

ИЗМЕРЕНИЕ ПРОГРЕССА В ДОСТИЖЕНИИ ЦУР

Статистический подход к оценке прогресса в достижении целей ЦУР

Пьетро Дженнари

Главный статистик ФАО

Марчелло Д'Орацио

Канцелярия Главного статистика ФАО

Проблема

Мониторинг реализации Повестки дня в области УР на период до 2030 года:

- оценка ситуации согласно последним имеющимся данным ЦУР («текущий» статус)
- будет ли достигнута задача ЦУР к 2030 году (перспективы)

Некоторые ведущие региональные/международные учреждения разработали и приняли различные подходы к оценке:

- чногда возможны несогласованные или противоречивые результаты
 - имеется риск неопределенности и путаницы для пользователей

Оценка

Различные подходы могут быть приняты в зависимости от:

- > Измерения времени:
 - «текущий» или перспективный статус
- Уровня анализа:
 - Национальный или региональный/глобальный уровень
 - один показатель или группа показателей в рамках Задачи/Цели

Текущий статус реализации ЦУР (1/2)

Мониторинг «текущего» статуса: отслеживание уровня достижений в соответствии с последними доступными данными. Разные подходы.

Ситуация в стране по отношению к другим странам:

- ➤ ОЭСР (2019 г.): z-оценка (расстояние по сравнению с изменчивостью «текущей» ситуации)
- Сеть по выработке решений в области устойчивого развития (2019 г.):
 относительное расстояние по отношению к худшему значению среди стран
- ▶ ФАО (2020 г.): расстояние (скорректированное) до достижения задачи (частично указано в Графике прогресса в достижении ЦУР ООН на 2020 год)

Региональная обстановка с учетом ее начальной точки (базовый год):

➤ ЭСКАТО ООН (2017 г.): подход, основанный на индексе исходного состояния (с учетом региональных особенностей); пробел заполнен по сравнению с первоначальным пробелом в данных; он более близок к тенденции с течением времени)

«Текущий» статус реализации ЦУР (1/2)

• Необходимые данные:

Значения показателя ЦУР для каждой страны (i) в текущем году (последняя доступная точка данных): x_it

целевое значение общего показателя ЦУР: x^*

• ЭСКАТО ООН также необходимо значение показателя для каждого региона в «базовом» году (t_0) : x_{it_0}

Основные трудности:

Показатели ЦУР без задачи, выраженной числом. Различные решения:

ОЭСР, SDSN, ЭСКАТО ООН установили «статистическую» задачу (может не подходить к некоторым показателям, например, 15.1.1 - площадь лесов в процентном отношении к общей площади суши)

ФАО: НЕ устанавливает «статистическую» задачу, а просто оценивает эмпирическое распределение и присваивает каждой стране соответствующий квинтиль

«Текущий» статус реализации ЦУР (2/2)

Основные трудности (продолжение):

Географическое агрегирование данных

- ОЭСР, Сеть по выработке решений в области устойчивого развития (SDSN): средневзвешенное значение с использованием населения страны в качестве весовой переменной
- ФАО: предпочтительны простые средние значения или медианы, сопровождаемые характеристиками изменчивости (диапазон, межквартильный размах и т.д.)

Агрегирование по Задаче/Цели:

- ОЭСР, SDSN: среднее арифметическое
- ФАО: **НЕ** выполнено (усреднение не решает проблем неоднородности и избыточности показателей в рамках одной и той же задачи/Цели)

Статус в перспективе (1/4)

Евростат (2019 г.), SDSN (2019 г.) и ФАО сравнивают фактический рост с требуемым ростом для достижения цели в 2030 году:

R = (фактический рост) / (требуемый рост)

SDSN предполагает модель линейного роста

Евростат и ФАО рассматривают геометрическую модель роста (принятую также в Таблице прогресса ООН на 2020 год)

Оценка основана на системе пороговых значений для различных значений R

соотношение фактических и требуемых темпов роста	категория оценки зови	
$R \ge 1$	В процессе или на этапе продолжения достижения ЦУР	
$0.50 < R \leq 1$	Постепенное улучшение	
$0 \le R \le 0.5$	Стагнация	
R < 0	Спад	Категория оценки ФАО
	$R \geq 0.95$	На пути к достижению поставленной задачи
	0.10 < R < 0.95	Процесс идет, но слишком медленно, чтобы достичь задачи
	$-0.10 \le R \le 0.10$	Отсутствие улучшений (стагнация) начиная с базового года
	R < -0.10	Ухудшение/уход от поставленной задачи

Статус в перспективе (2/4)

ОЭСР (2019 г.) проводит статистический тест для выявления наличия монотонного восходящего или нисходящего тренда с течением времени.

Тест основан на коэффициенте ранговой корреляции Спирмена (r_i) (т.е. оценки вместо значений дают защиту от статистических выбросов; непараметрические методы)

Когда желаемое направление - это увеличение с течением времени,

принимается следующее правило:

Значения коэффициента	Категория оценки
ранговой корреляции Спирмена	
$r_i < -0.20$	Страна і отдаляется от поставленной
AND significant at 10% level	задачи
$-0.20 \le r_i \le +0.20$	В стране / тенденция не выявлена
OR NOT significant at 10% level	
$r_i > +0.20$	Страна і продвигается к поставленной
AND significant at 10% level	задаче

1-ю и 3-ю категории следует поменять местами, когда «нормативным» направлением является уменьшение во времени.

К сожалению, тест может быть ненадежным при наличии серийной корреляции.

Статус в перспективе (3/4)

ЭСКАТО ООН (2017 г.) также рассматривает геометрический рост

Оценка <u>совокупного годового темпа роста</u> достигается с помощью взвешенного среднего геометрического значения, причем веса уменьшаются с течением времени (чем выше вес, тем более актуальны значения)

Расчетный годовой темп роста используется для получения прогноза значения показателя в 2030 году

Затем прогнозируемое значение 2030 года сравнивается с целевым показателем (индекс ожидаемого прогресса)

Этот метод использует все данные временного ряда, придавая большее значение самым последним значениям, но не применяется при наличии пропущенных значений или слишком коротких временных рядов

Статус в перспективе (4/4)

Метод прогнозирования:

- Подгонка модели => получение прогнозов на 2030 год => сравнение прогнозов с целевой задачей
 - линейные трендовые модели, ARIMA, ...
 - Использование методов сглаживания данных (экспоненциальное сглаживание)
 - ...

Требуется относительно длинный временной ряд (>=10, а лучше - выше)

Маловероятно, что одна и та же модель надлежащим образом подходит для данных каждой страны

Сглаживание может представлять собой допустимую альтернативу для получения прогнозов с разбивкой по странам

Модели должны функционировать лучше, если они соответствуют региональным/глобальным агрегированным временным рядам (оптимальный способ - с точки зрения отношения сигнал/шум)

Трудности в оценке тренда (1/2)

<u>Данные, необходимые</u> для подходов ФАО, SDSN и Евростата, а также (График прогресса в достижении ЦУР ООН на 2020 год):

- А) значения показателя ЦУР в «текущем» году t (последняя доступная точка данных): x_{it}
- Б) значение показателя в «базовом» году (t_0) : x_{it_0}
- В) целевое значение общего показателя ЦУР: x^* (ФАО и Евростат только для показателей с явным числовым целевым показателем)

Данные, необходимые ОЭСР и ЭСКАТО ООН (и подходы, основанные на прогнозировании):

- А) **Все** точки данных во временном ряду начиная с «базового» (t_0) «текущего» (t) года
- Б) целевое значение (x^*) общего показателя ЦУР

Трудности в оценке тренда (1/2)

Показатели ЦУР без задачи, выраженной числом. Различные решения:

- Сеть по выработке решений в области устойчивого развития и ЭСКАТО ООН установили «статистическую» задачу
- ФАО и Евростат: **HE** устанавливайте «статистическую» задачу, просто рассмотрите фактический рост (числитель *R*) и оцените его в соответствии с нормативным направлением данного показателя ЦУР

Пример ЦУР 2.а.1, ФАО

Criteria to judge the actual growth (CAGR)

Values of actual growth rate	Color	Assessment category
$CAGR_a > 0.01$	Dark green	Improvement since baseline-year (>>)
$0.005 < CAGR_a \le 0.01$	Light green	Slight improvement since baseline-year (>)
$-0.005 \le CAGR_a \le 0.005$	yellow	No improvement since baseline-year (=)
$-0.01 \le CAGR_a < -0.005$	Orange	Slight deterioration since baseline-year (<)
$CAGR_a < -0.01$	Red	Deterioration since baseline-year (<<)

• Подход ОЭСР не требует наличия задачи!

Трудности в оценке тренда (2/2)

Географическое агрегирование данных

- Сеть по выработке решений в области устойчивого развития (SDSN): средневзвешенное значение с использованием населения страны в качестве весовой переменной
- ФАО: предпочтительнее работать непосредственно с региональными временными рядами (оценка R или СГТР) и осуществлять измерение неоднородности внутри региона
- ОЭСР: подвести итоги по данным прогресса на региональном/глобальном уровне, подсчитав, сколько стран в регионе «отдаляются от задачи» и т.д.

Агрегирование по Задаче/Цели:

- SDSN и Евростат: среднее арифметическое
- ФАО: **НЕ** выполнено (усреднение не решает проблем неоднородности и избыточности показателей в рамках одной и той же задачи/Цели)
- ОЭСР: краткое представление разнообразия ситуаций (аналогично географическому агрегированию)

Общие проблемы: статистические выбросы (крайние значения)

Оценка текущего статуса:

- Влияние на выбор наихудшего значения в текущем году (SDSN, ФАО)
- Влияние на оценку стандартного отклонения (ОЭСР)
- Оценка «статистической» задачи ЦУР (если она не является явно выраженной), ОЭСР, SDSN

возможные решения: удалить статистические выбросы перед расчетом ИЛИ принять надежные оценочные данные

Оценка тренда во времени:

• Влияние на оценку темпов роста

возможные решения: робастная оценка и/или применение непараметрических методов (например, функция Sen's slope или подход ОЭСР, основанный на оценках, который не подвержен влиянию статистических выбросов)

Общие проблемы: пропущенные значения, тип переменных, ...

• Слишком короткие временные ряды (в основном 4-5 точек данных): только базовые методы, основанные на оценке фактического/требуемого роста (нет моделей прогнозирования, нет теста на обнаружение тренда и т. д.)

• Пробелы в данных:

- Если пропущенные значения находятся в середине временного ряда, то это НЕ влияет на расчет фактических/требуемых темпов роста
- Если недостающие значения находятся в начале или в конце временного ряда, то оценка может быть несопоставимой или практически неприменимой
- Невозможно рассчитать региональные совокупные показатели
- Тип данных: например, для ЦУР, выраженных в оценках, требуются специальные процедуры

