

GAP ANALYSIS

BETWEEN THE PERFORMANCE OBJECTIVES SET FORTH IN THE FRAMEWORK GUIDELINES FOR ENERGY EFFICIENCY STANDARDS **IN BUILDINGS AND CURRENT ENERGY EFFICIENCY STANDARDS AND THEIR IMPLEMENTATION**

IN THE KYRGYZ REPUBLIC MIKHAIL TOROPOV 9 April 2021

No plains, the lowest areas are located between 500 and 1,000 m a.s.l.

crossed by mountain ranges:

the highest point of the Tien Shan range is Jengish Chokusu (formerly Pik Pobedy) 7,439 meters high.

CLIMATE AND RELIEF

The mountainous relief determines the continental climate.

 \bigcirc

Warm and sunny summers, sometimes scorchingly hot at low altitudes (43°C maximal, Bishkek). – <u>Need for cooling</u>

Cold winters, often frosty (-49°C minimal, Susamyr)

- NEED for warming

POPULATION

ACCORDING TO THE DATA OF NATIONAL COMMITTEE ON STATISTICS THERE IS A PERMANENT GROWS OF POPULATION OF AROUND 2% A YEAR

URBAN RESIDENTIAL BUILDING STATISTICS

	Buildings		Floor space		Households		Population	
	Number	Share	'000 m2	Share	Number	Share	Number	Share
Multi-apartment buildings	224,410	41%	13,300	34%	237,200	51%	507,100	39%
Individual family houses	320,800	59%	25,405	66%	229,400	49%	802,900	61%
TOTAL	545,210		38,704		466,600		1,310,000	

Roadmap for the implementation of energy efficiency in public buildings of the Kyrgyz Republic, ESMAP, The World Bank, 2019

Residential Floor Space by Building Type and Location

PUBLIC BUILDINGS IN KYRGYZ REGIONS, BY POPULATION DISTRIBUTION

Roadmap for the implementation of energy efficiency in public buildings of the Kyrgyz Republic, ESMAP, The World Bank, 2019

ENERGY PRICES

Prices for main energy sources for residential consumers									
Item	Unit	Som	kWh	Som/kWh					
Hot water	1 Gcal	981,76	1162,80	0,84					
Heat	1 Gcal	1134,76	1162,80	0,98					
Natural gas	m ³	18,06	9,30	1,94					
Coal	1 t	4304,00	3600,00	1,20					
Electricity less 700 kWh	1 kWh	0,77	1,00	0,77					
Electricity over 700 kWh	1kWh	2,16	1,00	2,16					
Prices for main energy sources for commercial (nonresidential) consumers									
Item	Unit	Som	kWh	Som/kWh					
Hot water	1 Gcal	1965,10	1162,80	1,69					
Heat	1 Gcal	1695,10	1162,80	1,46					
Natural gas	m ³	18,06	9,30	1,94					
Coal	1 t	4304,00	3600,00	1,20					
Electricity	1 kWh	2,24	1,00	2,24					

Average Heat Demand in Multi-Apartment Buildings in Different Countries and Bishkek, Adjusted to Reflect Bishkek Heating Degree Days

COSTS AND EXPECTED RESULTS OF ENERGY SAVINGS INTERVENTIONS IN PUBLIC BUILDINGS

Technology type	Specific annual energy saving (kWh/m2)	Specific Investment (US\$/m2)	
Standard/ conventional EE technologies	80-110	80-100	
Building envelope: Insulation of external walls, roof and floor ceiling, replacement of windows and doors Room ventilation system	(~ 50% EE)		
Heating system: New heating boilers, retrofit of heating network, hydraulic			
balancing, radiators, thermostatic valves Energy-efficient lighting (LED) indoor + outdoor			
Innovative technologies	35-55	70-100 (additional costs)	
Ventilation system with heat recovery	(additional ~		
Heat pumps for space heating	20% FE)		
Sanitary hot water: Solar collectors or SHW heat pumps	2070 LL)		
Building energy management systems and lighting control			
Overall (conventional + advanced technologies)	100–160 (60-70% EE)	140-190	

Roadmap for the implementation of energy efficiency in public buildings of the Kyrgyz Republic, ESMAP, The World Bank, 2019

Summarizing the situation

- LOW ENERGY PRICES CAUSING POOR PROFITABILITY OF EE MEASURES
- POOR PEOPLE WITH LOW INCOME
- DEMAND FOR CHEAP SOLUTIONS AND EQUIPMENT (PEOPLE PREFER CHEAP, NOT EFFICIENT OR OF GOOD QUALITY)
- LOCAL MARKET SUGGESTS CHEAP SOLUTIONS OF LOW QUALITY
- NO RELIABLE ENTITY TO PROVE THE PRODUCT QUALITY OR THE "QUALITY" OF SUGGESTED EE SOLUTION

- INTERNATIONAL ORGANISATIONS WORKING IN THE FIELD: ADB, EBRD (KYRSEFF), GIZ, UNDP, WB.
- <u>PUBLIC FOUNDATIONS WORKING IN THE FIELD</u>: BIOM, CAMP ALA-TOO, CEEBA, CREEED, UNISON
- DOZENS OF PRIVATE COMPANIES (SUPPLIERS OF GOODS, MATERIALS, SERVICE PROVIDERS)

MAIN LOCAL DOCUMENTS

- ENERGY EFFICIENCY IN BUILDINGS LAW 137, DATED 26 JULY 2011
- LAW ON ENERGY CONSERVATION 88, DATED 7 JULY 1998
- LAW ON ENERGY 56, DATED 30 OCTOBER 1996
- SNIP 23-01:2013, "BUILDING HEAT ENGINEERING (THERMAL PROTECTION OF BUILDINGS)"
- SP 23-101-2013, "DESIGN OF THERMAL PROTECTION OF BUILDINGS"

- THERE IS A MISMATCH OF THE INTERNATIONAL NORMS AND LOCAL
- THERE ARE CONTRADICTIONS BETWEEN THE DIFFERENT INTERNAL DOCUMENTS

- INSTITUTIONAL (UNCLEAR AND UNSTABLE STRUCTURE OF RESPONSIBLE BODIES, LACK OF HR)
- GOVERNMENTAL STRATEGIES HAVE LAC OF IMPLEMENTING MECHANISMS
- LACK OF EXPERTISE WEAK SCIENTIFIC SUPPORT
- WEAK INSTITUTIONAL COOPERATION/COORDINATION (GOVERNMENTAL INSTITUTIONS, NPO, INTERNATIONAL PROJECTS)
- LACK OF CLEAR COMPATIBLE NORMS

Economic

- LOW ENERGY PRICES
- LOW INCOMES
- HIGH INTEREST RATES ON LOANS
- LOW COST EFFECTIVENESS

System

- LACK OF INFORMATION
 - GENERAL INFORMATION (INTRODUCTIVE)
 - SPECIFIC INFORMATION (NORMS, STANDARDS, MANUALS)
 - LIMITED ACCESS TO EXISTING INFORMATION (DOCUMENTS, LOCAL AND INTERNATIONAL)
- NO FOCUS ON OTHER ASPECTS OF ENERGY EFFICIENCY EXCEPT HEAT CONSERVATION
- WEAK MARKET
- LACK OF SPECIALISTS / EDUCATION / CONSULTING
- LOW LEVEL OF AWARENESS AND RESPONSIBILITY
- NO RELIABLE REFERENCE POINT CENTER OF EXPERTISE
- NO CONTROL OF QUALITY OF GOODS

THANK YOU!

