

Migration based on the observed behaviour of travellers

New Zealand's approach to administrative data driven migration estimates

Conditions conducive to measuring outcomes

Stats Paraga Actor 202

- Awareness of intentions limitations
- Changing nature of migration
 - Temporary visas
 - Migrants making multiple border crossings
- Ability to link arrival and departure records
 - Availability of linking variables
 - Linking methodology/techniques have improved
 - IT grunt
- Growing volume of border crossings
- Proposed removal of the departure card

How outcomes-based approaches work

- Identify unique individuals in the border-crossing data
- Construct a 'travel history' for each person
 - Link together all arrivals and departures for the same person
- Apply a classification rule
 - Classify each arrival/departure as a 'migrant' vs 'not migrant'
- 12/16 month rule is one outcomes-based approach

The 12/16 month rule

Overcoming the loss of timeliness via prediction

- New Zealand customers cannot wait over 16 months for migration measures
 - They expect results about 1 month after the reference period
- To apply the 12/16 rule to a border crossing, we potentially have to wait
 16 months after a border crossing has occurred
- Of all border-crossings (pre-COVID) only around 1 2% were migrant crossings
- Can we predict the classifications these crossings?

Unit record modelling with machine learning

- Machine learning approach to border classification at unit record level
- A gradient-boosted classifier is used, specifically implemented through XGBoost
 - An implementation of boosted trees
 - The algorithm is known to perform well in classification problems
- For each unresolved crossing, classifier estimates probability that it's a migrant crossing
- Integrates some model uncertainty by running model on several subsamples of training data

Machine learning model features

- Days observed: Days passed since the border-crossing occurred
- Days in country: Days in New Zealand since border-crossing
- Count future total: Border-crossings after the one to be classified
- Direction, age, sex, visa type, citizenship region, month of the year

Example of overall estimate performance

Provisional migration estimates

Migration estimates by direction, rolling annual, October 2017 to April 2019, published January to June 2019

Published dates: 25 Jan (Nov 18 month) 15 Feb (Dec 18 month) 15 Mar (Jan 19 month) 12 Apr (Feb 19 month) 14 May (Mar 19 month) 12 Jun (Apr 19 month)

A few concluding remarks & customer/user perspective s.

- Stats NZ
- New Zealand uses daily border-crossing data to measure migration
- An outcomes based method, which relies on time spent in/out of the country is used – purely a population concept
 - Independent of legal status, visa type, or other such considerations
 - Independent of the intentions of the traveller it's simply based on their behaviour
- NZ Customers require timely (around 1 month elapsed time) migration estimates – we use a machine learning model to provide this

Thank you, questions?

