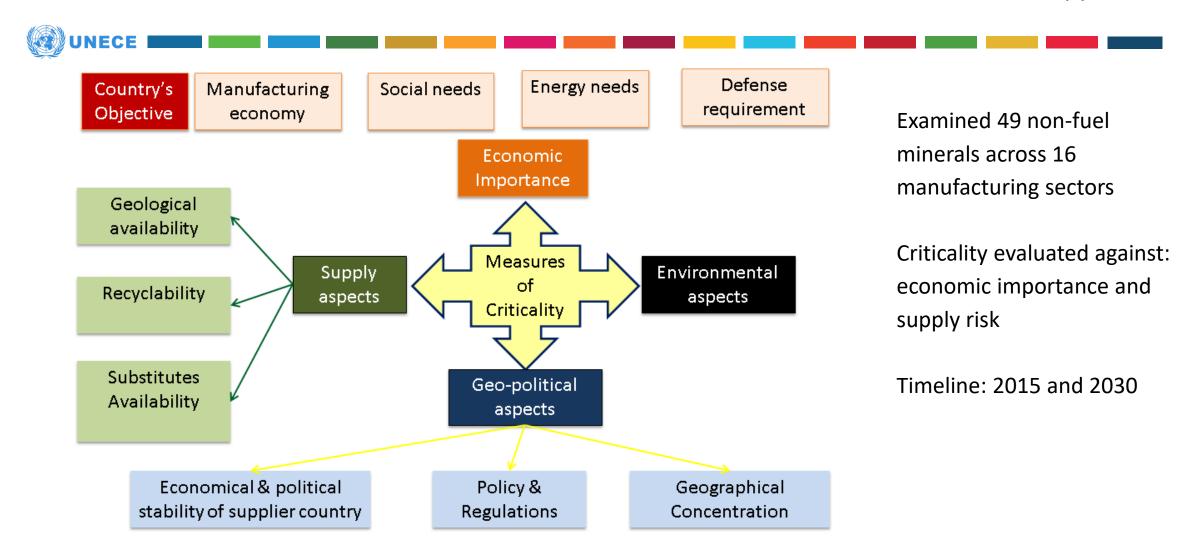
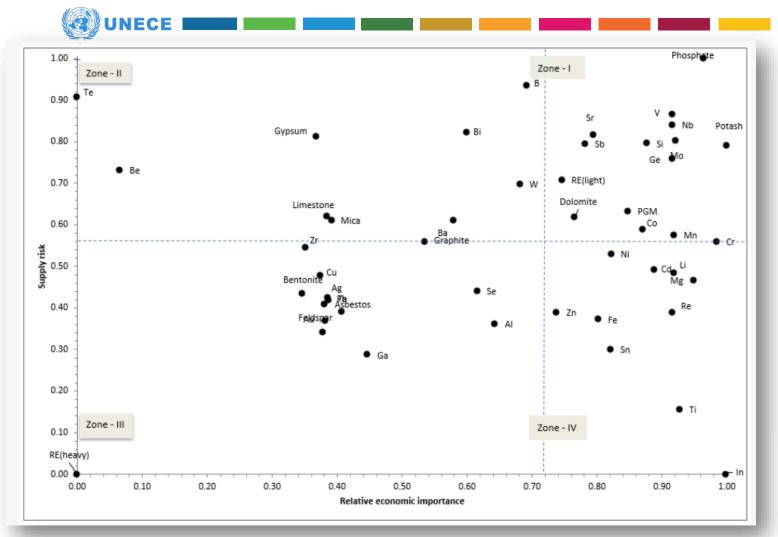
# Formalizing the Recycling Sector

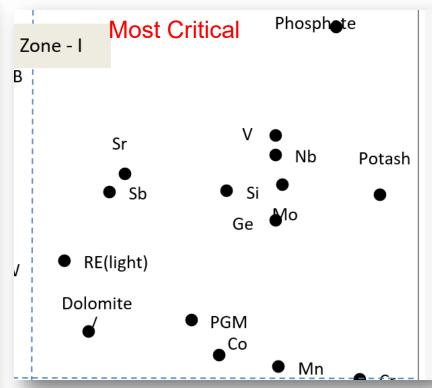
To make CMR supplies more sustainable




### **RESOURCE MANAGEMENT WEEK 2021**

**ENABLING SUSTAINABILITY PRINCIPLES IN RESOURCE MANAGEMENT** 





## Critical minerals assessment framework for India

CEEW's approach



# A snapshot of critical minerals for India in 2030





# Renewed focus on domestic value creation and self reliance



#### Industrial expansion and integration with global value chains

- Recovery support to Micro Small and Medium Enterprises (MSME) for revival and expansion
- Production Linked Incentive scheme to aid 10 critical sectors

#### Adopting a low-carbon approach

- Squaring between sustainability and energy security
- Decarbonising power and mobility sector

#### Supporting indigenization of low-carbon solutions

- Solar PV module manufacturing
- National Mission on Transformative Mobility and Battery Storage, 2019

Between 2019 and 2022, India would need about 178 GWh of storage for RE integration, stationary and mobile applications<sup>1</sup>

#### Metal requirements/GWh<sup>2</sup>:

- 4600 tonnes Li
- 5200 tonnes Mn
- 7300 tonnes Co
- 25000 tonnes Ni

## India's import dependency

Major metals commonly recycled

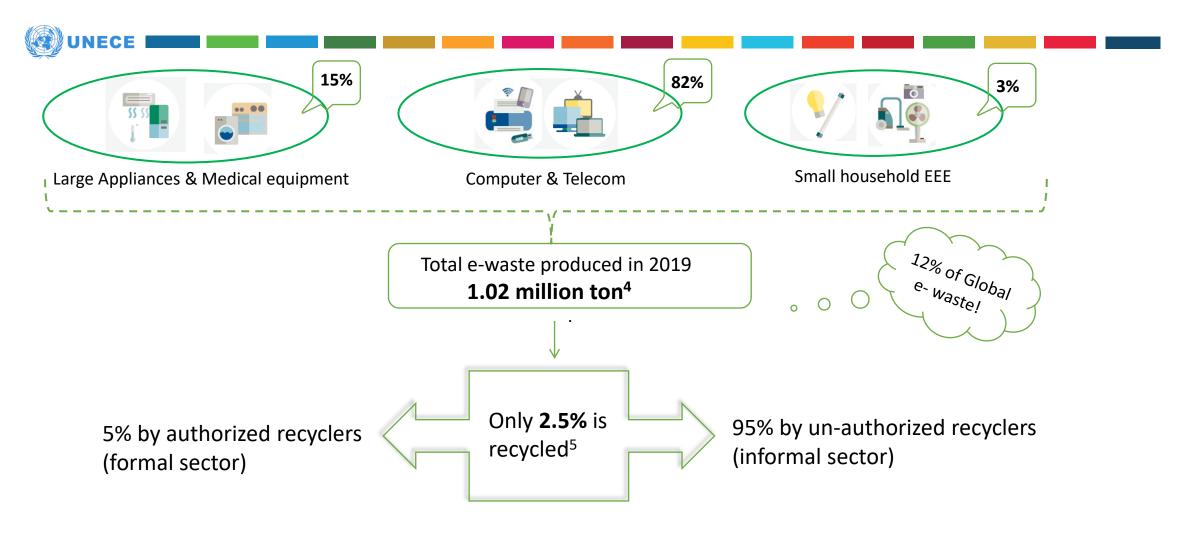




**1.02 million ton** (2019-2020)



Typical metals collected during recycling:


Al, Cu, Fe, Co, Li, Au, Ag, Nb, Pd, Pt, Se, REL's

| n        |  |
|----------|--|
| 0        |  |
| 2019     |  |
| $\odot$  |  |
| $\sim$   |  |
| <u>S</u> |  |
| ta<br>Ta |  |
| ب        |  |
| 9        |  |
| mei      |  |
|          |  |
| ō        |  |
| mport (  |  |
| 7        |  |
| 9        |  |
| 2        |  |
| ב        |  |
| _        |  |
| S        |  |
| ത        |  |
| 5        |  |
| ĭ        |  |

| Aluminum       | 6%   |
|----------------|------|
| Copper         | 31%  |
| Iron           | 7%   |
| Cobalt         | 100% |
| Lithium        | 100% |
| Selenium       | 100% |
| Gold           | 1%   |
| Silver         | 8%   |
| Rare Earth (L) | 100% |
| Niobium        | 100% |
| Palladium      | 100% |
| Platinum       | 100% |

## India's e-waste value chain

FY 2019-2020

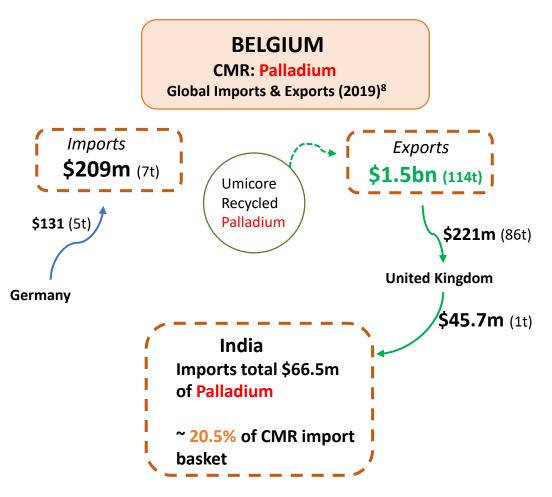


## **Embedded CMRs and Dependency**

Metals we are 100% import dependent on

| U | N | Е | C | Е |
|---|---|---|---|---|
|   |   |   |   |   |

| Minerals   | Current    | Metals embedded in e-<br>waste flows (ton) <sup>7</sup> |                  |
|------------|------------|---------------------------------------------------------|------------------|
| Willierars | Value (\$) | Weight (ton)                                            | waste nows (ton) |
| Cobalt     | 41.6m      | 1000                                                    | 937              |
| Indium     | n/a        | n/a                                                     | 9                |
| Lithium    | 11.7m      | 718                                                     | 0                |
| Tantalum   | 1.7m       | 18                                                      | 80               |
| Tungsten   | 17.4m      | 1400                                                    | 64               |
| Beryllium  | 1500       | 0.036                                                   | 0.4              |
| Gallium    | n/a        | n/a                                                     | 75               |
| Germanium  | n/a        | n/a                                                     | n/a              |
| Palladium  | 66.5m      | 1                                                       | 8                |
| Ruthenium  | 3.9m       | 0.3037                                                  | 0.21             |

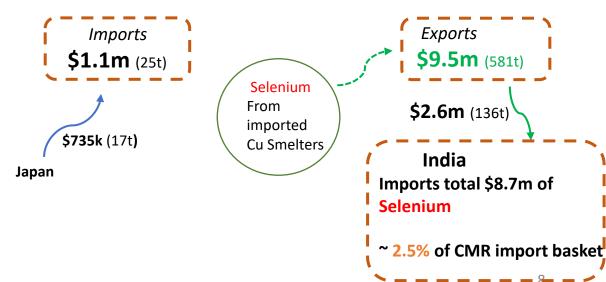

In 2019, India imported **\$324m** of CMR metals

Total Metals in ewaste **44%** of total CMR import basket<sup>6</sup>

# India's reliance on recycled CMR

Example: Belgium and Korea Republic






Selenium is extracted majorly as by-product from Copper Smelters.

- Korean smelters are dependent on 100% imported ores
- Korea Republic is the 5<sup>th</sup> largest exporter of Selenium
- Two Indian smelters rank 5 and 6th amongst world largest refineries
- India stopped producing selenium since 2015.

#### **KOREA REPUBLIC**

CMR: Selenium
Global Imports & Exports (2019)<sup>8</sup>



## **Key policy recommendations**

Strengthening national policies



Moving away from collection based targets to recycling targets

- Anecdotal evidence indicates e-waste recycling sector in India is mainly handling mechanical separation of e-waste and chemical separation is exceptionally less.
- Between 2015 and 2019, electronics waste imports increased by 390%, while refining capacities remained marginally constant

#### Extending the scope of EPR

- Mandating take back of products, from the consumers, after their useful life. The supplier of the new appliances is legally obliged to take in used/old appliances for free.
- Such rules help authorized recyclers meet their collection and recycling targets and also pre-empts e-waste from reaching the informal sector flows.

## **Key policy recommendations**

Prepare national inventory to track mineral flows



No estimates on value and quantity of e-waste minerals across the value chain

• Anecdotal evidences suggests, recyclers are only recovering visible gold (0.18 gms), silver (0.02 kgs) and copper (0.018 tonne) per tonne of e-waste processed

#### Strengthening existing reporting infrastructure

- Act mandates recyclers, dismantlers to maintain records of e-waste for the state and central pollution control boards
- However the reporting processes are infrequent with no standardized reporting structures

#### Map e-waste flows by triangulating information

- As of March 2021, a total of 51 producers responsibility organizations (PROs) are in operation
- PROs are financed collectively or individually by producers, who can take the responsibility for collection and channelization of e-waste generated from the 'end-of-life'
- PROs can aid in mapping flows between collection centres and recyclers or dismantlers

## **Key policy recommendations**

Develop robust e-waste supply chains



Leverage complementing strengths and opportunities - informal sector have deep collection supply chains; formal sector have access to advanced recycling technologies

Formalizing the informal sector doesn't have to mean loss of jobs

- Retain the informal sector strength by giving them incentives to work in better environmental conditions, less health risks and job security
- Creation of formal jobs can lead to safe recycling practices, higher income generation and possible higher levels
  of employment

Strengthening e-waste collection supply chains

- Broadcasting information about the usefulness of waste separation, easy access and information about collection points can lead to behavioral changes about inherent waste separation.
- Countries with advanced e-waste regulations have streamlined easy access to collection points which has made majority of the population to inherently separate the waste.

## References



- 1. ISGF, IESA (2019), Energy Storage System: Roadmap for India 2019-2032
- 2. CEEW Analysis
- 3. CEEW Analysis
- 4. NGT-CPCB Joint Report, E-waste Management, 2019-2020
- 5. E-Waste Management in India: A study of current scenarios; Dr Neha Garg, Deepak Kumar
- 6. CEEW Analysis
- 7. Critical Metals in Discarded electronics- Mapping recycling potentials from selected electronics in Nordic region
- 8. ResourceTrade.earth; Chatham House

# Thank you!

Tirtha Biswas, Deepti Siddhanti CEEW

#### **UNECE**

Date - April 28th, 2021. Geneva



### **RESOURCE MANAGEMENT WEEK 2021**

**ENABLING SUSTAINABILITY PRINCIPLES IN RESOURCE MANAGEMENT** 

