Indicators for representativeness of survey response

UNECE workshop on Measuring poverty in pandemic times

Barry Schouten (Statistics Netherlands and Utrecht University)
March 26, 2021

Survey nonresponse

- Nonresponse occurs in every survey;
- Nonresponse is result of lack of contact, not being able physically or in terms of language, lack of time and refusal;
- Nonresponse causes estimates to be biased;
- Nonresponse leads to smaller samples;
- Nonresponse problem seems to increase, i.e. more effort/budget is needed to get the same response rates;

Options:

- Prevent it from happening (reduction);
- Adjust afterwards through a statistical model (adjustment);
- Hybrid approach: adjust by design (adaptive survey designs)

Academy

Trends in response rates

Labour Force Surveys response rates 1980 - 2015 in various countries

Nonresponse analysis

Key component is auxiliary information:

- Information available in the sampling frame
- Information that can be linked form administrative sources
- Information for which population totals are available
- Information that is collected by interviewers for the whole sample

Academy

Global nonresponse analysis

- Age

Academy

Global nonresponse analysis

- Degree of urbanisation

Degree of urbanisation
\square Unprocessed

- Not-able
\square No-contact
\square Refusal
\square Response

R-indicators

- R-indicator is based on variation in individual response propensities

$$
R(\rho)=1-2 S_{\rho}
$$

- Two types:
- Sample-based: Response is compared to sample totals
- Population-based: Response is compared to population totals
- At www.risq-project.eu code in SAS and R plus manual and test data set

Academy

R-indicators

- Nonresponse bias of response mean

$$
\left|B\left(\bar{y}_{R}\right)\right|=\frac{\left|R_{\rho Y}\right| S_{\rho} S_{Y}}{\bar{\rho}} \leq \frac{S_{\rho} S_{Y}}{\bar{\rho}}=\frac{(1-R(\rho)) S_{Y}}{2 \bar{\rho}}
$$

- Bounding R-indicators: response-representativity plots

$$
\frac{\left|B\left(\bar{y}_{R}\right)\right|}{S_{Y}}<\gamma \quad R(\rho)>1-2 \bar{\rho} \gamma
$$

R-indicators

- Examples of response rates and R-indicators (including three curves $\gamma=2 \%, 10 \%, 20 \%$)

Academy

Example 1 - Various ESS surveys

$$
X=\text { gender, age, urbanization }
$$

	Sample size	Response rate	R-indicator
Health Survey 2005 (Holland)	15,411	67.3%	0.832
ESS 2006 (Belgium)	2,927	61.4%	0.807
ESS 2006 (Norway)	2,673	65.6%	0.762
Level of Living 2004 (Norway)	4,837	69.1%	0.872
LFS Quarter 3-2007 (Slovenia)	2,219	70.1%	0.854
LFS Quarter 4-2007(slovenia)	2,215	69.3%	0.807

Academy

Example 2 - Survey on Informal Economy

$X=$ age, house value, etnicity, type of household, employment, urban

Response group	Response rate	Representativit y measure R	Confidence interval	CV
Face-to-face	56.7%	77.8%	$74.4 \%-$ 81.3%	0.102
Web/paper	33.9%	86.3%	$83.1 \%-$ 89.4%	0.112
Web/paper + phone	49.0%	79.3%	$75.6 \%-$ 83.0%	0.11 .3

Academy

Example 3 - Business survey

$$
X=\operatorname{wages}(t), \text { NACE, VAT }(t-12) \times \text { size }
$$

Partial R-indicators

- Partial R-indicators decompose R-indicator based on the impact of single variables total variance $=$ between variance + within variance
- Unconditional partial R-indicator for a single variable Z: the between variance of response propensities
- Conditional partial R-indicator for a single variable Z given X : the within variation in response propensities given a stratification on X
- Both type of indicators should ideally be close to 0 and allow for monitoring of data collection and resource allocation

Example EU-SILC

variable-level partial CV

\square Conditional
Unconditional

Example - EU-SILC

Partial R-indicators at the category level for educational level
OplNivHB

Summary

－Indicators have been developed to monitor surveys during data collection and in time．
－Indicators can be used to adapt and tailor fieldwork strategies
－Key ingredient are auxiliary variables

$$
\square
$$

\square
\square

保
\square
\square

\square
\square
\square

