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Abstract 

Measurement of price change and hedonic price index numbers are based on averages. As NSIs obtain scanner 

data having varying content, question arises: what is the most correct average to use?  

We investigate differences of two price change estimates. We show that the differences can be expressed by 

covariances between weight differences of given two ’averages’ and changes of log-prices. All analysis is done 

in logarithmic scale. This way these ‘averages’ can be compared pair wisely in order to show their relation. 

First, we show that excellent index numbers are practically independent of weighting. This means that any of 

the excellent index number formula may be selected as benchmark. Then we calculate differences of any given 

average with respect to our benchmark estimate. If the covariances and especially their differences are always 

close to zero, then the analyzed average is appropriate for estimating the price change. Our previous tests have 

revealed that quantities consumed may change even more than tenfolds between compared periods; thus 

causing serious bias for price change estimate based on some subgroup averages. We show that when quantities 

change substantially and not proportionally, it introduces a significant bias in the index calculations. Therefore 

finally, we test a hedonic method in order to remove quantity changes from the actual log-price change 

separately for the basic averages. The statistical analysis of our data is based on graphical presentations and 

mathematical analysis is presented mostly in our earlier papers. 

 

 

 

 

 

 

 

 



 

1  Introduction 

 

Current state 

Starting from year 2017, Statistics Finland has introduced new data sources to the production of CPI and HICP. 

These new data sources are based on either transaction (consumer purchases of daily products and 

pharmaceutical products recorded at point of sales) or on operative data covering service sales, such as charges 

of mobile phone subscriptions and internet broadband. Introduction of the data regarding daily products have 

been quite straightforward since one of our main principles, matching-pair-comparison works well. All 

products are identified with the unique identifier, GTIN-code or VNR-code. Thus, one may follow identified 

product for longer periods, for example several years and quality of product remains static.   

Challenges and aim of the study 

As we have already acquired quite much practice with processing of scanner datasets and now we want to 

proceed to new problems. Hence our aim is to replace some of the existing parts of traditional field collection 

with new groups of commodities like durables and consumer goods. How to perform this as we face new 

problems in the obtained scanner datasets? Below is a list of common challenges in datasets: 

• scanner datasets may have differing set of information. Some scanner datasets may be called as 

complete datasets containing all needed information (prices, values, quantities, features, register 

information, categories) for various types of index calculations. Others contain limited information 

having either sales value with quantities but without characteristics, or only prices without any other 

information. 

• commodities have differing characteristics, meaning that in some cases product quality remains quite 

stable as time goes on, while some products and single items “age” faster that others due to the 

technical development or fashion. Examples of these are eggs (stable), women’s clothes (fashion) and 

mobile phones (technical development). New products having more advanced technical features 

replace older models from markets even though the older products are still usable.  

We also have various methods available for the calculation of price change. Selection of method depends on 

the content of scanner-data and characteristics of commodities. If obtained scanner-datasets contain all needed 

information, we may follow the traditional matching-pairs principle and calculate price-ratios by uniquely 

identified products. When we recognize higher churn of product items, faster aging of products or clear 

improvement of product quality, it means pair-matching is not possible anymore. In these situations, we have to 

select another method like hedonic model for quality control or averages for product groups.  

In this paper, our aim is to focus on these alternative methods that could be used for calculating pure price-

ratios. In the following tests, we use so called complete dataset containing monthly observations of alcoholic 

beverages: their unit prices, sold quantities, some product features and retail-specific categories. By using 

complete dataset in test calculations, it enables adoption of alternative methods. 

The design of study 

All index number formulas and price change statistics have their most popular representations. Unfortunately, 

comparison between them is quite hard task for most statisticians. Normally the relationships cannot be seen 

directly (for example index numbers compared to statistics based on basic averages i.e. elementary aggregates). 

How could we compare different price change estimates and select the best one? Experts suggest different 

methods: Balk (1990) suggest to use axiomatic index number theory, Diewert  (1976, 1978) superlative index 

numbers, Vartia (1976a, 1976b, 1978) ideal log-change index numbers, Pursiainen (2005) consistent 

aggregation and index numbers, Vartia and Suoperä (2017, 2018) excellent index numbers. It is time to 

simplify confusing issue by generalizing the problem.  



 

So, we present most known index numbers and other price change statistics by their logarithmic representations 

of averages. Logarithmic arithmetic averages were presented in paper Suoperä (2006), Vartia and Suoperä and 

Vuorio (2019), Laspeyres and Paasche in paper Vartia (1976) and even Fisher may be presented in logarithmic 

form. This means that as these logarithmic representations are available, we can then calculate for example 

‘Törnqvist averages’1, ‘Montgomery-Vartia averages’, weighted and unweighted arithmetic and geometric 

averages in logarithmic form. Finally, we calculate also pair-wise differences between them to get information 

how they deviate and are related with each other. 

In this study, we show empirically different averages in logarithmic form, their standard deviations and 

especially their covariances. We also show that the hedonic quality correction for quantities consumed do not 

help to remove serious bias for price change estimate based on some subgroup averages.  

The implementation of study 

There is no rule how to weight price observations for base and observation periods, so we trust in index number 

theory. We divide our problem into four steps and proceed as follows:  

1. we compare six excellent index numbers and select a benchmark index 

2. we calculate basic index numbers and compare with benchmark 

3. we calculate basic averages, weighted or not, and compare with the benchmark index 

4. we calculate quality adjusted averages and compare with benchmark.  

The structure of the study is as follows: In chapter two we present basic concepts, notations, description of the 

data and show logarithmic representations for index number formulas and for basic averages. In chapter three 

we compare different index number formulas and basic averages or ‘quality adjusted averages’ derived with 

hedonic method. This study is based on some important equations but most often their graphical presentations.  

 

2  Notations, Test Data, Index Number Formulas and Price Aggregation 
of Averages 

2.1  Notations 

 

Our notation in this study uses familiar notations used in index number calculations, that is  

 

Commodities: 𝑎1, 𝑎2, … , 𝑎𝑛𝑡
 and the number 𝑛𝑡 in this study is about 3300 - 4100.  

Time periods: t = 0, 1, 2, … are the compared situations and are months (years 2016 – 2019).  

Quantity: 𝑞𝑖
𝑡 is the quantity of 𝑎𝑖 in period t. 

Value: 𝑣𝑖
𝑡 is the value (expenditure) of 𝑎𝑖 in period t. 

Unit value: 𝑝𝑖
𝑡 = 𝑣𝑖

𝑡 𝑞𝑖
𝑡⁄   is the unit price of 𝑎𝑖 in period t. 

Total value: 𝑉𝑡 = ∑ 𝑣𝑖
𝑡

𝑖  is the total value (expenditure) of all the commodities in period t. 

Total quantity: 𝑄𝑡 = ∑ 𝑞𝑖
𝑡

𝑖  is the total quantity of all the commodities in period t. 

Price relatives: 𝑝𝑖
𝑡/0

= 𝑝𝑖
𝑡 𝑝𝑖

0⁄  is the price relative of 𝑎𝑖 from period 0 to t. 

Quantity relatives: 𝑞𝑖
𝑡/0

= 𝑞𝑖
𝑡 𝑞𝑖

0⁄  is the quantity relative of 𝑎𝑖 from period 0 to t. 

Value relatives: 𝑣𝑖
𝑡/0

= 𝑣𝑖
𝑡 𝑣𝑖

0⁄   is the value relative of 𝑎𝑖 from period 0 to t. 

Value shares: 𝑤𝑖
𝑡 = 𝑣𝑖

𝑡 ∑ 𝑣𝑖
𝑡

𝑖⁄  is the value share of ai  in period t.  

Price index number: 𝑃𝑓
𝑡/0

 is the price index number for price-link 0 → t and formula f. 

Quantity index number: 𝑄𝑓
𝑡/0

 is the quantity index number for price-link 0 → t and formula f. 

 
1 With the term “average” we highlight that also index numbers belongs to the category of averages. 



 

2.2  Description of Test Data 

 

The following Table 1 demonstrates the content of typical complete micro data. It presents one subgroup k 

including n commodities, alcoholic beverages, that are comparable in quality in time. The base period is the 

previous year normalized as an average month. An observation in scanner-data contains unit prices (𝑝𝑖
𝑡, 

euro/liters), quantities (𝑞𝑖
𝑡, liters) and expenditures (𝑣𝑖

𝑡, euro) for the base period (i.e. t = 0) and for the 

observation month of a current year(i.e. t = 1) . 

 

Commodities are arranged based on the information content: disappearing commodities are put to category A, 

new to C and all other that are constantly in sale to B. Commodities in group A and C are called as ‘one sided 

null values’. Most often “complete” scanner-datasets that NSI’s obtain have one-sided null-values – the life 

cycle of the commodities decides what is relative share of expenditures for commodities belonging into 

categories A and C. As a warning, categories A and C have nothing to do with quality change but are 

‘vanishing commodities forward or backward in time’. Bilateral price-links can be calculated for group B and 

hedonic method is applied for data where bilateral price-links cannot be formed (groups A and C). 

 

Table 1: Description of data containing price observations of alcoholic beverages 
 

        Base period, t=0 Observation period, t=1 

Subgroup k ID-code 
Retail specific 
classification coicop 5 p q v p q v 

A 912727 F110 Non-alcoholic wines 
                             

18            2          36   .   .   .  

A 004696 C130 Wine 
                             

10          32        320   .   .   .  

… …                 

A 007123 C130 Wine 
                            

12          61        732   .   .   .  

B 429674 F110 Non-alcoholic wines 
                             

13       445   5 785  
           

12  1 192  14 304  

B 429677 F110 Non-alcoholic wines 
                             

11        265     2 915  
           

11  
        

523       5 753  

… …                 

B 007131 C130 Wine 
                             

13        922   11 986  
           

14  
        

833     11 662  

C 417217 F110 Non-alcoholic wines       
             

8  
          

43          344  

C 466367 C112 Wine       
           

17  
          

32          544  

… …                 

C 421937 C130 Wine       
           

13  
        

116       1 508  

 

We use the following economic facts and methods for the data above: 

1. Disappearing commodities simply means that consumption, production, selling or buying has come to 

end. New commodities mean that economic activity starts first time in the observation period.  

What kind of effects these commodities belonging into categories A and C should have for a 

subgroup k index number? Interpreting Pursiainen for vanishing commodities (time 

forwards): ‘This condition states that the expenditure on a commodity tends to zero, then its 

effect on the index should vanish’ (Pursiainen, 2005, pp. 32-33).  

  



 

2. For index number formulas satisfying the time reversal test (i.e. TRT) the condition may be reversed in 

time such that it should hold also for new commodities. In empirical analysis we impute missing 

quantities by small amount of quantities, say numbers 0.01 liters or even smaller, to prevent their effect 

on index number independently how missing prices have been imputed. We show that the excellent 

index numbers yield almost identical estimates and the basic index numbers are contingently biased. 

3. We derive logarithmic presentations for all averages (including elementary aggregates) and show their 

inferiority in estimating price changes compared to benchmark statistic (i.e. excellent index number). 

We point out that the order of the calculation matters: First calculate relative change and then 

aggregate. Changing this order leads to serious bias. 

4. It is sometimes thought that seriously biased price change estimates derived from some relative change 

of averages can be corrected by a hedonic method. This means simply that we remove the quality 

correction form actual price change of averages (see Vartia, Suoperä and Vuorio, 2019, Suoperä and 

Vuorio, 2019). We show that for our data the price models based on heterogeneously behaving cross-

sections or time series econometric models applied for panel data are not practicable – price change 

estimates based on averages remains biased even after the quality correction of quantities is applied. 

 

All analysis is done in logarithmic scale which enables the comparison of different methods. 

 

2.3  Index Number Formulas 

 

In this study all index number formulas are based on their logarithmic representation, that is 

 

(1) 𝑙𝑜𝑔 (𝑃𝑓
1 0⁄

) = ∑ 𝑤𝑖,𝑓 ∙ 𝑙𝑜𝑔(𝑝𝑖
1) − ∑ 𝑤𝑖,𝑓 ∙ 𝑙𝑜𝑔(𝑝𝑖

0) =𝑖𝑖 ∑ 𝑤𝑖,𝑓 ∙ 𝑙𝑜𝑔(𝑝𝑖
1 𝑝𝑖

0⁄ )𝑖  

 

As we see, the index number is based on ‘averages’ calculated for base and observation periods. In Table 2 we 

give weights (𝑤𝑖,𝑓) for most known index number formulas (sub index f).  

 

The logarithmic presentation of formulas enables the comparison of different formulas by calculating 

deviations between them. The deviations between them is validated by simple algebra leading to covariances 

(or very close approximation of covariances) between, generally saying, weight differences and log-change of 

prices. Table 2 shows us that all 10 formulas looks similar and differ only by weighting. Six of them (T, l, p and 

W excluded), even Fisher, have been defined by logarithmic mean (see Vartia, 1976). The logarithmic 

representation of Stuvel have developed by Pursiainen (2005, pp. 88). Like Pursiainen noted, Stuvel and 

Montgomery-Vartia are closely connected - the weights of the Stuvel decomposition are based on the 

arithmetic averages of quantities and the weights of Montgomery-Vartia are based on the actual quantities 

instead. (Pursiainen, 2005, pp. 88).  

 

Because log-changes are additive and symmetric, all index numbers f can be expressed by their corresponding 

‘averages’. This form is used when ‘optimal weighting for index number’, say Törnqvist weighting, is compared 

for example with different basic averages (i.e. arithmetic and geometric averages of prices) calculated for base 

and observation periods. 

 

  



 

Table 2: Weights for the most known index number formulas in logarithmic form (see Vartia & 
Suoperä, 2017, 2018). 

Basic formula 

Symbol and name of formula Weights of the formula 

Laspeyres, f = La 𝑤𝑖,𝑓 = 𝑤𝑖,𝐿𝑎
0 = 𝐿(𝑝1𝑞0, 𝑝0𝑞0)2 

log- Laspeyres, f = l 𝑤𝑖,𝑓 = 𝑤𝑖,𝑙
0 = 𝑣𝑖

0 𝑉0⁄  

log-Paasche, f = p 𝑤𝑖,𝑓 = 𝑤𝑖,𝑝
1 = 𝑣𝑖

1 𝑉1⁄  

Paasche, f = P 𝑤𝑖,𝑓 = 𝑤𝑖,𝑃
1 = 𝐿(𝑝1𝑞1, 𝑝0𝑞1) 

Excellent formula 

Törnqvist, f = T 𝑤𝑖,𝑓 = 𝑤̅𝑖,𝑇 = 0.5 · (𝑤𝑖
0 + 𝑤𝑖

1) 

Sato-Vartia, f = SV 
𝑤𝑖,𝑓 = 𝑤̅𝑖,𝑆𝑉 =

𝐿(𝑤𝑖
1, 𝑤𝑖

0)

∑ 𝐿(𝑤𝑖
1 , 𝑤𝑖

0)
 

Montgomery-Vartia, f = MV 𝑤𝑖,𝑓 = 𝑤̅𝑖,𝑀𝑉 = 𝐿(𝑝1𝑞1, 𝑝0𝑞0) 

Fisher, f = F 𝑤𝑖,𝑓 = 𝑤̅𝑖,𝐹 = 0.5 · (𝐿(𝑝1𝑞0, 𝑝0𝑞0) + 𝐿(𝑝1𝑞1, 𝑝0𝑞1)) 

Walsh, f = W 𝑤𝑖,𝑓 = 𝑤̅𝑖,𝑊 = (𝑤𝑖
0 · 𝑤𝑖

1)
1/2

 

Stuvel, f = S 𝑤𝑖,𝑓 = 𝑤̅𝑖,𝑆 = 𝐿(𝑝1𝑞̅, 𝑝0𝑞̅) 

 

2.4 Aggregation of Basic Averages 

 

We call unweighted and weighted arithmetic and geometric means as basic averages. In this study, we use their 

logarithmic representations. The analysis of price aggregation in logarithmic form is presented in Suoperä 

(2006, Appendix) and Vartia, Suoperä and Vuorio (2019, Appendix). Aggregation of arithmetic averages is 

based again to the logarithmic mean. Different averages for prices may be presented as  

 

(2) 𝑙𝑜𝑔(𝐴𝑚(𝑝𝑡, 𝑤𝑚)) = ∑ 𝑤𝑖,𝑚 ∙ 𝑙𝑜𝑔(𝑝𝑖
𝑡)𝑖  

 

where sub index m marks different averages (i.e. m = a, aw, g and gw, see Table 3 below). 

 

Table 3: Weights for basic averages in logarithmic form (i.e. equation (2)). 

Basic averages, see Suoperä (2005) and Vartia, Suoperä and Vuorio (2019) 

Name and symbol of formula Weights of the formula 

Unweighted Arithmetic Average, m = a 𝑤𝑖,𝑚 = 𝑤𝑖,𝑎
𝑡 = 𝐿(𝑝𝑡 , 1) 

Weighted Arithmetic Average, m = aw 𝑤𝑖,𝑚 = 𝑤𝑖,𝑎𝑤
𝑡 = 𝐿(𝑝𝑡𝑞𝑡, 𝑞𝑡) 

Unweighted Geometric Average, m = g 𝑤𝑖,𝑚 = 𝑤𝑖,𝑔
𝑡 = 1 𝑛⁄  

Weighted Geometric Average, m = gw 𝑤𝑖,𝑚 = 𝑤𝑖,𝑔𝑤
𝑡 = 𝑞𝑖

𝑡 𝑄𝑡⁄  

 

The representation of averages in equation (2) makes possible to compare them with any ‘average’ presented in 

equation (1).  

 
2 L=logarithmic average (Vartia, 1976, p. 128) 



 

3  Empirical Analysis of Differences Between Index Number Formulas 

 

Our data contains about 3300 – 4100 price observations on alcoholic beverages that are comparable in quality. 

We partition these commodities into 41 separate subgroups based on retailer’s categories and analyze 

empirically pair-wise differences between Stuvel (S), Törnqvist (T), Sato-Vartia (SV), Montgomery-Vartia 

(MV), Walsh (W) and Fisher (F). We also show empirically that the basic index numbers – Laspeyres (L), Log-

Laspeyres (l), Paasche (P) and Log-Paasche (p) – are also contingently biased also for this data (Vartia & 

Suoperä, 2018). Our empirical analysis is a simple one – calculate differences between any two index numbers, 

say r and k using equation (1), 

 

(3) 𝑙𝑜𝑔 (𝑃𝑟
1 0⁄

) − 𝑙𝑜𝑔 (𝑃𝑘
1 0⁄

) = ∑ (𝑤𝑖,𝑟 − 𝑤𝑖,𝑘) ∙ 𝑙𝑜𝑔(𝑝𝑖
1 𝑝𝑖

0⁄ )𝑖  

 

The above relation between any two index numbers r and k is interesting - when ∑ 𝑤𝑖,𝑟 =𝑖 ∑ 𝑤𝑖,𝑘 =𝑖 1 

(i.e. 𝐸(𝑤𝑓) = 1/𝑛, for all f = r, k), then the equation (3) reduces to3 

 

(4) ∑ (𝑤𝑖,𝑟 − 𝑤𝑖,𝑘) ∙ 𝑙𝑜𝑔(𝑝𝑖
𝑡 𝑝𝑖

0⁄ )𝑖 = 𝑛 ∙ ∆𝑐𝑜𝑣 {(𝑤𝑖,𝑟 − 𝑤𝑖,𝑘 , 𝑙𝑜𝑔(𝑝𝑖
𝑡))}  

      

The algebra for the equations 3 and 4 is based on well-known property of the covariance, that is 4, 𝑐𝑜𝑣(𝑥, 𝑦) =

𝐸{(𝑥 − 𝐸(𝑥))(𝑦 − 𝐸(𝑦))} = 𝐸{𝑥 − 𝐸(𝑥)} ∙ 𝑦 = 𝐸{𝑦 − 𝐸(𝑦)} ∙ 𝑥 (see Vartia 1979). As was noted in Table 2, 

the weights for six index number formulas, or more precisely their logarithmic forms,  are based on the 

logarithmic mean meaning that ∑ 𝑤𝑖,𝑟 ≤𝑖 ∑ 𝑤𝑖,𝑘 ≤𝑖 1. In practice the sum of weights is normally very close to 

unity and clearly, when the number of commodities increases, the above equation (4) is closely approximated 

also for these index numbers (i.e. 𝐸(𝑤𝑓) ≈ 1/𝑛). What will the equation (4) tell us? If for any two index 

numbers, the 𝑐𝑜𝑣 {(𝑤𝑖,𝑟 − 𝑤𝑖,𝑘 , 𝑙𝑜𝑔(𝑝𝑖
1 𝑝𝑖

0⁄ ))} approach zero, the difference of weights and logarithmic price 

changes are uncorrelated and very likely independently distributed. Practically this means that these two index 

numbers go ‘hand-in-hand’ and either of them can be selected. In this study of alcoholic beverages and their 41 

subgroups, we show that the 𝑐𝑜𝑣 {(𝑤𝑖,𝑟 − 𝑤𝑖,𝑘, 𝑙𝑜𝑔(𝑝𝑖
1 𝑝𝑖

0⁄ ))} approach zero for almost any two excellent 

index numbers like as a rule. We also show that this is not true for any basic index number – they are also here 

contingently biased. Order of our empirical analysis is as follows:  

 

1. We calculate pair wise differences between excellent index numbers and because eq. (4) is almost 

always very close to zero any of them can be selected as benchmark statistics.  

2. We calculate pair wise differences between benchmark statistics and basic index numbers. We show 

empirically that basic index numbers are data contingently biased.  

3. We analyze how the basic averages (arithmetic and geometric) estimate the price changes. The 

comparations are again done pair-wisely between benchmark statistics and these basic averages. We 

show that basic averages are poor statistics for estimating price change for our data.  

4. We study how suitable hedonic quality corrections for basic averages are for estimating price change.  

 

Analysis of differences is based on graphical presentations of index series and their differences in the 

logarithmic scale.  

 

  

 
3 see Suoperä, 2006, pp. 3-6 
4 basic clause of aggregation 



 

3.1  Difference Between Excellent Index Numbers 

 

Our strategy for estimating price changes and constructing index series follows our earlier studies (see Vartia, 

Suoperä, Nieminen and Montonen, 2018a, 2018b). With this strategy the index series are free from chain error. 

We show here graphically the index series for some commodity groups and their differences in log-scale, that is 

eq. (3) and (4).  

 

Most of 41 commodity subgroups behave similarly as group ‘Mild wines=C110’5 in Figures 1 and 2 – 

differences in log-scale are always very close to zero. The most extreme difference for index series constructed 

for excellent index numbers is seen in group ‘Mild wines=C130’. In this group only Sato-Vartia deviates 

‘moderately’ but others are closely related. 

 

Figure 1: Index series for excellent index numbers 

commodity group ‘Mild wines=C110’ from 2016.0 

to 2019.12. 

 
 

Figure 2: Corresponding differences between 

excellent index numbers and Törnqvist in log scale. 

a=S-T, b=MV-T, c=SV-T, d=W-T and e=F-T 

 
 

 

Figure 3: Index series for excellent index numbers 

commodity group ‘Mild wines=C130’ from 2016.0 

to 2019.12. 

 

Figure 4: Corresponding differences between 

excellent index numbers and Törnqvist in log scale. 

a=S-T, b=MV-T, c=SV-T, d=W-T and e=F-T 

 
 

 

The graphs tell more than 30 axioms6 about what index number formula we should select for official statistics 

or at least for this data. We have analyzed differences for 41 subgroups and almost all groups give similar 

results as in Figure 2. Only Sato-Vartia deviates slightly from the other index formulas.  

  

 
5 C110=Champagne, C130=Rosé 
6 CPI manual p.7 Axiomatic and stochastic approaches to index numbers 



 

Practically this means that for all 41 subgroups the 𝑐𝑜𝑣 {(𝑤𝑖,𝑟 − 𝑤𝑖,𝑇 , 𝑙𝑜𝑔(𝑝𝑖
1 𝑝𝑖

0⁄ ))} ≅ 0, r = S, MV, W, F, that 

is, pair-wise differences between weights (𝑤𝑖,𝑟 − 𝑤𝑖,𝑇) and 𝑙𝑜𝑔(𝑝𝑖
1 𝑝𝑖

0⁄ ) are almost surely independently 

distributed and are uncorrelated for these index numbers. The independence may be simply tested by regressing 

log price change on pair wise weight differences.  

 

3.2  Difference Between Excellent and Basic Index Numbers 

 

The following Figures show what data contingently biased index numbers means in practice. Figures 5 and 6 

regarding ‘Mild wines=C110’ show that basic index numbers practically unbiased. For group ‘Mild 

wines=C130’, that is Figures 7 and 8, basic index numbers are already quite biased compared to excellent ones 

(here compared with Törnqvist). 

 

Figure 5: Index series for basic index numbers7 

commodity group ‘Mild wines=C110’ from 2016.0 

to 2019.12. 

 

Figure 6: Corresponding differences between basic 

index numbers and Törnqvist in log scale. a=L-T, 

b=Ll-T, c=Lp-T and d=P-T. 

 
 

 

 

Figure 7: Index series for basic index numbers 

commodity group ‘Mild wines=C130’ from 2016.0 

to 2019.12. 

 

Figure 8: Corresponding differences between basic 

index numbers and Törnqvist in log scale. a=L-T, 

b=Ll-T, c=Lp-T and d=P-T. 

 
 

 

In the other words, the data contingently biased index numbers behave quite nicely for some subgroups but are 

for some other seriously biased. The excellent index numbers mainly are closely related and their deviations 

from the T in log scale are always similar like in Figures 2 - never like in Figure 8. 

 
7 L=Laspeyres, Ll=log-Laspeyres, P=Paasche, Lp=log-Paasche 



 

3.3  Difference Between Excellent Index Numbers and Basic Averages 

 

The basic averages – weighted and unweighted arithmetic and geometric averages (i.e. eq. (2) and Table 3) - 

are useful for statistics but not universally for officially produced price indices. These averages are represented 

also here in logarithmic form so that their comparison with different index numbers may be easily done. The 

analysis of price aggregation is derived in Suoperä (2006, pp. 3-6, and Appendix) and in Vartia, Suoperä and 

Vuorio (2019, Appendix). See analogy also with Vartia (1979) and Suoperä & Vartia (2011, 2017, 2018). The 

basic idea is to compare different averages to ‘optimally weighted averages for index numbers’, say, averages 

of excellent index numbers, that is (see eq (1) and (2) and Tables 2 and 3) 

 

(5) ∑ 𝑤𝑖,𝑚 ∙ 𝑙𝑜𝑔(𝑝𝑖
𝑡) − ∑ 𝑤𝑖,𝑓 ∙ 𝑙𝑜𝑔(𝑝𝑖

𝑡) = 𝑛 ∙ 𝑐𝑜𝑣 {(𝑤𝑖,𝑚 − 𝑤𝑖,𝑓 , 𝑙𝑜𝑔(𝑝𝑖
𝑡))}𝑖𝑖  

 

where  𝑛 ∙is number of observations, sub index m = a, aw, g, gw 8(see Table 3) and f = S, T, MV, 

SV, W, F (see Table 2).  

 

Now we select for example f = T and perform numerical analysis for eq. (5) to get estimates for covariances, 

that is 𝑐𝑘
𝑡 , for all periods and subgroups k in question. There is two possible solutions: the estimates of 

covariances, 𝑐𝑘
𝑡 , will ‘freeze’ into a constant 𝑐𝑘 for a given pair (m, T), for all time periods t and for subgroups 

k, or they do not. First possibility means practically that the differences of the eq. (5) between base and 

observation period, i.e. for price-link 0 → t, will be close to zero. In other words, the consumption pattern of 

quantities consumed in base and observation periods are closely related with the weights of the Törnqvist – 

logarithmic change of average m in question estimates closely the Törnqvist index number. If these differences 

of covariances deviates significantly from zero, the average m in question is not useful as price change statistic.  

 

The equation (5) have another logarithmic representation, which more explicitly tells how the difference of (5) 

can be explained. This can be presented most simply for the weighted arithmetic average for commodity 

subgroup k (i.e. unit values for subgroup k), that is 

 

(6) 𝑙𝑜𝑔 (
𝑉𝑡

𝑄𝑡

𝑉0

𝑄0⁄ ) − 𝑙𝑜𝑔 (𝑃𝑓
𝑡 0⁄

) =  𝑙𝑜𝑔(𝑉𝑡 𝑉0⁄ ) + 𝑙𝑜𝑔(𝑄0 𝑄𝑡⁄ ) − 𝑙𝑜𝑔 (𝑃𝑓
𝑡 0⁄

) 

In the left side we have difference between the logarithmic change of weighted arithmetic averages and the 

logarithmic change of some excellent price index number. When the index number f decomposes precisely the 

total value change into price and quantity changes (here in log scale, i.e. 𝑙𝑜𝑔(𝑉𝑡/0) = 𝑙𝑜𝑔(𝑃𝑡/0) + 𝑙𝑜𝑔(𝑄𝑡/0)), 

the equation (6) gives simple explanation to the left-side difference of (5) and (6).  

For example, Fisher9 satisfies this property and so we select f = F and get 

 

(7) 𝑙𝑜𝑔 (
𝑉𝑡

𝑄𝑡

𝑉0

𝑄0⁄ ) − 𝑙𝑜𝑔 (𝑃𝐹
𝑡 0⁄

) =  𝑙𝑜𝑔 (𝑃𝐹
𝑡 0⁄

) + 𝑙𝑜𝑔 (𝑄𝐹
𝑡 0⁄

) + 𝑙𝑜𝑔(𝑄0 𝑄𝑡⁄ ) − 𝑙𝑜𝑔 (𝑃𝐹
𝑡 0⁄

) 

 

                        = 𝑙𝑜𝑔 (𝑄𝐹
𝑡 0⁄

) + 𝑙𝑜𝑔(𝑄0 𝑄𝑡⁄ ) 

  

The eq. (7) reveals that price change based on the weighted arithmetic averages or unit values differs from the 

Fisher price index (or from S, MV, SV index numbers) by two quantity components – first the quantity index for 

formula F (or S, MV, SV ) and second the pure change of total quantities. Two important situation emerges: If 

the consumption pattern of quantities consumed is not changed or change proportionally, then these two 

clauses, 𝑙𝑜𝑔 (𝑄𝐹
𝑡 0⁄

) and 𝑙𝑜𝑔(𝑄0 𝑄𝑡⁄ ), are opposite numbers and the weighted arithmetic averages may be used 

as price change estimate (i.e. equals with 𝑙𝑜𝑔 (𝑃𝐹
𝑡 0⁄

)).  

 
8 a= unweighted arithmetic average, aw=weighted arithmetic average, g= unweighted geometric average, gw=weighted 

geometric average 
9 The similar mathematical characteristic is satisfied exactly also for Montomery-Vartia, Stuvel, and Sato-Vartia, but not 

for Törnqvist and Walsh (i.e. only close approximation for small changes).  



 

For other situations, this occurs only by accident and the weighted arithmetic average may not be used as 

official price change estimate. Practically this means: When consumption patterns are linearly related for all 

pairs (0, t) then logarithmic change of the weighted arithmetic averages is a proper price change estimate, 

otherwise not. Based on this evidence, consumers do not behave as ideal demand theory suggests they would 

(see Vartia, Suoperä, Nieminen and Montonen (2018a)). 

 

Most index series for excellent index numbers are similar step-type functions like in Figures 9 and 11 and they 

are very closely related. The Törnqvist in the Figure 9 and 11 show how prices have increased three times, each 

time at the beginning of the year. Between these increases, prices are held almost constant (i.e. no price 

change). This is because prices are not determined by markets but by administrative decision. All the excellent 

index numbers identify this phenomenon. Also, from the pictures we can see that the consumers’ consumption 

pattern (i.e. quantities consumed) during any year changes even if prices have not practically changed.  

 

 

Figure 9: ‘Index series’ for averages and Fisher, 

commodity group ‘Mild wines=C130’ from 2016.0 

to 2019.12.  

 
 

Figure 10: Corresponding differences between the 

for basic averages and Fisher in log scale. a = a-F, 

b=aw-F, c=g-F and d=gw-F. 

 
 

 

Figure 11: ‘Index series’ for averages and Fisher 

commodity group ‘Other strong spirits=A151’ from 

2016.0 to 2019.12. 

 

Figure 12: Corresponding differences between the 

for basic averages and Fisher in log scale. a = a-F, 

b=aw-F, c=g-F and d=gw-F.. 

 
 

It is sometimes believed that perhaps Jevons (i.e. unweighted geometric average m = g in Figures) is a solution 

but we see that Jevons is seriously downward biased compared to the Fisher and other excellent index numbers. 

In other words, Jevons is data contingently biased compared to excellent index number – here and there it is 

quite properly behaving statistic but somewhere else seriously biased compared to F or any other excellent 

index number. As a conclusion, the basic averages are not suitable for official statistics for data described in 

Table 1.    



 

Next we ask: is it possible to correct the bias of averages by a hedonic method? We use the technique described 

in Suoperä (2006) and Vartia, Suoperä and Vuorio (2019, Chapter 2.2.1) and we specify two specifications for 

our semilogarithmic price model – heterogeneously behaving cross-sections and time series econometric model 

(analysis of panel data, see Greene, 1993 pp. 621-623). We show that a hedonic method will not help us – basic 

averages are still out of use as official statistic even quality correction of quantities is performed.  

 

3.4  A Hedonic Method – Alternative Method for Bilateral Analysis?  
 
In this chapter, we investigate the possibility of using hedonic quality adjustment in averages although previous 

tests suggested otherwise. The mathematical and statistical analysis of price aggregation and a hedonic quality 

adjustment is presented in papers of Suoperä (2006, Chapter 3 and Appendix 5), Koev (2003), Vartia, Suoperä 

and Vuorio (2019) and Suoperä and Vuorio (2019). These papers are based on data where bilateral price-links 

cannot be formed - in the other words perhaps nothing but a hedonic method may be applied to get estimates 

for price changes. Our data contains bilateral price-links for which we apply a hedonic method. We use a so-

called Oaxaca decomposition (1973) by which we divide the actual price change of a given average (i.e. m = a, 

aw, g, gw, see Table 3) into two parts – to the quality correction and the quality adjusted price changes. The 

results are presented for two different specifications of the price model. 

 

Now we already know what distinguishes the basic averages from the best price change estimates, from the 

excellent index numbers. The explicit expression for the differences is derived in the equations (5), (6) and (7). 

Now we ask: How closely the hedonic quality corrections estimate the differences presented in (5), (6) and (7)? 

With empirical analysis, it can be shown that hedonic quality corrections do not correct the estimate in any 

way. 

 

3.4.1 A Hedonic Method Assuming Heterogeneously Behaving Cross-Sections 
 

We specify a simple semilogarithmic price model for 41 subgroups simply regressing logarithmic prices on 

quantities consumed for all subgroups k separately in time t (see Suoperä, 2006, Suoperä and Vartia, 2011, 

Vartia, Suoperä and Vuorio 2019), that is 

 

 log(𝑝𝑖𝑘𝑡) = 𝛼𝑘𝑡 + 𝑥𝑖𝑘𝑡𝛽𝑘𝑡 + 𝜀𝑖𝑘𝑡 

 

where log(𝑝𝑖𝑘𝑡) represents the logarithmic unit price for commodity i in period t and in subgroup k. The 

explanatory variable 𝑥𝑖𝑘𝑡 represents quantities consumed for commodity i in period t and in subgroup k. The 

parameter 𝛽𝑘𝑡 in the regression model may vary according to grouping and time. Parameters  𝛼𝑟𝑘𝑡 represent 

subgroup effects in period t. The term 𝜀𝑖𝑟𝑡 is random error term, which does not contain systematic information 

about the data generating process. It is assumed, that  𝐸(𝜀𝑖𝑘𝑡|𝑥′
𝑖𝑘𝑡) = 0 and 𝑉𝑎𝑟(𝜀𝑖𝑘𝑡|𝑥′

𝑖𝑘𝑡) = 𝜎𝑘𝑡
2 < ∞. In our 

model specification, the error covariance matrix is diagonal – a most natural situation for cross-sectional data.  

We apply the Oaxaca decomposition for averages presented in table 3. The method decomposes the logarithmic 

price change for our average m into quality correction and quality adjusted price change separately for each 

average (i.e. 𝑙𝑜𝑔 (𝑝𝐴
𝑡/0

) ≡ 𝑙𝑜𝑔 (𝑝𝑄𝐶
𝑡 0⁄

) + 𝑙𝑜𝑔 (𝑝𝑄𝐴
𝑡/0

), see Suoperä, 2006; Vartia, Suoperä and Vuorio, 2019, 

pp.13). The empirical analysis show that the price model based on heterogeneously behaving cross-sections 

estimates very poorly the quality corrections for quantities consumed. The estimation results presented in 

Figure 13 reveals this. For example ‘Mild wines= C130’ includes commodities that are seasonal meaning that 

quantities for (0, t) are not linearly related. In this case the hedonic method estimates poorly the quality 

corrections of quantities consumed in base and observation periods.  The quality corrections should be 

approximately equal to eq. (5) – (7), but they are not.  The Figures 13 – 14 tell the story. 

 



 

Figure 13: Quality adjusted ‘index series’ for 

averages and Törnqvist for commodity group ‘Mild 

wines=C130’ from 2016.0 to 2019.12.  

 

Figure 14: Corresponding differences between 

quality adjusted price change and Törnqvist in log-

scale. a = a-T, b=aw-T, c=g-T and d=gw-T.. 

 

 

In Figure 14 we see how quality adjusted price changes for averages deviate from Törnqvist in log-scale. The 

deviations (i.e. difference of covariances) behave very systematically year-to-year and month-to-month. We 

have shown that consumption pattern changes all the time and is clearly seasonal, even when prices have not 

changed or have changed almost proportionally. These results confirm earlier conclusions; basic averages 

should not be used for estimating price changes when quantities vary a lot in time – even a hedonic method 

cannot help. Simply saying, do not use the basic averages as price change estimate for the CPI, if quantities 

consumed in base and observation periods are not linearly related all the time. 

 

3.4.2 A Hedonic Method: Price Model Including Fixed Time and Group Effects  
 

The price models belonging into this category are called as panel data models (or econometric time series 

models). The price model (i.e. regress logarithmic prices on quantities consumed) is completely based on 

bilateral price-links. The price model is equal to the multilateral unweighted time-product dummy model (TPD, 

Diewert and Fox, 2018, pp.15), that is 

 

 log(𝑝𝑖𝑘𝑡) = 𝛼 + 𝛾𝑖 +  𝜌𝑡 + 𝑥𝑖𝑘𝑡𝛽𝑘 + 𝜀𝑖𝑘𝑡 

 

The dependent and explanatory variables are equal with the model specified as heterogeneously behaving 

cross-section. The unweighted estimation of unknown parameters is explained in Greene (1993, pp 621 - 623) 

and price aggregation and hedonic method in Suoperä (2006) and Vartia, Suoperä and Vuorio (2019). The 

estimation results are presented graphically in Figures 15-18.  

  



 

 

Figure 15: Quality adjusted ‘index series’ for 

averages and Törnqvist for commodity group ‘Mild 

wines=C130’ from 2016.0 to 2019.12. 

 

Figure 16: Corresponding Log-differences between 

quality adjusted index series for averages and 

Törnqvist. a = a-T, b=aw-T, c=g-T and d=gw-T. 

 
 

 

Figure 17: Quality adjusted ‘index series’ for 

averages and Törnqvist for commodity group 

‘Other strong spirits=A15110’ from 2016.0 to 

2019.12. 

 

 

Figure 18: Corresponding Log-differences between 

quality adjusted index series for averages and 

Törnqvist. a = a-T, b=aw-T, c=g-T and d=gw-T. 

 

 
 

 

 

 
The hedonic method based on the semilogarithmic price model including fixed time and commodity effects do 

not help – the bias compared to excellent Törnqvist remains severe. We have shown in this study for data 

having enough bilateral price-links that we should prefer excellent index numbers together with our base 

strategy instead. 

 

  

 
10 A151=Dark rums 



 

4 Conclusion 

 

Statistics Finland has examined alternative index calculation methods for several years in order to find best 

solution for calculating indices using various kinds of datasets having different composition of information. As 

result to this, we have introduced several scanner-datasets to the production of CPI and HICP during the recent 

years.  

 

Now the aim is to replace traditional field collection of durables and consumer goods with similar commodities 

in scanner-data. One question is whether our current strategy and Törnqvist formula is sufficient or not, other is 

whether there are other issues that need to be studied before new commodities may be extracted from scanner-

data and introduced to CPI? We noticed that 

• scanner-datasets may have differing set of information and most often this is dependent of the data 

provider. 

• commodities have different features, meaning that in some cases product quality remains stable in time 

and in some cases not 

• we have various methods for calculating the price change. Selection of method depends on the content 

of scanner-data and product features.  

 

Thus, it is necessary to study these challenges more carefully in order to find applicable solution for e.g. 

garments, shoes, mobile phones and home electronics. Design of the study is based on the fact that we must be 

a way to compare alternative methods in pairs because only this way we may recognize relation between the 

methods.  

 

Our data is a typical complete micro data. It contains price observations of alcoholic beverages that are 

identified with GTIN-code; hence all products are comparable in quality in time. An observation contains unit 

prices, quantities and expenditures for all months since 2016. When investigating the observations (table 1, 

page 4), we notice that there are disappearing commodities, new commodities and commodities that are 

consumed steadily in time. In this study, we have 41 subgroups for alcoholic beverages, that we divide into 

three categories according to the information content:  

 

• A, vanishing commodities,  

• B, new commodities  

• C, commodities that include information of prices, quantities and values for both base and observation 

periods and are comparable in quality.  

 

The groups A and C contains missing values: in these groups data contains ‘one-side null values’, where the 

expenditure on a commodity tends to zero for base or observation period. According to Pursiainen ‘This 

condition states that, its effect on the index numbers should vanish’ (2005, pp. 32-33). We use this condition 

and impute vanishing expenditures (i.e. quantities) and missing prices such that this condition is satisfied very 

closely.  

 

We use the following methods: 

 

1. Bilateral price index numbers based on the base strategy that is free of drift error. We analyze the set of 

excellent and basic index numbers.  

2. We compare basic averages (i.e. arithmetic and geometric) pair wisely with benchmark statistic (here 

excellent index number) 

3. We try to quality adjust the quantities consumed by a hedonic method. 

 

All analysis are done in logarithmic scale. This means that all index number formulas and basic averages are 

presented by their logarithmic representations. This makes it possible to compare these statistics pair wisely and 

understand how they are related. The logarithmic form of these statistics makes it easier to calculate differences 

between them.  

 



 

We tested following index number formulas : Stuvel (S), Törnqvist (T), Sato-Vartia (SV), Montgomery-Vartia 

(MV), Walsh (W) and Fisher (F) and basic index number formulas: Laspeyres (L), Log-Laspeyres (l), Paasche 

(P) and Log-Paasche (p). Empirical analysis was simple, because we calculated differences between any two 

index numbers. If covariance for any two index numbers approach zero, the difference of weights and 

logarithmic price changes are uncorrelated and very likely independently distributed. 

Practically this means that these two index numbers go ‘hand-in-hand’ and either of them may be selected. In 

this study we showed that the covariance approach to zero for almost any two excellent index numbers like as a 

rule, so any of the excellent index number formulas may selected for the production of official CPI. We also 

showed that this is not true for any basic index number – they are more or less contingently biased. 

 

The basic averages – weighted and unweighted arithmetic and geometric averages are useful for statistics but 

not universally for official price change estimates. We compared different averages to ‘optimally weighted 

averages for index numbers’, say averages of excellent index numbers such as MV or T. 

We selected Törnqvist formula as benchmark (f = T) and performed numerical analysis to get estimates for 

covariances for all periods and subgroups. Analysis revealed that there were two possible results: First, the 

estimates of covariances, ‘freeze’ into a constant for a given pair (m, T), for all time periods t and for subgroups 

k, or second, they vary all the time. First possibility means that the consumption pattern of quantities consumed 

in base and observation periods are closely related with the weights of the Törnqvist; logarithmic change of 

average m in question estimates closely the Törnqvist index number. If these differences of covariances 

deviates significantly from zero, the average is not applicable for price change statistic.  

When consumption patterns are linearly related for all pairs (0, t) then logarithmic change of the weighted 

arithmetic averages is a proper price change estimate, otherwise not.  

 

Selection of the method is crucial as consumption of the products differs even within 7-digit coicop sub-class. 

We have shown examples of how much basic averages, basic index number formulas and hedonic methods 

differ from the benchmark index, Törnqvist. 

 

As a conclusion these tests have shown that  

1. Any index number formula is suitable if products are sold evenly from month-to-month. It is strategy 

that matters more in these cases.  

2. The basic averages are good price change estimates only if quantities have not changed or have 

changed proportionally.  

3. A hedonic method is useful only if quantities consumed are linearly related.  

4. The solution for alcoholic beverages where churn of products is not that high:  

a. Use the base strategy, where base period is previous year normalized as average month (covers 

also seasonal products) and use one of the excellent index number formula for production of 

official price statistics.  

5. The solution for commodity groups where churn of products is clearly high:  

a. use bilateral comparison when matching-pairs are feasible and combine it with another method 

that is applied for one-sided nulls, e.g. a hedonic method11. 

 
11 A hedonic method is a method for data that have no bilateral price-links. Examples of this kind of analysis is 

for example new or old dwellings (see Koev and Suoperä, 2002, Koev, 2003, Vartia, Suoperä and Vuorio, 

2019). 
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