

CALIF 4.0 THE INTERACTIVE SHINY WEB APPLICATION FOR CALIBRATION OF SURVEY WEIGHTS

UNECE Workshop on Measuring Poverty in Pandemic Times 26.03.2021

Boris Frankovič Statistical Office of the Slovak Republic

Contents

- calibration essentials
- optimal strategy
- Calif 4.0
- results for Slovak EU-SILC

Calibration approach

- population *U*, sample *S*
- every unit in S with design weight d_k as the inverse probability of selection
- nonresponse occurs and accounts for non-sampling error weights need to be adjusted for it
- without adjustment they cannot reproduce neither known population totals X_i nor estimated characteristics precisely

Calibration approach

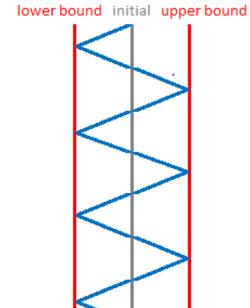
- seeking for new weights w_k for each unit in S that confirm X_j and differ minimally from initial weights
- then these new weights are used for estimation they treat some level of nonresponse bias
- found by optimization methods
- difference between initial and calibration weights computed by distance functions with parameter $r_k = \frac{w_k}{d_k}$
- bounds for the differences can be set (some feasible interval)

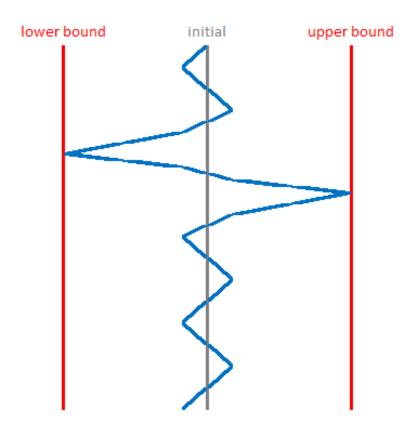
Calibration approach

- proposed by Deville and Särndal
- significant enhancement of precision of estimates
- study variables should correlate with auxiliary calibration variables
- when response rates are unequally distributed and cause bias
- brings consistence among surveys

Optimal strategy

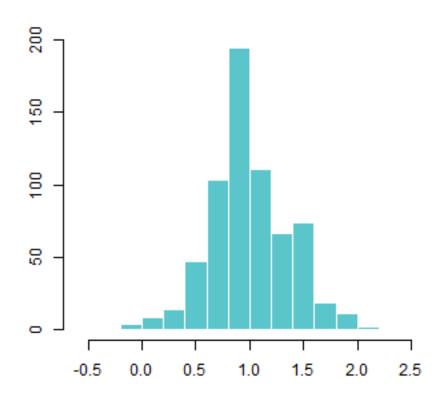
- common rule has been to find such solution that bounds are as strict as possible
- this stemmed from perception of a tiny difference between initial and calibration weights when they are kept within some tense interval
- however, limited space forces the initial weights towards bounds and as a result the average weight difference is quite high



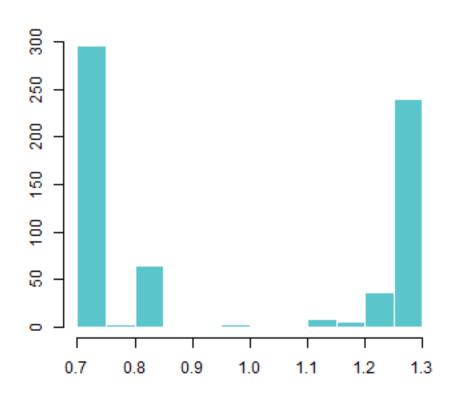

Optimal strategy

- less strict constraints form some area to move, where just a small number of weights is pushed off to the bounds while others remain close to their origins
- the average difference between initial and calibration weights is thus minimal for unbounded methods
- to avoid extreme weights, some bounded method should be used, but a feasible trade-off between the width of the interval and the distortion applied has to be found

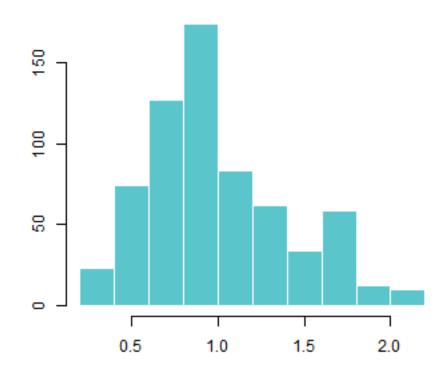
Optimal strategy



Weight quotients – no bounds


Histogram of quotients

Weight quotients – strict bounds


Histogram of quotients

Weight quotients – loose bounds – feasible trade-off

Histogram of quotients

Optimal strategy - conditions

- calibration constraints should be reproduced
- calibration weights differ not very much from initial weights
- they should lay in rather tense interval
- the average weight difference should be low compared to the linear method

Calif 4.0

- shiny web application in R
- GPL v3.0 licence
- modern design
- easy to work with, very fast, maintaining time-proven techniques
- web browser act as a display device
- all computations run locally in R no data are sent to the Internet
- https://github.com/SO-SR/Calif
- https://slovak.statistics.sk/wps/portal/ext/products/software.tools

Main features of Calif

- web-designed GUI
- convenient operability
- two-stage calibration for integrated weights
- interactive data loading
- stratification
- detailed and user-defined specification of calibration variables
- powerful and fast solvers

Main features of Calif

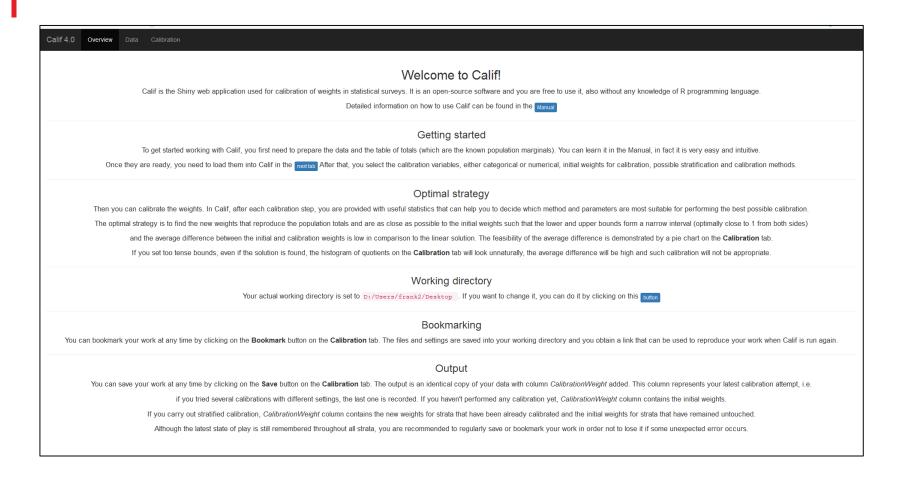
- commonly used distance functions
- approximate solutions possible
- bookmarking and interactive saving
- graphical and worthful outputs
- and many others

Installation

- install R free
- install required packages

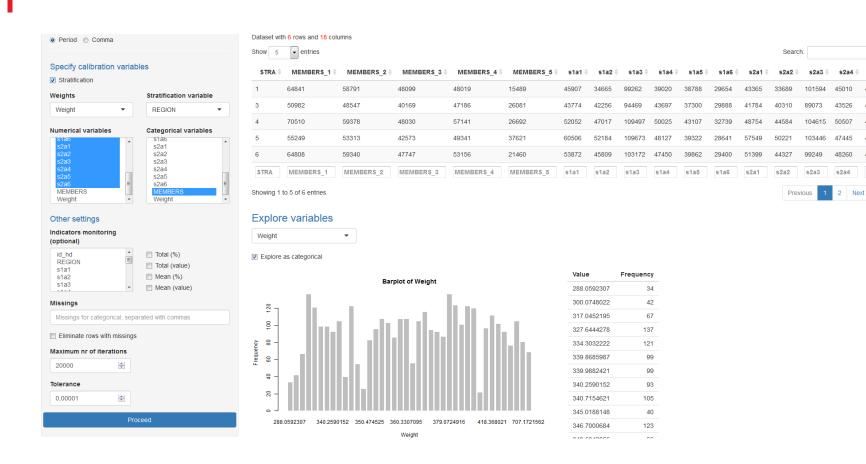
```
install.packages(c('shiny', 'haven', 'sampling', 'nleqslv'))
```

go to github or SO SR's webpage and run respective command, either

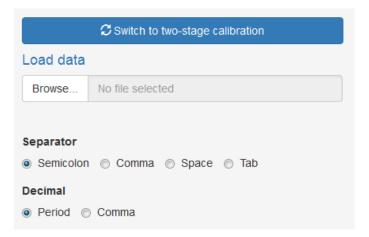

```
shiny::runGitHub('Calif', 'SO-SR', destdir = getwd(),
launch.browser = TRUE)
```

or

```
shiny::runUrl('https://slovak.statistics.sk/wps/wcm/connect/
7014bfd4-54a2-4080-929f-eb949bf25e39/calif.zip?MOD=
AJPERES&CVID=m7Xjumj&CVID=m7Xjumj', filetype = '.zip',
destdir = getwd(), launch.browser = TRUE)
```

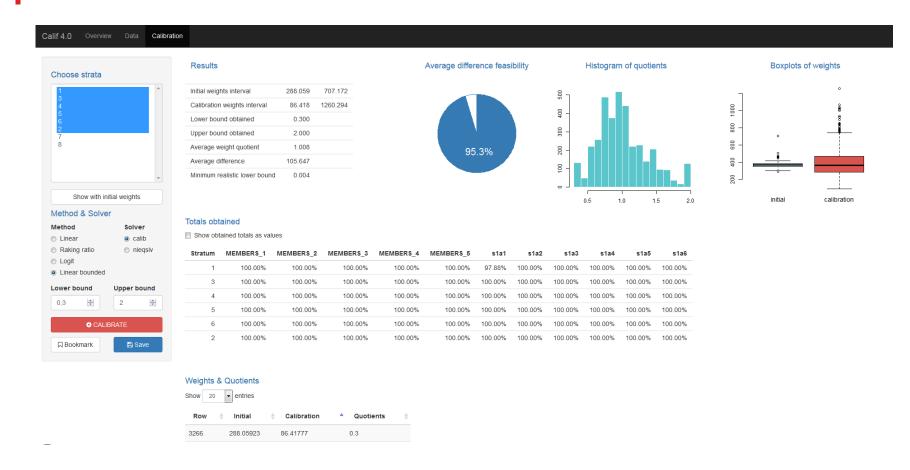


Overview tab


Data tab

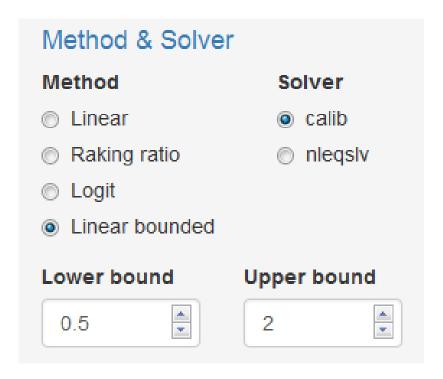
Data tab

- import of data and table of totals
- .csv, .txt and .sas7bdat formats supported
- data interactively displayed
- switch between single-stage and two-stage calibration



Data tab

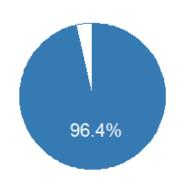
- data structure can be almost free it can contain any variables, but at least calibration variables and initial weights
- required structure for the table of totals is described in the Manual
- after the calibration, data with the same structure are returned, with one column added



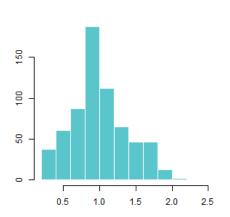
- selection of strata, proper method and solver
- show with initial weights H-T estimates of calibrated totals using initial weights as compared to these totals difference between actual reality and desired target very useful tool to examine distribution of nonresponse in the survey values far away from 100% are subject to non-sampling error due to nonresponse
- calib + linear bounded ideal for social surveys (such as EU-SILC)

 summary statistics – obtained totals, former and latter weight intervals, attained weight quotients, average difference

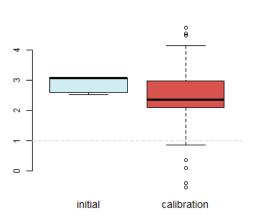
$$(AD = \frac{1}{n} \sum_{k=1}^{n} |w_k - d_k|)$$


Results

Initial weights interval	286.604	337.132
Calibration weights interval	85.981	761.426
Lower bound obtained	0.300	
Upper bound obtained	2.657	
Average weight quotient	1.000	
Average difference	98.330	
Minimum realistic lower bound	0.004	



useful figures


Average difference feasibility

Histogram of quotients

Boxplots of weights

- each new panel calibrated separately on the whole population
- new 2016 panel 1510 households
- calibration criteria separately in each NUTS3 level
 - 8 sex-age grous
 - employees
 - unemployed
 - pensioners
 - 2 household size categories

- altogether 104 totals to calibrate on
- resulting totals 100% reproduced with further settings

NUTS3	Solver	Method	Lower bound	Upper bound
1	calib	linear bounded	0,3	3
2	calib	linear bounded	0,3	2,7
3	calib	linear bounded	0,3	2,2
4	calib	linear bounded	0,3	2,2
5	calib	linear bounded	0,4	2,2
6	calib	linear bounded	0,2	2,8
7	calib	linear bounded	0,3	2,5
8	calib	linear bounded	0,3	2,2

- the whole cross-sectional file calibrated once more
- 2016 cross-sectional file 5738 households
- calibration criteria separately in each NUTS3 level
 - 12 sex-age grous
 - employees
 - self-employed
 - unemployed
 - pensioners
 - 2 household size categories

- altogether 144 totals to calibrate on
- resulting totals 100% reproduced with further settings

NUTS3	Solver	Method	Lower bound	Upper bound
1	calib	linear bounded	0,5	1,5
2	calib	linear bounded	0,5	1,4
3	calib	linear bounded	0,5	1,3
4	calib	linear bounded	0,5	1,5
5	calib	linear bounded	0,5	1,3
6	calib	linear bounded	0,5	1,3
7	calib	linear bounded	0,5	1,4
8	calib	linear bounded	0,5	1,3

Thank you for your attention

