exterior wall ventilated with glass paneling       | 400,70              | 0,37      | 0,30                                  |
| VZ1 - external wall ventilated with sheet metal cladding | 355,96              | 0,36      | 0,30                                  |
| VZ2 - stone                                              | 99,70               | 0,36      | 0,30                                  |
| ST – ceiling towards the unheated attic                  | 395,9               | 0,29      | 0,25                                  |
| SN – ceiling above unheated space                        | 135,62              | 0,29      | 0,40                                  |
| ZN – wall towards unheated space                         | 25,63               | 0,32      | 0,40                                  |
| ZT – wall to ground                                      | 130,76              | 4,08      | 0,40                                  |
| PD - floor on the ground                                 | 256,15              | 0,59      | 0,40                                  |
| PR1 – windows                                            | 461,60              | 1,43      | 1,60                                  |
| PR2 - windows with fixed sunshades                       | 15,20               | 1,43      | 1,60                                  |
| VV – outer doors                                         | 29,30               | 1,43      | 2,00                                  |
| VN - doors to unheated space                             | 3,36                | 1,80      | 2,00                                  |



#### **DISTRICT HEATING SYSTEM**

- nominal heat power of the building district heating substation 250 kW – plate heat exchanger Alfa Laval
- source of thermal energy <u>for space</u> <u>heating</u> and <u>domestic hot water</u> <u>preparation</u> (only for sanitary purposes)
- indirectly heated hot water storage heater of nominal capacity 120 L
- recirculation line with recirculation pump (56 W) operating 24 hours/day
- expansion vessel

Indirectly heated hot water storage heater of nominal capacity 120 L



Indirect type of district heating substation in the basement of the nominal heat power 250 kW (manufacture date 2000.)









#### HEATING DISTRIBUTION SUBSYSTEM

- two pipe heating system with lower distribution piping
- main distributor in the building substation with 4 heating circuits:
  - 11 radiators
  - 22 heaters of air handling units
  - 33 fan coils east
  - 44 fan coils west
- fixed speed pumps



Main hot water distributor in the building substation with 4 heating circuits





Vertical exposed and concealed two-pipe fan coil units

Panel radiators in sanitary facilities

- **HEATING EMISSION SUBSYSTEM**
- 81 two-pipe fan coil units thermal output 255,99 kW (45/40°C)
- 14 panel radiators without thermostatic valves thermal output 11,20 kW (90/70°C)



#### **COOLING GENERATION SUBSYSTEM**

air-cooled chiller, manufacturer CIAT model ILK 400A (build year 2000.) cooling capacity 99,6 kW, electrical power input 36,1 kW (*EER* = 2,76)  $R22 \rightarrow R417A$ 

4 individual air conditioners (split air conditioners)

Air-cooled chiller, manufacturer CIAT model ILK 400A (build year 2000.) cooling capacity 99,6 kW, electrical power input 36,1 kW (EER = 2,76) Refrigerant R22 → R417A











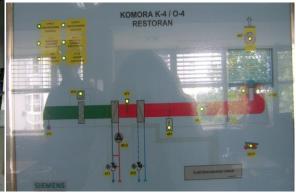
4 split air conditioners





#### **COOLING DISTRIBUTION SUBSYSTEM**

- main distributor with 3 cooling circuits:
  - 11 coolers of air handling unit
  - 22 fan coils east
  - 33 fan coils west
- steel pipes thermally insulated in bad condition → corrosion problems




Main COLD water distributor with 3 cooling circuits









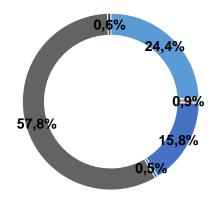
|   | AHU                | Manufacturer | Design<br>volume air<br>flow rate –<br>SUPPLY<br>DUCT,<br>[m³/h] | Design<br>volume<br>air flow<br>rate –<br>RETURN<br>DUCT,<br>[m³/h] | Heat<br>recovery<br>system<br>YES=1,<br>NO=0 | Type of<br>heat<br>recovery<br>system | Sensible heat<br>recovery<br>efficiency, [-] | Heating<br>capacity of<br>heating<br>coil [kW] | Cooling<br>capacity of<br>cooling<br>coil [kW] | El. power<br>of supply<br>air fan,<br>[kW] | El. power<br>of exhaust<br>air fan,<br>[kW] | Build<br>year |
|---|--------------------|--------------|------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------|---------------------------------------|----------------------------------------------|------------------------------------------------|------------------------------------------------|--------------------------------------------|---------------------------------------------|---------------|
| 1 | KK Multimedijalna¹ | PROKLIMA     | 3.500                                                            | 3.500                                                               | 1                                            | Cross-flow<br>plate<br>recuperator    | 0,63 –<br>summer<br>0,703 winter             | 38,2                                           | 24                                             | 1,80                                       | 1,20                                        | 2000          |
| 2 | KK Biblioteka      | PROKLIMA     | 1.500                                                            | 1.500                                                               | 0                                            | -                                     | -                                            | 25                                             | 8                                              | 1,10                                       | 0,55                                        | 2000          |
| 3 | KK Banka           | PROKLIMA     | 1.500                                                            | 1.500                                                               | 0                                            | -                                     | -                                            | 25                                             | 8                                              | 1,10                                       | 0,55                                        | 2000          |
| 4 | KK Restoran        | PROKLIMA     | 700                                                              | 700                                                                 | 0                                            | -                                     | -                                            | 8,8                                            | 5                                              | 0,25                                       | -                                           | 2000          |
|   | TOTAL              |              | 7.200                                                            | 7.200                                                               | 1                                            |                                       |                                              | 97                                             | 45                                             | 4,25                                       | 2,30                                        |               |



#### Lighting system

Lighting system power [kW]
Lighting power density [W/m²]

| Туре                                                      | Number | Power [kW] |
|-----------------------------------------------------------|--------|------------|
| Halogen lighting                                          | 234    | 12,06      |
| Compact fluorescent lighting with electromagnetic ballast | 12     | 0,46       |
| Compact fluorescent lighting with electronic ballast      | 318    | 7,83       |
| Fluorescent lighting with electromagnetic ballast         | 5      | 0,25       |
| Fluorescent lighting with electronic ballast              | 541    | 28,65      |
| LED lighting                                              | 34     | 0,29       |
| Ukupno                                                    | 1.144  | 49,54      |




49,54

#### Target 7



- Compact fluorescent lighting with electromagnetic ballast
- Compact fluorescent lighting with electronic ballast
- Fluorescent lighting with electromagnetic ballast
- Fluorescent lighting with electronic ballast
- LED lighting

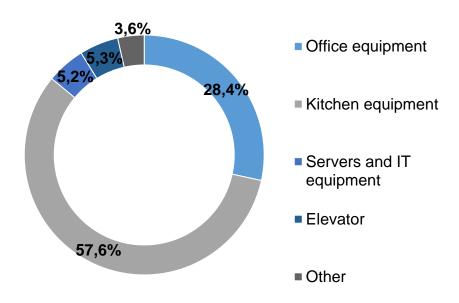






#### Other electrical equipment

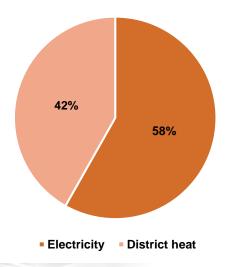
Power of other electrical equipment [kW]

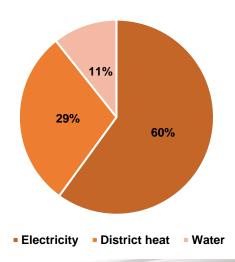

Power density of other electrical equipment [W/m<sup>2</sup>]

| Туре                     | Number | Power [kW] |
|--------------------------|--------|------------|
| Office equipment         | 213    | 19,47      |
| Kitchen equipment        | 16     | 39,43      |
| Servers and IT equipment | 33     | 3,56       |
| Elevator                 | 1      | 3,60       |
| Other                    | 15     | 2,44       |
| Ukupno                   | 278    | 68,50      |



68,50

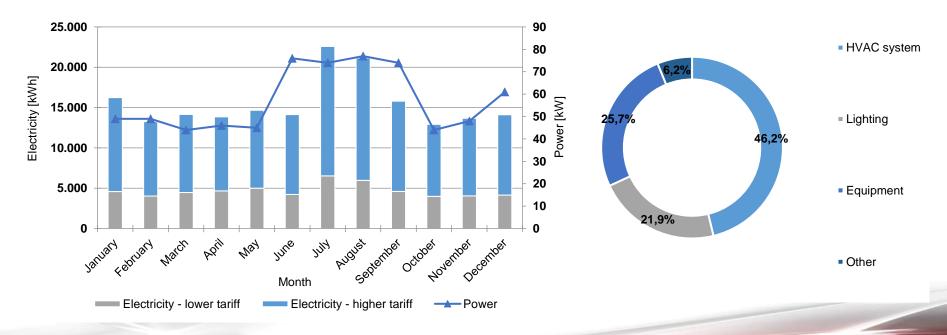

33,24






## Energy consumption

|               |                | Baseline values |             |            |                 |  |  |
|---------------|----------------|-----------------|-------------|------------|-----------------|--|--|
| Energy        | Unit           | Consumption     | Consumption | Costs      | CO <sub>2</sub> |  |  |
|               |                | [unit/a]        | [kWh/a]     | [kn/a]     | [t/a]           |  |  |
| Electricity   | kWh            | 186.539,00      | 186.539,00  | 155.200,23 | 43,837          |  |  |
| District heat | kWh            | 134.000,00      | 134.000,00  | 75.844,35  | 46,364          |  |  |
| Water         | m <sup>3</sup> | 1.051,50        | -           | 27.628,81  | 0,236           |  |  |
| Ukupno        |                |                 | 320.539,00  | 258.673,39 | 90,437          |  |  |








#### Electricity consumption

| Total power [kW]                                  | 221,53   |
|---------------------------------------------------|----------|
| Total power density [W/m <sup>2</sup> ]           | 107,49   |
| Electricity consumption per surface area [kWh/m²] | 90,51    |
| Electricity consumption per employee [kWh/person] | 2.194,58 |






Annual thermal energy consumption:

134.000,00 kWh/a

**Annual water consumption:** 

1.051,50 m<sup>3</sup>/a

87,63 m<sup>3</sup>/month



space heating [kWh]

domestic hot water preparation [kWh]

72,09 %

27,91 %



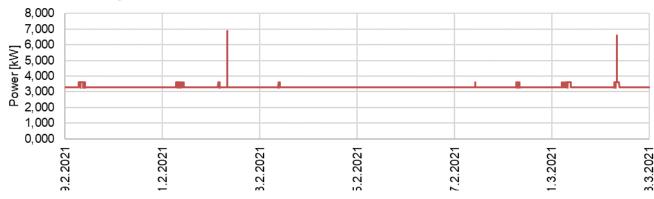
#### Energy performance certificate


| Needed energy for heating Q" <sub>H,nd</sub> [kWh/(m <sup>2</sup> a)] | Needed primary<br>energy <i>E</i> <sub>prim</sub><br>[kWh/(m²a)] | Energy performance rating – energy needed for heating Q" <sub>H,nd</sub> | Energy performance rating – primary energy $E_{\text{prim}}$ |
|-----------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------|
| 38,66                                                                 | 156,14                                                           | В                                                                        | F                                                            |

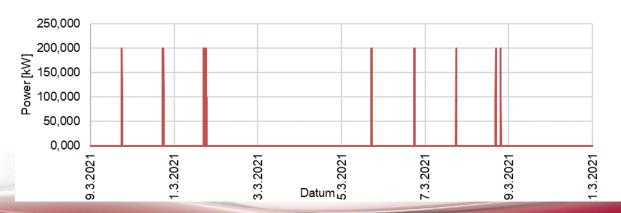
- Energy needed for heating: 76.540,66 kWh/a
- Energy needed for cooling: 52.338,59 kWh/a
- Energy needed for DHW: 3.717,95 kWh/a
- Energy needed for lighting: 74.890,31 kWh/a



#### Consumption measurements


Electricity for whole building

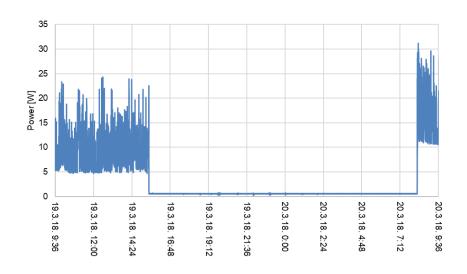





#### Consumption measurements

Heating pumps




Lighting system in hallway



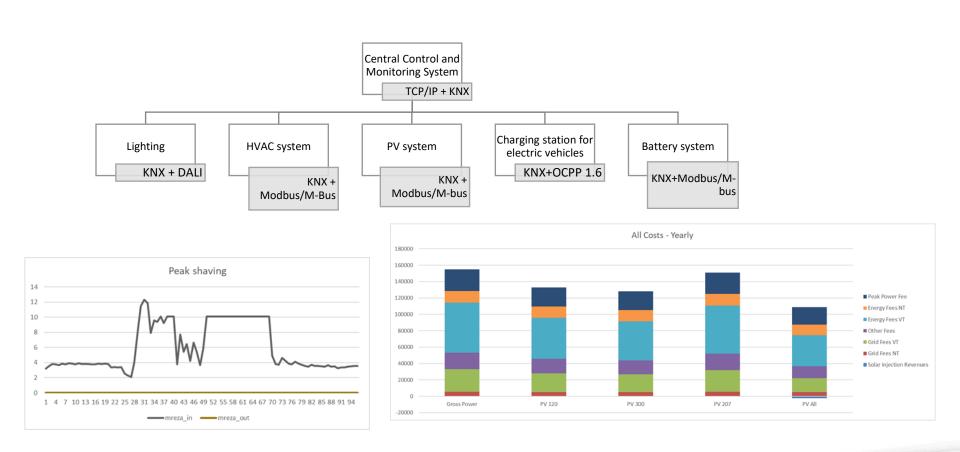


#### Consumption measurements

- Lighting system for toilet
- Fan coil
- Printer and photocopier
- Display (monitor)
- Laptop
- Servers

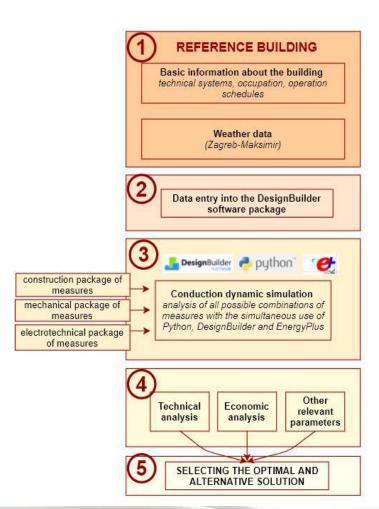


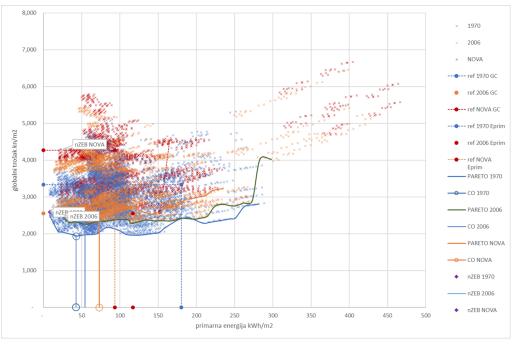
To align the building model with the actual usage




#### **Feasibility studies**

- Feasibility study of integration of photovoltaic system, battery system and charging stations for electric vehicles and digitalization of building systems – in process of approval
  - Determining the optimal technology and functionality of the integrated photovoltaic power plant system, stationary battery system and charging stations for electric vehicles
  - Determining the basic preconditions and proposing options for the introduction of a digital system for integrated monitoring and management of individual building systems
- Selection of the optimal software solution for lighting management drafted
- Selection of the optimal technical solution of the HVAC system in a set of different variants of thermal protection of building envelope and lighting system solutions – drafted





#### Feasibility studies - PV, battery and digitalization





#### Feasibility studies - HVAC optimal solution









**Energy Institute Hrvoje Požar Savska cesta 163, Zagreb, Croatia** 

T: + 385 99 5326 276

mvajdic@eihp.hr www.eihp.hr