TECHNOLOGY BRIEF **CARBON CAPTURE, USE AND STORAGE (CCUS)** #### Carbon Capture, Use And Storage (CCUS) #### All rights reserved worldwide Requests to reproduce excerpts or to photocopy should be addressed to the Copyright Clearance Center at copyright.com. All other queries on rights and licenses, including subsidiary rights, should be addressed to: United Nations Publications, 405 East 42nd St, S-09FW001, New York, NY 10017, United States of America. Email: permissions@un.org website: https://shop.un.org The findings, interpretations and conclusions expressed herein are those of the author(s) and do not necessarily reflect the views of the United Nations or its officials or member States. The designation employed and the presentation of material on any map in this work do not imply the expression of any opinion whatsoever on the part of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. Mention of any firm, licensed process or commercial products does not imply endorsement by the United Nations. This publication is issued in English and Russian. United Nations publication issued by the United Nations Economic Commission for Europe. ### **ACKNOWLEDGMENTS** This technology brief is one of the outcomes of the project called "Enhancing understanding of the implications and opportunities of moving to carbon neutrality in the UNECE region across the power and energy intensive industries by 2050". The project was managed by Iva Brkic with support from Walker Darke and Yezi Lyu and under strategic guidance and advice of Stefanie Held, Chief of the Sustainable Energy Section and Scott Foster, Director of Sustainable Energy Division. The project was run under the auspices of the Group of Experts on Cleaner Energy Systems with continuous support from countries and the whole UNECE Sustainable Energy Programme. This brief was prepared by the UNECE Task Force on Carbon Neutrality and a dedicated team of high-level international experts who offered quality control, advice, and validation of findings. The project team greatly thanks to Carolina Coll, Jon Gibbins, Sigurd Heiberg, Wolfgang Heidug, Denis Hicks, Alexander Krowka, Andrew Minchener and Grant Wach for their expertise and continuous support. The project team and the authors wish to thank Shuyue Li for providing visual communication and design services for this technology brief. Cover photo: @Marcin Jozwiak, Pexels #### Disclaimer The document does not necessarily reflect the position of reviewers and partners listed above who provided their comments and helped to develop this publication. # **CONTENTS** | Acknowledgements | iii | |--|-----| | Key Takeaways | 1 | | Capacity Building | 2 | | 1. Introduction | 4 | | 2. Engineered Technologies for Capture | 6 | | 2.1 CCUS from Point Sources | 6 | | 2.2 BECCS and DACCS | 7 | | 3. Technologies for Storage | 8 | | 3.1 Aquifers for Sequestration of CO ₂ | 8 | | 3.2 Enhanced Oil Recovery (EOR) | S | | 4. Carbon Storage Readiness | 10 | | 5. Solutions for Carbon Utilization | 11 | | 6. Comparative Analysis of CCUS Technologies | 13 | | 6.1 CCUS Technologies Cost Curve and Carbon Capture Potential | 13 | | 6.2 How Can Policy Makers Support the Private Sector to Act on Climate Change? | 14 | | 6.3 Comparative Analysis - CCUS Readiness Level | 15 | | 6.4 Comparative Analysis - CCUS Readiness Level Across UNECE Region | 16 | | Annex I – UNFC as Means to Verify CCUS Potential with International Cooperation | 17 | | Annex II – List of CCUS Projects Across UNECE Region | 18 | | Abbreviations | 25 | | References | 26 | ### **KEY TAKEAWAYS** Access to energy has been recognized by the United Nations Economic Commission for Europe (UNECE) as critical for assuring quality of life. At present, 80% of the energy usage in the UNECE region is fossil-fuel based. Many countries are reliant on non-renewable sources for their energy security and economic well-being, yet there is a growing global urgency to transition to a more sustainable energy future with increased dependence on renewable energy sources, improved energy efficiency, and reduced global carbon emissions." Carbon capture, use and storage (CCUS) technology is an essential step towards mitigating climate change. CCUS allows UNECE member States to establish a pathway to carbon neutrality and stay within their emission targets. Political agreement is required for long-term engagement and societal commitment, recognizing the scale and cost of the industry that needs to develop in a very short time – billions of tonnes of CO₂ and trillions of US\$. #### We are running out of time Structural change will be much deeper than most people expect and needs to start now. The greater the delay, the greater the change required. #### Sharing good practice is needed Inclusive multi-stakeholder initiatives can bestrengthened by public-private partnerships. Government and industry support is key. # Industry commits to wide ranging greening The private sector should lead the structural change through design, material efficiency, sustainable energy technology interplay and requires government support. #### Scale up favorable conditions Legal, financial and regulatory frameworks must be developed with infrastructure and banking institutions. Government support can provide initial momentum that will get industry engaged. #### **Working together beyond borders** A sub-regional approach to share knowledge and best practices is needed to improve cost efficiencies for large infrastructure projects. # Act now, CCUS unlocks full decarbonization of energy sector Countries need to include CCUS in long-term strategies and commence retrofitting existing infrastructure. ### **CAPACITY BUILDING** The UNECE has taken action to support countries in implementing CCUS technologies and attaining carbon neutrality. This action has focused on three core aims. These are to: #### **Raise awareness** Recognize CCUS as an essential climate mitigation option and consider it when developing national plans. #### **Accept technology** Develop and integrate policies to allow full use of CCUS technologies for energy and intensive industries. #### **Finance project** Create funding mechanism for CCUS and direct investments towards modernization of energy infrastructure. High level roundtables, policy dialogues and development of financial guidelines continue to raise awareness with stakeholders about the potential of CCUS technologies to attain carbon neutrality in the UNECE region. UNECE convened a Task Force on Carbon Neutrality under the auspices of the Group of Experts on Cleaner Electricity Systems to understand the potential of CCUS technologies across the UNECE region. This work has been conducted by the Task Force on Carbon Neutrality as part of implementation of the extrabudgetary project on "Enhancing the understanding of the implications and opportunities of moving to carbon neutrality in the UNECE region across the power and energy intensive industries by 2050". # **CARBON CAPTURE, USE AND STORAGE (CCUS)** CCUS is essential to unlock the full potential of decarbonization and attain carbon neutrality ### 1. INTRODUCTION Energy is critical for assuring quality of life and underpins attainment of the 2030 Agenda for Sustainable Development (2030 Agenda). The role that energy plays in modern society is recognized, but there remains an important disconnect between countries' agreed energy and climate targets and what countries are doing in reality. This brief builds on the recommendations from the Pathways to Sustainable Energy project and is the first in a series of technology briefs that directly support implementation of the Carbon Neutrality project. The underlying objectives of this brief are: - Introduce member states to a portfolio of CCUS technologies - Help policy makers to evaluate the benefits of the CCUS technologies - Build capacity in economies in transition with regard to CCUS # Reality Check and Rationale for CCUS Technologies The countries from the UNECE would need both to reduce their dependence on fossil fuels from over 80% to around 50% by 2050, and to achieve significant negative carbon emissions. The countries in the UNECE region need to cut or capture at least 90Gt of CO₂ emissions by 2050 to stay on a pathway to meet the 2°C target (see chart). As fossil fuels are likely to continue to play an important role for UNECE member States in the short and medium term, achieving carbon neutrality will require deployment of CCUS technologies to allow reduced and negative carbon emissions to bridge the gap until innovative, next generation low-, zero-, or negative- carbon energy technologies are commercialized and to keep hard-to-abate sectors operating. Figure 1.1 CO₂ emissions in the UNECE region by policy scenario for the energy sector. Assuming long term economic growth and the cost projections of renewable, low carbon and fossil fuel energy technologies The **reference scenario** is a forecast of CO₂ emissions based on maintaining economic growth. It assumes a 'Middle of the Road' scenario for socio-economic, market and energy technology developments. The model estimates energy demand and the lowest cost option to supply that energy. If constraints are placed on CO₂ emissions this changes how the model satisfies the forecast demand by shifting investments towards low carbon and renewable energy. The **NDC scenario** assumes the constraints imposed by Nationally Determined Contributions under the Paris Agreement up to 2030 and maintains them indefinitely. The **P2C scenario** constrains emissions to those consistent with less than 2 degrees Celsius global warming. Source: Pathways to Sustainable Energy,
UNECE 2020a #### **Scope and Structure** This brief introduces a portfolio of CCUS technologies and solutions, and proposes possible policy actions to allow their faster commercialization and wider deployment across the region. It further conducts comparative analysis of the CCUS technologies based on carbon capture potential, cost, technology readiness level, commercial readiness level, social readiness level as well as environmental impact. # Carbon Sequestration Technologies are the Key to Unlock the Full Decarbonization Potential Removing carbon dioxide begins with carbon capture. CCUS is a proven technology with costs on strong downwards trajectory. The cost of CO_2 capture depends on the source of CO_2 and separation method. We can differentiate between mobile and point CO_2 sources as well as the atmosphere (see chart). High concentration sources typically have lower costs for CCUS. The potential of CCUS as a technology solution can be assessed along the value chain. CO₂ can be captured at the source of the emissions, such as power plants, or can be directly captured from the air itself using membranes or solvents. Captured concentrated CO₂ can be transferred via pipelines to be later used as a feedstock or stored underground. This brief reviews a portfolio of CCUS technologies as well as natural carbon sinks. The technologies are divided into engineered technologies for carbon capture – fossil fuels with CCS, direct air capture (DACCS), energy from biomass with CCS (BECCS), and technologies for carbon storage – storage into aquifers, enhanced oil recovery and technologies for use of carbon. While some CCUS technologies might be considered mature, such as capture of CO_2 from high-purity sources or EOR as a storage option, the deployment of integrated, commercial CCS projects is still an aspiration. Large-scale capture of CO_2 is demonstrated in power generation and some industry sectors with large-scale demonstrations projects in operation or coming onstream. Still, more is needed to scale up and overcome the current lack of experience while developing and integrating capture, transport and storage infrastructure. CCUS is also an enabler for production of low-carbon hydrogen that is expected to play a key role in attaining carbon neutrality. [note: a separate brief on hydrogen is in preparation]. This is mostly relevant in countries with low-cost natural gas resources and available CO₂ storage, and might be attractive for significant parts of UNECE membership in the east. The next section of the brief gives an overview of a range of CCUS technologies. The following technology "snapshots" introduce the technology, discuss their sequestration potential, highlight where the know-how is still needed to scale it up and reach full commercialization, and propose some policy actions. ### 2. ENGINEERED TECHNOLOGIES FOR CAPTURE #### 2.1 CCUS from Point Sources In CCS from point sources, CO₂ is captured before it reaches the atmosphere in industries such as cement and steel production, hydrogen production from fossil fuels, incineration of waste, and power generation. It is then compressed to over 100 atmospheres and injected into porous rock layers a kilometre or more underground, beneath impermeable rocks that will keep it in place for tens of thousands to millions of years. Alternatively, the CO₂ can be incorporated into products such as building materials, as long as they give the same long-term storage. CO₂ can be captured from point sources efficiently with a capture level of over 90% using a range of different engineering approaches. Costs will vary, in the order of 10-100 \$/tCO₂. Although more expensive than for the greenfield projects, carbon capture equipment can be retrofitted in existing fossil infrastructure to avoid stranded assets while delivering on net zero strategies. Storage may need to be in other countries, so common standards and confidence for coordinated long-term investments are essential. CCUS will be critical for achieving net zero emissions fast enough to avoid dangerous climate change and meeting sustainable development goals for the world's population. All of the elements of CCUS have examples in use, but deployment and learning-by-doing are needed to refine and improve techniques and bring capture costs down. Transport and storage costs can also be cut by economies of scale for shared infrastructure; individual industries can install capture but need somewhere to send the CO₂. To achieve this CCUS needs focused support in a similar way to that provided to renewable energy, such as wind and solar PV. # CO₂ captured then needs to be transported to a secure storage site by pipeline or ship. Some locations will have easier access to storage than others but even long-distance pipelines can have low unit costs for large amounts of CO₂. Storage may need to be in other #### Appropriate Policy Action **Know-How Required** range of sources. development. **Sequestration Potential** early and rapid sector growth. exceed the fossil fuel storage capacities. secure subsurface storage. Governments need to establish regulatory environment to allow CCUS technologies to be deployed at scale and early to establish a new industry sector. CCUS potential to attain net-zero is vast. **Geological**: Geological: to identify, engineer and manage • **Engineering**: to build equipment to capture CO₂ from a wide • Infrastructure planning: for large, transformational projects Annual: CCS 10-30 Gt CO₂/yr by 2050, limited by CO₂ trans- port and storage infrastructure development and support for **Total**: Essentially unlimited. CCS storage capacities potential that cannot be achieved by ad hoc incremental - Build CO₂ transport and storage infrastructure at scale to bring down costs and encourage CCUS uptake by industries. This is something that individual businesses cannot do themselves. - Plan all the way to net zero. CCUS cannot be added effectively to an energy and industry system that was really designed for only marginal CO₂ emission reductions. - Prepare international standards and arrangements to share CO₂ storage. CO₂ transport and storage infrastructure needs to be as international as that for electricity, gas and oil supplies. CO₂ can be permanently stored in aquifers or old oil and gas reservoirs. #### 2.2 BECCS and DACCS ### BECCS – Biomass Energy with Carbon Capture and Storage DACCS – Direct Air Carbon Capture and Storage Negative Emissions Technologies (NETs) return carbon from fossil fuels that has been released as CO₂ into the atmosphere back to permanent and secure storage underground. In BECCS, CO₂ is taken out of the atmosphere by vegetation, then recovered from the combustion products when the biomass is burnt. In DACCS, CO₂ is captured directly from the air. In both cases, the captured CO₂ is compressed and then injected into porous rock layers a kilometre or more underground, beneath impermeable rocks that will keep it in place for tens of thousands to millions of years. BECCS and DACCS can in effect capture CO₂ from the air from any fuel source anywhere in the world. BECCS is expected to be cheaper, at maybe \$50-200/tCO₂ removed and stored, while DACCS might be roughly twice the cost. But DACCS is able to remove large amounts of CO₂ from the atmosphere without the demands on natural systems required by growing biomass. Often it will be cheaper to capture, or avoid, CO₂ emissions at source, rather than capture them from the air. BECCS and DACCS can capture the same quantity of CO₂ generated by mobile, natural or infrequent emissions. NETs will also have to be used to remove CO₂ if net zero is not achieved quickly enough to avoid dangerous climate change. #### Know-How required - **Land management for BECCS**: Biomass must be resourced in a sustainable way, that ideally also enhances carbon sequestration in soils and minimises the use of industrial fertilizers - Engineering: to build equipment to concentrate CO₂ from biomass combustion products or air, compress it and transport it by pipelines or ships. - Geological: to identify and manage secure storage sites. #### **Sequestration Potential** - Annual: BECCS 5-20 Gt CO₂/yr by 2050, limited by biomass availability; DACCS 5-20 Gt CO₂/yr. - **Total**: essentially unlimited, since geological storage can be anywhere in the world. #### **Appropriate Policy Action** - Plan all the way to net zero. BECCS / DACCS cannot work effectively in an energy and land use system that was designed for only marginal CO₂ emission reductions. - Develop technology and deploy at scale to reduce cost and set a carbon price. DACCS can represent the carbon price needed for achieving net zero. - Prepare international verification and negative emission trading standards. Verification of the effective CO₂ captured is essential whether the negative emissions are traded or used internally. (Note: especially if fertilizers are used for BECCS) - Ensure BECCS/DACCS are used fairly. Avoid burden on future generations of the cost of retrospectively capturing CO₂. Recognise food-water-energy nexus approach to avoid jeopardising global food or water security to produce biomass for BECCS. Net negative emissions technologies are key to reach net-zero and then net negative emissions. In BECCS, CO_2 is taken out of the atmosphere by vegetation, then recovered from the combustion products when the biomass is burnt. In DACCS, CO_2 is captured directly from the air. ### 3. TECHNOLOGIES FOR STORAGE #### 3.1 Aquifers for Sequestration of CO₂ Aquifers are geological formations containing brine (salt water) in porous rock. Suitable aquifers are in sedimentary rock underneath a 'caprock' which is impermeable. They are vast and found all over the world at depths over 1km. It is probably the most significant CCS option available. CO₂ can be pumped down into the rock for sequestration. At such depths CO₂ is pressured to a density of 200-800kg/m³. In the aquifer, CO₂ displaces
brine and forms a plume from the injection point that tends to move to the top of the aquifer. At the CO₂/brine interface, CO₂ will dissolve in brine (about 1-2% solubility) and some water will dissolve in CO₂ plume. These effects cause an increase in acidity affecting the normal chemical reactions and biome in the aquifer. Over tens of thousands/ millions of years the CO₂ can mineralise to rock. Comprehensive reservoir engineering are required to characterise the rock properties prior to any sequestration, to avoid costly topside infrastructure developments that will be redundant if the aquifers do not have the storage capacity. Rate of injection and total capacity of the aquifer is determined by geology and pressure limits in the aquifer. The pressure in the aquifer must be limited to ensure that CO₂ in the plume or brine cannot escape. It depends on the rate of CO₂ injection and how quickly the brine permeates through rock. Once injection stops, the pressure decreases over centuries as the CO₂ continues to dissolve and mineralise. But there can also be dissolution of the caprock/seal dependent upon the rock properties due to the acidity. This can impact the integrity of the storage and sequestration in the reservoir. Adverse effects can occur if CO₂ or brine leak into sources of drinking water or soils. This leakage can be from geological faults, abandoned oil or gas wells (often found in the same location), movement of brine into adjacent geological formations, closure of the injection point when the site is abandoned (acidification is a concern for the metals and concrete used). Monitoring is necessary by various seismic and other techniques during and after injection to identify if leakage may be occurring and prevent it. #### **Know-How Required** Oil & Gas Industry: The technique is used to today at a scale of several million tonnes per year where CO₂ emissions from operations incur high cost penalties. #### Sequestration Potential Estimated at "more than a trillion tonnes CO₂". The costs of operations at the injection head are low, <\$30/te storage cost only (excluding collection, transport and pressurisation of CO₂). #### **Appropriate Policy Action** - Recognise the scale and cost of the industry that needs to develop in a very short time – billions of tonnes CO₂ and trillions of US\$. - Harmonize national and international frameworks governing rights to sub-surface resources. Ensure that laws do not restrict the use of aquifers and protect other users from adverse effects such as contamination of drinking water aquifers. Consider the financial and legal conditions in the event of any leakage. - Develop infrastructure to overcome location issues. CO₂ sources and aquifers are not all co-located. Distribution infrastructure and DACCS will be required. Cooperation will be needed to access unused capacity across countries. - **Cover the costs**. No revenue streams of significance are anticipated, hence a funding mechanism must be created to cover costs of storage, collection, clean up and transportation of CO_2 . Raise awareness to gain public acceptance. Funds are required to complete geological investigations, scale up to 100's millions tonnes/yr and ensure the technology is safe. **Source**: Adapted from M. Hefny (et. al) 2020 #### 3.2 Enhanced Oil Recovery (EOR) EOR is a family of techniques to increase the recovery of oil and gas. One EOR technique is to inject CO₂ into the well at pressure. At depths greater that 700m, CO₂ becomes supercritical and acts as a good solvent to release oil and gas from rock strata and flush them to the well head. CO₂ can also be co-injected with water. First tried in 1972, EOR is a common technique applied in mature oil & gas wells. Injected CO₂ can be used as a secondary drive mechanism to push out remaining hydrocarbons in an oil and gas reservoir. CO₂-injection technology is an EOR method that is gaining most popularity. The source of CO₂ used is based on lowest locally available cost and the majority is from natural sources. The interest in CO₂ EOR is that once the field is exhausted, some CO₂ can be left in the reservoir, sequestrating it for centuries or millennia. The reservoir, possibly including its aquifers, may have capacity to store CO₂ created when the subsequent production is combusted. In special cases, therefore further production can be carbon neutral. As there are many ways to produce oil and gas, CO₂ EOR must be economically competitive versus opening new wells and other EOR techniques (for example, Thermal EOR uses steam to heat the oil in the well and reduce its viscosity, Chemical EOR uses acids or alkalis to chemically release the hydrocarbons, and Polymer EOR uses polymers to increase the viscosity of water flushing out the hydrocarbon). The competitiveness of CO₂ EOR depends on suitability of the reservoir, the payback period required because of the relatively high capital costs, the local cost of CO₂ and availability of technical resources to do it. #### **Know-How Required** - Oil & Gas Industry: Integration of existing technology into the economic production of oil. - Other industries: Processing concentrated sources of CO₂ so that it can be transported and used for EOR. #### **Carbon Storage Potential** - Total: 50 350 Gt (IEA 2015 estimate) - Onshore has the largest CO₂ EOR potential globally, but some good offshore candidates exist. Based on Rystad Energy data, of all global producing fields with potential for CO₂ storage, over 80% are onshore fields. #### **Appropriate Policy Action** Strengthen the competitiveness of CO₂ EOR for the oil and gas industry. Reduce the relative costs of CO₂ EOR in comparison to other oil recovery methods (Capex, cost of CO₂ and regulations making other production techniques relatively more expensive). - Encourage the oil and gas industry to use CO₂ EOR. A system of credits based on future CO₂ sequestration once the well is closed or hydrocarbons marketed from well using CO₂ EOR. Encourage more CO₂ to be sequestrated than is required just for oil recovery. - Incentivise CO₂ capture from anthropogenic sources. Encourage collaboration between industrial sources of CO₂ and users of EOR. - Increase the amount of CO₂ stored (EOR+). Promote and disseminate research into techniques to increase CO₂ sequestration above that needed for EOR. Classify sources of hydrocarbons based on a net carbon emission after EOR (standardised life cycle analysis). Source: Mai Bui (et.al) 2018 ### 4. CARBON STORAGE READINESS Large scale deployment of carbon capture and storage technologies will require availability of vast geological storage capacity across the whole UNECE region. Information on the geographical distribution of storage potential and its quantitative characterization is important to understand the role of CCUS in stabilizing atmospheric concentration of CO₂ and for developing effective and efficient policies for CCUS. Countries in the UNECE region have relatively high carbon storage potential (see chart). At present, known suitable sedimentary basins in the UNECE region have been identified in North America and Western Europe, namely the UK, the Netherlands and Norway. Assessments still have not been conducted in the eastern part of UNECE region - in the Russian Federation (Volga Urals, West Siberia, Caspian subregion) nor in Kazakhstan, Azerbaijan Caspian Sea. (UNECE is also preparing a study on Geological CO2 storage in Eastern Europe, Caucasus and Central Asia.) Access to secure geological CO₂ storage will be an issue in some countries in the UNECE region. Geology does not recognise, nor is controlled by geopolitical boundaries. Cooperation amongst member states will provide the most effective and efficient mitigation strategies for the subsurface storage and sequestration of CO₂. There is an urgent need to cooperate on shared, regional CO₂ transport and storage infrastructure, including via CO₂ shipping, if CCUS is to be deployed at a scale capable of making a substantial contribution to attaining carbon neutrality. Source: Bradshaw, J. and Dance, T.(2004) ### 5. SOLUTIONS FOR CARBON UTILIZATION Carbon utilization is the use of CO₂ to create products with economic value. A widespread application in some UNECE countries is EOR (increasing the recovery factor from oil/gas). Utilization can be subdivided in 3 main areas (Mineralization, Biological and Chemical) as observed below. It is important to note that certain carbon application options, such as the use of CO₂ in some chemicals processes, fire suppression products, etc. (see Figure 5.1.) are not equal to permanent sequestration solutions such as concrete or carbonates. Coupling with DACCS is needed to neutralise the issue of re-releasing CO₂ and to attain carbon neutrality. Due to its current market size, the conversion of CO_2 into products makes a small but important contribution to GHG targets for climate change. In a future hydrogen economy, carbon from CO_2 can be used to make many of the chemicals and plastics currently made using fossil fuels. Carbon utilization can unlock the commerciality of these projects for the industrial sector, steel, cement and chemical. #### **Utilization Potential** - Mineralization: Incorporating CO₂ into concrete has the most potential to become a large market for CO₂ in the near term. Cement, one of the components of concrete, is responsible for 8% of the total GHG. This process is energy efficient using minimal external energy. - Chemicals: CO₂ is currently used in small quantities to make urea fertiliser and some special polymers. In a future hydrogen economy, CO₂ could be combined with H₂ to make synthetic fuels, syngas and methanol. Syngas and methanol are basic chemical feedstock from which many chemicals and polymers can be made. - Biological: CO₂ is used to promote plant growth and can be captured in soils by using biochar to increase soil quality. Figure 5.1 CO₂ applications ^{*} Products that use
carbon but do not sequestrate carbon permanently **Source**: Mission Innovation Carbon Capture, Utilization, and Storage Workshop, September 2017 #### Outlook - CO₂ utilization will require large energy consumption due to the many reaction and separation steps involved. Industrial scale carbon capture will create a source of CO₂ which is required to attract industrial users into a future CCUS value chain. - Benefit analysis of these new technologies could look at market, cost and carbon use potential. - Life cycle assessments (use, disposal and recycling) are essential to understanding the true merits of a product including how long the CO₂ can be sequestered. #### **Appropriate Policy Action** - Establish an overall policy strategy and pathway for CCUS in industry, incorporating the necessary R&D priorities, commercialization potential, incentive policy mechanisms, and enabling legal frameworks. - Promote R&D programs and initiatives that can unlock the economic potential of CO₂ utilization. Pursue large-scale demonstration for CCUS in industry in national and regional programmes. - Set standards to help industry develop products with CO₂ and promote use of products that sink CO₂ (e.g. concrete industry). - Introduce financing mechanisms, such as tax credits, carbon prices & taxes, mandate & standards, carbon financing in development countries. Figure 5.2 Utilization markets and potential CO₂ demand | Product | Price
(\$/t) | Demand
(Mt/yr) | CO ₂ Use
(tCO ₂ /t) | |-------------------|-----------------|--------------------------|--| | Aggregate | 10 | 55,000 | 0.25 | | Concrete | 100 | 20,000 | 0.025 | | Methanol* | 350 | 140 | 1.37 | | Ethanol | 475 | 100 | 1.91 | | Sodium carbonate | 150 | 60 | 0.42 | | Calcium carbonate | 200 | 10 | 0.44 | | Polymers* | 1,900 | 24 | 0.08 | Source: BloombergNEF. March 2020 * For chemical products, CO₂ utillization is only a net benefit if it replaces petrochemicals. Chemical products are too short lived to be considered as carbon sinks. For higher environmental impact, CO₂ must come from BECCS, DACCS or waste streams. #### **Emerging Uses for CO₂** Besides EOR, many products are emerging as potential sinks that could increase demand in the future. Products indicated in the table above can use CO₂ as a feedstock to produce the material. Many start-up companies are emerging with the objective of producing more economic and environmentally friendly paths to sink CO₂ into products rather than into underground geological storage. Aggregate and concrete produced from CO₂ have the greatest potential to sink CO₂ with a combined annual market size of about 2500bn \$/yr. However, the low price of existing products make market penetration of such products challenging. Production of methanol and ethanol also creates opportunities for sinking of CO₂ in products, but since liquid fuels are eventually burnt they are not considered as long-term CO₂ sink solutions unless combined with DACCS, BECCS and green hydrogen to create fuels that replace fossil fuels. The rest of the products have limited potential to fully emerge as CO_2 sink solutions, as markets for these products are small compared to the market for fossil fuels and processing costs are high. As CO₂ use increases for aggregate, concrete and chemicals production, low-cost CO₂ availability will limit its use for chemical production. Partnerships between CCUS technology providers and the chemical industry will be needed to develop new capture capacity and infrastructure. ### 6. COMPARATIVE ANALYSIS OF CCUS TECHNOLOGIES # **6.1 CCUS Technologies Cost Curves** and Carbon Capture Potential Cost is perceived as one of the main barriers for the development of CCUS projects. It is forecasted the cost of CCUS planned development for Europe could cost up to 50 billion euros. The speed at which CCUS costs can be reduced will drive rapid deployment of large-scale CCUS technologies. CCUS technologies have evolved quickly over the last 5 years through testing in multiple R&D pilot projects around the world and through experience gained during deployment of large-scale projects, which has triggered further optimization of the technologies. There is quite a lot of uncertainty around the costs for the different carbon abatement technology options as observed in the figure below. The cost of natural sinks including reforestation, afforestation and agro-forestry is the lowest cost at around USD 50/ton CO₂ sequestered or below. CCUS cost of technologies that capture CO₂ from point sources for the Industrial sector vary considerably for different technologies depending on the concentration of the CO₂ with the Cement CCS and BECCS being the more expensive sources. DACCS technologies have the larger costs (more than USD 100/ ton CO₂). The uncertainty in DACCS cost is the highest with some costs reported as high as USD 400/ton CO2, however these technologies have a high potential to capture CO₂ from sources beyond the industrial sector 28 Gt CO₂ and up to 36 Gt/CO₂. As the quantity of CO_2 to be captures is far greater than any potential market for the CO_2 (with the exception of the gasoline pool), these investments will not be paid back but should be seen as the cost to society of avoiding unacceptable climate change. CCUS may be expensive, but it is an affordable option for an economy that aspires to be carbon neutral. Figure 6.1 gives the broad estimated costs of the main CCUS technologies. In order to appreciate how theses costs affect the cost of using fossil fuels in a transition period, the arrow indicates the cost of CCUS, \$150 per tonne of CO₂, that implies a doubling of energy costs, assuming an oil price of \$60/barrel and approximately 0.4 tonnes of CO₂ emitted per barrel used. Even a doubling of energy costs is still within the historical high oil price range. All the CCUS technologies are viable in this scenario. #### 6.2 How Can Policy Makers Support the Private Sector to Act on Climate Change? **Technology readiness levels (TRLs)** are a method for estimating the maturity of technology. **Commercial readiness levels (CRLs)** are a method that assesses various indicators which influence the commercial and market conditions beyond just the technology maturity. **Social readiness levels (SRLs)** are a method that assesses to what extent new ideas and innovations resonate with individuals and groups and whether they will be integrated into society and reach decisions concerning their adoption in the form of a regulatory and financial regime. Many CCUS technologies are now at, or close to, TRL 9. Experience on other energy technologies indicates that applicable TRL1-9 research, including for upgrades in service, only stops when the last plants are closed. Many of the technologies required to move towards carbon neutrality would benefit and progress faster with the appropriate public sector alignment and support. Governments should fund R&D that will evolve CCUS technologies on CRL scale to continue beyond CRL 3 and TRL 9 and kick off with commercial scale up of CCUS technologies. Policy makers risk delaying CCUS deployment because they are lagging behind in embracing CCUS technologies in their national action plans. There is a need for enabling policy and regulatory environment to allow full commercialization of CCUS technologies. Open access is required for two-way information flow between deployment and research and innovation activities, especially when most is government funded. As can be seen on the next page, for many CCUS technologies, the Social Readiness Levels are lagging behind the Technology and Commercial Readiness Levels. This is delaying implementation, increases the costs incurred and contributing to even more drastic measures as the carbon budget is used up. #### Figure 6.2.1 Technology, Commercial and Social Readiness Level Carbon neutrality will need major changes to the way economies work. Any rapid introduction of change requires coordination of technology development, commercialization and the social acceptance. 'Readiness Levels' are a commonly used indicator of describing what needs to addressed during the introduction of a change. Figure 6.2.1 shows how these can be used coordinate public and private actors. If the steps are not synchonised there will be delays, additional costs and, potentially, a failure to enact the change. Sources: Developed based on Based on Bruce Adderley (et. al) 2016, Greg Kelsall 2020 and Denis Hicks 2020 #### **6.3 Comparative Analysis - CCUS Readiness Level** #### **Commercial Readiness Level** #### **Social Readiness Level** **Source**: Natural Petroleum Council: Draft Summary Report, Meeting the Dual Challenge, A Roadmap to At-Scale Deployment of Carbon Capture, Use, and Storage, December 2019 (adapted for commercial and social readiness level) #### 6.4. Comparative Analysis - CCUS Readiness Level across UNECE Region Full list of CCUS projects in appendix page 18 **Source**: Global CCS Institute and IOGP data, 2020 ### **APPENDIX I** # United Nations Framework Classification (UNFC) as Means to Verify CCUS Potential with International Cooperation A number of resource classification systems have evolved over time in response to various sectoral needs and local requirements. These systems have witnessed progression towards a unifying global standard, UNFC. UNFC is a global, principles-based and user-friendly system for classifying, managing and reporting mineral, petroleum, renewable energy, groundwater, anthropogenic resources and injection projects. UNFC is a unique system in which resource quantities are classified on the basis of three fundamental criteria that reflect technical, socio-economic and planning dimensions. #### Benefits of using UNFC: - Structured framework of principles, rules and guidelines - Aligned to major international and national classification systems - Provides simplicity without sacrificing
completeness or flexibility - Leverages global communications - Numerical and language independent coding scheme. The UNFC classifies projects where categories marked 1 indicate most mature categories and highest confidence according to estimates. Projects are classified by their E and F categories, while the G categories reflect the degree of confidence in the estimate. The E-F categorization is shown in Figure 7. Estimates have traditionally been evaluations of resource quantities. As the UNFC by nature is a classification of projects, also other quantitative information carried by the projects and the assets associated with them may be included. Examples are quantities of costs, revenues, emissions, labour etc. and indicators of environmental and social contingencies etc. ### **APPENDIX 2** # CCUS projects in **EUROPE** - 1. Leilac - 2. Port of Antwerp - 3. Carbon Connect Delta (Port of Ghent) - 4. CO₂ EOR Project Croatia - 5. iCORD - 6. Bio-Refinery plant - 7 Greensand - 8. Lacq - 9. DMX Demonstration in Dunkirk | NO | LOCATION | PROJECT NAME | PROJECT
TYPE | INDUSTRY | DESCRIPTION | CO ₂ CAPTURED/
YEAR | STARTING DATE
(OPERATION) | STATUS OF THE PROJECT | PARTICIPANTS | IOGP MEMBERS
INVOLVED | |----|--|--|--|--------------------------|--|---|---|--|--|--------------------------| | 1 | Belgium | Leilac | Industrial
capture | Cement | Cement plant carbon capture (pilot project) | N/A | 2018-2020 | 2-year CO ₂
capture test | Heidelberg
Cement, Calix | | | 2 | Belgium
Antwerp | Antwerp@C
(Port of Antwerp) | Industrial
capture | N/A | CCS-equipped industrial cluster, CO ₂ transportation and storage in the North Sea and reuse | N/A | N/A | Feasibility study | Air Liquide, BASF, Bore-
alis, INEOS, ExxonMobil,
Fluxys, Port of Antwerp
and Total | ExxonMobil, Total | | 3 | Belgium
Ghent | Carbon Connect
Delta
(Port of Ghent) | Industrial
capture | N/A | Connected to the cross-border Carbon
Connect Delta in the Netherlands | 1 Mt by 2023,
6,5 Mt by 2030 | 2023 | Pre-feasibility | Smart Delta Resources,
North Sea Port, Arce-
lorMittal, Dow Benelux,
PZEM, Yara, Zeeland
Refinery, Gasunie, Fluxys | | | 4 | Croatia
Zagreb
County | CO ₂ EOR Project
Croatia | EOR | N/A | EOR project started in 2014. Injected 1.400 kt
CO₂ in the EOR fields Ivanić and Žutica near
Ivanic Grad (Zagreb County) .The pipeline
Molve-Ivanić is 88 km long (30 bar) | 0,560 Mt/y | 2015 | In operation | INA MOL | MOL | | 5 | Croatia
Central
Croatia | iCORD | Industrial
capture | Fertilizer | Capturing the CO ₂ produced at a fertilizer plant at Location in central Croatia and at a concrete production plant at Location in eastern Croatia, and storing it at Moslavina basin oil fields and Pannonia basin oil fields as part of INA EOR project | Approx. 1Mt/y | 2025 | Feasibility study to
be ordered by end
of 2019, and to be
prepared by Q3
2020 | INA MOL | MOL | | 6 | Croatia
Sisak-
Moslavina
County | Bio-Refinery plant | Industrial
capture | Bioethanol
production | Bio-Refinery plant (bio-Ethanol production) on the 95isak Refinery location. On the existing pipeline route, new pipe of 16km will be built for CO ₂ storage, for the yearly production of 60kt of CO ₂ | 0,06 Mt/y
(additional
potential on
location
300-400 kt) | 2024 | Signing the
contracts for
basic design
and technology
selection | NA MOL | MOL | | 7 | Denmark
<i>Greensand</i> | Greensand | Capture
storage | Natural gas | Project purpose is to prove that the Paleocene sand in the depleted Danish North Sea oil-and gas fields and the associated infrastructure can be used for safe, long-term storage of CO ₂ . When in operation, the Project will allow for storage of 0.5-1 mill ton/CO ₂ per year. | 0.5-1 Mt
stored
CO ₂ /year | Pilot CO ₂ injection
project by 2023;
full field by 2025 | Phase 1:
Feasibility study
stage, current TRL
2-3, aim is TRL 6
for launching the
pilot (Phase 2) | INEOS Oil & Gas Denmark,
Wintershall Dea GmbH,
Maersk Drilling | Wintershall Dea | | 8 | France
Pyrenees | Lacq | Capture
storage
(oxycom-
bustion) | Natural gas | CCS Oxy fuel combustion CO ₂ captured
and storage in depleted natural gas field at
Rousee (Pyrenees) | Approx. total
50,000 tonnes | 2009 | Capture and
storge phase
ended on
15/03/2013 | Total | Total | | 9 | France
Dunkirk | DMX Demonstra-
tion in Dunkirk | Industrial
capture | Steelmaking | CCS-equipped steel-making plant, CO ₂ transportation and storage in the North Sea | Approx. 1 Mtpa | 2025 | | ArcelorMittal, IFPEN,
Axens, Total, ACP, Brevik
Engineering, CMI, DTU,
Gassco, RWTH, Uetikon | Total | # CCUS projects in **EUROPE** - 10. H2morrow - 11. ERVIA - 12. Orca - 13. Hellisheidi - 14 CCS Ravenna Hub - 15. Porthos - 16. Athos - 17. Magnum | NO | LOCATION | PROJECT NAME | PROJECT
TYPE | INDUSTRY | DESCRIPTION | CO ₂ CAPTURED/
YEAR | STARTING DATE
(OPERATION) | STATUS OF THE PROJECT | PARTICIPANTS | IOGP MEMBERS
INVOLVED | |----|--|-----------------|---|---|--|-----------------------------------|------------------------------|-------------------------|--|--------------------------| | 10 | Germany
North
Rhine-West-
phalia | H2morrow | Natural gas
to H ₂
(precom-
bustion) | Natural gas | Reforming natural gas imported from Norway
to hydrogen with CO ₂ capture and storage
offshore. Supplying industry and other end
users in North Rhine-Westphalia with 8.6
terawatt hours of hydrogen per year from
decarbonised natural gas | N/A | N/A | Feasibility study | Equinor, OGE | Equinor | | 11 | Ireland | ERVIA | Power and capture (post-combustion) | Natural gas
power and
refining | CCS-equipped CCGTs and refinery, CO ₂ transportation and storage in the Celtic Sea | 2Mtpa | 2028 | Feasibility study | ERVIA | | | 12 | Iceland | Orca | Direct air
capture | Power
generation | Orca will combine Climeworks' direct air capture technology with the underground CO2 storage provided by Carbfix, capturing 4,000 tons/yr of CO2 - making the largest direct air capture plant to date. The energy required to run the direct air capture process will be provided by ON Power's nearby Hellisheidi Geothermal Power Plant | 4000 tonnes | N/A | Under
construction | Carbfix, Climeworks, ON
Power | | | 13 | Iceland | Hellisheidi | Industrial
capture | Power
generation | The industrial scale capture at the Hellisheidi Geothermal Power Plant in Iceland has significantly reduce CO2 and H2S emissions from the power plant since 2014, following successful pilot-scale injections in 2012. The gases are co-captured in a scrubbing tower with annual capacity of about 12,000 tonnes of CO2 and 6,000 tonnes of H2S, about 30% and 75% of the plant's emissions respectively. Cost of industrial scale operations at Hellisheidi are less than \$25/ton | 12,000 tonnes | In operation | Under
construction | Carbfix, ON Power | | | 14 | Italy
Pianura
Padana | CCS Ravenna Hub | Power and
capture
(post-com-
bustion),
blue
Hydrogen | Power gen-
eration and
potential H ₂
production | CO ₂ capture in North of Italy (Pianura Padana
Area) from Industrial Complex (i.e. Ravenna),
transportation and storage exhausted natural
gas fields. With a storage capacity of between
300 and 500 million tonnes | 0.04-5,0 Mtpa
phased program | 2025-2028 | Prefeasability
study | Eni | Eni | | 15 | The
Netherlands
Port of
Rotterdam | Porthos | Industrial
capture | Chemical,
refining | CCS-equipped industrial cluster, CO ₂ transportation and storage in the North Sea | Approx. 5Mtpa | 2024 | Feasibility study | Gasunie, the Port
Authority and EBN | BP, Shell | | 16 | The
Netherlands
Ijmond | Athos | Industrial
capture | Steelmaking | CCUS network capturing CO ₂ from TATA steel plant and reusing it or storing it in empty gas fields under the North Sea | 7.5 MT CO₂ per year | 2030 | Feasibility study | Gasunie, Port of
Amsterdam, EBN and
TATA Steel | | | 17 | The
Netherlands
Eemshaven | Magnum | Natural
gas to H ₂
(pre-com-
bustion) | Hydrogen
production | CCS-equipped production of hydrogen for power generation, CO2 transportation and storage in the North Sea | Approx. 4 Mtpa | 2023 | Feasibility study | Equinor, Vattenfall,
Gasunie, MHPS | Equinor | **Source**: Global CCS Institute and
IOGP data # CCUS projects in **EUROPE** - 18. Aramis - 19. Carbon Connect Delta - 20. Sleipner CO₂ Storage - 21. Snøhvit CO₂ Storage - 22. Longship (including Northern Lights) - 23. Preem CCS - 24.Stockholm Exergi Bio-CCS | NO | LOCATION | PROJECT NAME | PROJECT
TYPE | INDUSTRY | DESCRIPTION | CO ₂ CAPTURED/
YEAR | STARTING DATE
(OPERATION) | STATUS OF
THE PROJECT | PARTICIPANTS | IOGP MEMBERS
INVOLVED | |----|--|--|---|------------------------------------|---|--|------------------------------|---------------------------------------|--|--| | 18 | The
Netherlands
Den Helder | Aramis | Industrial
capture | | CO ₂ supplied by third parties from Den Helder
and stored in the North Sea floor. This CO ₂ can be
brought to Den Helder by boat2or by pipeline (for
example from IJmuiden) | N/A | N/A | N/A | N/A | | | 19 | The
Netherlands
Ports of
Terneuzen
and
Vlissingen | Carbon Connect
Delta | Industrial
capture | N/A | With CCUS, CO2 emissions can be reduced by 30% in the port area of North Sea Port. A consortium of Belgian and Dutch companies expects to complete the Carbon Connect Delta feasibility study at the end of 2020, after which the project will be further developed for realization. The consortium works simultaneously across industrial sectors (chemicals, petrochemicals and steel), as well as with relevant governments in both countries to create unique synergies and opportunities | 1 Mt by 2023, 6,5 Mt
by 2030 | 2023 | Pre-feasibility | Smart Delta Resources,
North Sea Port, Arce-
lorMittal, Dow Benelux,
PZEM, Yara, Zeeland
Refinery, Gasunie, Fluxys | | | 20 | Norway
North Sea | Sleipner CO ₂
Storage | Industrial
capture | Natural
gas | CCS-equipped natural gas production, CO ₂
directly injected into North Sea reservoirs | Approx. 1 Mtpa,
and over 17 million
tonnes has been
injected since
inception to date | 1996 | Operational | Equinor (operator), Vår
Energi, Total | Equinor (operator),
Vår Energi, Total | | 21 | Norway
Barents Sea | Snøhvit CO ₂
Storage | Industrial
capture | LNG
facility | CCS-equipped LNG facility, CO ₂ transportation and storage in the Barents Sea | 0.70 Mtpa | 2008 | Operational | Equinor (operator)
Petoro, Total, Engie,
Norsk Hydro, Hess Norge | Statoil, Total, Hess | | 22 | Norway | Longship
(including
Northern Lights) | Industrial
capture | Cement
and waste-
to- energy | Capturing CO2 from HeidelbergCement Norcem's cement factory in Brevik and Fortum Oslo Varme's waste incineration facility in Oslo and transporting it for offshore storage in the North Sea basin. Equinor, Shell and Total form the transport and storage consortium of Northern Lights. | 0.8 Mtpa from
possible 2 industrial
plants: cement and
waste to energy | 2023–2024 | Final
investment
decision (FID) | Shell, Equinor,Total | Shell, Equinor,Total | | 23 | Sweden | Preem CCS | Industrial
capture,
natural
gas-to-H ₂
(pre-combus-
tion) | Refining | CCS-equipped hydrogen production unit at a refinery, CO ₂ transportation and storage in the North Sea | 500,000 tonnes (at full scale) | 2025 | Pilot phase | Preem, Chalmers
University of Technology,
SINTEF Energy Research,
Equinor and Aker
Solutions | Equinor, Aker
Solutions | | 24 | Sweden
Stockholm | Stockholm Exergi
Bio-CCS | Power & capture (post-combustion), BECCS | Bioenergy | A pilot plant at the Värtan biomass-fired CHP plant enables the capture of CO ₂ from the biomass fuel in the post-combustion flue gases. The CO ₂ will be compressed into liquid form and stored in underground rock formations. A large-scale facility for BECCS will cover all parts from CO ₂ capture to storage and will create major negative emissions each year. | Est. 0,8 Mt (at full
scale) | N/A | Pilot phase | Stockholm Exergi, North-
ern Lights consortium
(Equinor, Shell, Total) | Equinor, Shell, Total | 21 # CCUS projects in **EUROPE** - 25. Acorn - 26. Caledonia Clean Energy - 27. H21 North of England - 28. Liverpool-Manchester Hydrogen Cluster - 29. Net Zero Teesside - 30. Humber Zero Carbon Cluster - 31. Liverpool Bay Area CCS Project | NO | LOCATION | PROJECT NAME | PROJECT
TYPE | INDUSTRY | DESCRIPTION | CO ₂ CAPTURED/
YEAR | STARTING DATE
(OPERATION) | STATUS OF THE PROJECT | PARTICIPANTS | IOGP MEMBERS
INVOLVED | |----|---|--|---|--|--|---|------------------------------|--|--|--| | 25 | UK
Scotland St
Fergus | Acorn | Industrial
capture | Natural Gas
power | CCS-equipped natural gas processing plant,
CO ₂ transportation and storage in the North
Sea | The Reference Case
assumes a flat
rate of 200,000T/
yr can be captured
from one of the
gas terminals at St
Fergus | 2023 | Feasibility study | Project is led by Pale Blue
Dot Energy, with funding
and support from industry
partners (Chrysaor, Shell
and Total) the UK and
Scottish Governments | Chrysaor, Shell,
Total | | 26 | UK
Scotland
Grangem-
outh | Caledonia Clean
Energy | Power & capture | Natural gas
power | Examining construction of a new natural gas feedstock power plant (The Caledonia Plant) with integrated CO ₂ capture facilities. Power is developing the Caledonia Clean Energy Project (CCEP), an electricity generating station of up to 1GW located near Grangemouth, central Scotland. The project would use a natural gas feedstock with integrated carbon capture, and has the potential to also co-produce clean hydrogen for modern heat and transport applications | 3 Mtpa | 2023 | Feasibility study | Summit Power | | | 27 | UK
North of
England | H21 North of
England | Natural gas
to H ₂
(pre-com-
bustion) | Hydrogen
production | Natural gas-to-hydrogen conversion with CCS, CO2 tranportation and storage in the North Sea and salt caverns | Approx. 3 Mtpa | 2020s | Feasibility study | Northern Gas Networks,
Cadent and Equinor | Equinor | | 28 | UK
Liverpool
Mancester | Liverpool- Man-
chester Hydrogen
Cluster | Natural
gas to H ₂
(pre-com-
bustion) | Hydrogen
production | Natural gas-to-hydrogen conversion with CCS, CO2 transportation and storage in the North Sea | 1.5Mtpa (10% H ₂) -
9.5Mtpa (100% H ₂) | 2020s | Feasibility study | CADENT | | | 29 | UK
Southern
North Sea | Net Zero Teesside | Power & capture (post-combustion) | Natural gas
power | CCS-equipped natural gas power plant, CO ₂
transportation and storage in the North Sea | 5 Mtpa | 2026 | Technical
evaluation and
business model
options | BP, OGCI | BP, Eni, Repsol,
Shell, Equinor,
Total | | 30 | UK
North Sea | Humber Zero
Carbon Cluster | Industrial
capture | H ₂
production,
bioenergy | CCS-equipped industrial cluster, CCS equipped hydrogen production, bioenergy with CCS (BECCS), CO ₂ transportation and storage in the North Sea | N/A | 2020s | Technical
evaluation and
business model
options | Drax Group, Equinor,
National Grid Ventures | Equinor | | 31 | UK
East Irish Sea | Liverpool Bay Area
CCS Project | Carbon
capture
sequestra-
tion | Chemical,
refining,
hydrogen
production | CO ₂ capture from the existing industrial facilities and new hydrogen production plant in the North West of England | 1-3 Mtpa phased program | 2025 | Concept selection phase | Eni | Eni | Source: Global CCS Institute and IOGP data # CCUS projects in NORTH AMERICA - 1. Quest - 2. Boundary Dam CCS - 3. Alberta Carbon Trunk Line (ACTL) with North West Redwater Partnership's Sturgeon Refinery CO₂ Stream - 4. Lehigh's Edmonton plant - 5. Alberta Carbon Trunk Line (ACTL) with Agrium CO₂ Stream - 6. Illinois Industrial Carbon Capture and Storage (ICCS) - 7. Petra Nova | NO | LOCATION | PROJECT NAME | PROJECT
TYPE | INDUSTRY | DESCRIPTION | CO ₂ CAPTURED/
YEAR | STARTING DATE
(OPERATION) | STATUS OF THE PROJECT | PARTICIPANTS | IOGP MEMBERS
INVOLVED
| |----|-----------------------------|--|--|---|---|-----------------------------------|------------------------------|-----------------------|---|--------------------------| | 1 | Canada
Alberta | Quest | Industrial
capture,
EOR | Hydrogen
production
for oil
refining | Retrofitted CO ₂ capture facility to steam
methane reformers, transportation via
pipeline to a dedicated geological storage | 1 Mtpa | 2015 | Operational | Shell | Shell | | 2 | Canada
Saskatche-
wan | Boundary Dam
CCS | Power and capture (post-combustion), EOR | Power
generation | It combines post-combustion CCS with coal-fired power generation, some captured CO_2 goes for EOR use in the Weyburn oil unit, a portion of the CO_2 is stored permanently under the ground at the Aquistore project | 1 Mtpa | 2014 | Operational | SaskPower | | | 3 | Canada
Alberta | Alberta Carbon
Trunk Line (ACTL)
with North
West Redwater
Partnership's
Sturgeon Refinery
CO ₂ Stream | Industrial
capture,
EOR | Oil refining | Carbon dioxide captured from Agrium's Redwater fertiliser plant and the North West Redwater Partnership's Sturgeon refinery. CO ₂ recovered from the fertiliser plant's emission streams put through inlet cooling, separation, compression, dehydration and refrigeration to produce liquefied CO ₂ . The project plans to transport CO ₂ from a number of sources in the future coming from Alberta's Industrial Heartland | 1.2-1.4 Mtpa | 2020 | Operational | Enhance Energy Inc. (and
- North West Redwater
Partnership) | | | 4 | Canada
Alberta | Lehigh's
Edmonton plant | Industrial
capture | Cement
industry | Capture the majority of the carbon dioxide (CO ₂) from the flue gas of Lehigh's Edmonton, Alberta cement plant | Estimated 600,000 tonnes annually | | Feasibility study | Lehigh Cement and
the International CCS
Knowledge Centre | | | 5 | Canada
Alberta | Alberta Carbon
Trunk Line (ACTL)
with Agrium CO ₂
Stream | Industrial
capture,
EOR | Fertilizer
production | At the NWR refinery, CO ₂ will be captured within the gasification hydrogen supply unit, which will use unconverted petroleum bottoms (asphaltene) as feedstock to create synthesis gas (syngas) | 0.3-06 Mta | 2020 | Operational | Enhance Energy Inc. | | | 6 | USA
Illinois | Illinois Industrial
Carbon Capture
and Storage (ICCS) | Industrial
capture | Ethanol
production | CO ₂ captured from the fermentation process
used to produce ethanol at an industrial
corn processing complex in Decatur, Illinois,
Transportation to a dedicated geological
storage site | 1 Mtpa | 2017 | Operational | Administered by the U.S. Department of Energy's Office of Fossil Energy and managed by the National Energy Technology Laboratory and by a cost share agreement with the Archer Daniels Midland Company, University of Illinois through the Illinois State Geological Survey, Schlumberger Carbon Services, and Richland Community College | | | 7 | USA
Texas | Petra Nova | Power and capture (post-combustion), EOR | Power
generation | Texas power plant retroffitted with post-com-
bustion CO ₂ capture facility, transportation
near Houston for EOR | 1.4 Mtpa | 2017 | Operational | | | # CCUS projects in NORTH AMERICA - 8. Coffeyville Gasification Plant - 9. Air Products Steam Methane Reformer - 10. Lost Cabin Gas Plant - 11. Century Plant - 12. Great Plains Synfuels Plant and Weyburn-Midale - 13. Shute Creek Gas Processing Plant - 14. Enid Fertilizer - 15. Terrell Natural Gas Processing Plant (formerly Del Verde) - 16. Wabash CO₂ Sequestration - 17. Lake Charles Methanol | NO | LOCATION | PROJECT NAME | PROJECT
TYPE | INDUSTRY | DESCRIPTION | CO ₂ CAPTURED/
YEAR | STARTING DATE
(OPERATION) | STATUS OF THE PROJECT | PARTICIPANTS | IOGP MEMBERS
INVOLVED | |----|------------------------|--|--|---|--|-----------------------------------|------------------------------|------------------------|--|--------------------------| | 8 | USA
Kansas | Coffeyville
Gasification Plant | Industrial
capture,
fertilizer
production,
EOR | Fertilizer
production | Fertilizer plant in Coffeyville retrofitted with CO ₂ compression and dehydrataion facilities, oil delivery to the North Burbank oil unit in Osage county, Ohklaoma for EOR | 1 Mtpa | 2013 | Operational | Coffeyville Resources
Nitrogen Fertilizers, LLC,
Chapparal Energy and
Blue Source | | | 9 | USA
Texas | Air Products Steam
Methane Reformer | Industrial
capture,
EOR | Hydrogen
production
for oil
refinery | Air products retrofitted of steam methane
reformer within a refinery at Port Arthur,
Texas, transportation to oil field in Texas for
EOR | 1 Mtpa | 2013 | Operational | Air Products, Covestro | | | 10 | USA
Wyoming | Lost Cabin Gas
Plant | Industrial
capture,
EOR | Natural gas
processing | Gas plantg in Wyoming supplies CO ₂ to
compression facolity, transport and delivery
via pipeline to the Bell Creek oil firld in
Montana for EOR | Approx. 1 Mtpa | 2013 | Operational | ConocoPhillips | ConocoPhillips | | 11 | USA
Texas | Century Plant | Industrial
capture,
EOR | Natural gas processing | Natural gas treatment facility in Texas,
transportation via pipeline for EOR | 8.4 Mtpa | 2010 | Operational | Occidental Petroleum | | | 12 | USA
North
Dakota | Great Plains
Synfuels Plant and
Weyburn-Midale | Industrial
capture
(pre-com-
bustion),
EOR | Synthetic
natural gas | The plant in North Dakota produces CO ₂ as part of a coal gasification process, transportation to the Wyburn and Midale oil units for EOR | 3 Mtpa | 2000 | Operational | Dakota Gasification
Company | | | 13 | USA
Wyoming | Shute Creek Gas
Processing Plant | Industrial
capture,
EOR | Natural gas processing | Gas treating facility in Wyoming, some CO ₂ injected for sequestration/disposal, some for EOR | 7 Mtpa | 1986 | Operational | ExxonMobil | ExxonMobil | | 14 | USA
Oklahoma | Enid Fertilizer | Industrial
capture,
fertilizer
production,
EOR | Fertilizer
production | CO ₂ captured from the manufacture of
fertilizer, transportation for use in EOR at the
Golden Trend oilfield and the Sko-Vel-Tum
oilfield, south of Oklahoma City | 0.7 Mtpa | 1982 | Operational | Koch Nitrogen Company | | | 15 | USA
Texas | Terrell Natural Gas
Processing Plant
(formely Del Verde) | Industrial
capture,
EOR | Natural gas
processing | CO ₂ capture at natural gas processing plant,
CO ₂ transportation via Valverde pipeline
to McCamey, Texas, and the Canyon Reef
Carriers CRC pipeline and the Pecos pipeline,
CO ₂ for EOR | Approx 0.5 Mtpa | 1972 | Operational | Blue Source and others | | | 16 | USA
Indiana | Wabash CO₂
Sequestration | Industrial
capture | Fertilizer
production | Gasification plant in Indiana to be converted into an anhydrous ammonia production plant and CCS plant, dedicated geological storage in the Wabash carbonSAFE CO ₂ storage hub | 1.5-1.75 Mtpa | 2022 | Advance
development | WABASH Valley Resources
(WVR) | | | 17 | USA
Louisiana | Lake Charles
Methanol | Industrial
capture,
EOR | Chemical production | Gasification facility in Lousiana capturing from synthetic gas syngas to make methanol and other products, captured CO ₂ to be used for EOR in Texas | Approx 4 Mtpa | 2024 | Advance
development | Leucadia Energy | | Source: Global CCS Institute and IOGP data # CCUS projects in NORTH AMERICA - 18. Dry Fork Integrated Commercial CCS - 19. CarbonSAFE Illinois -Macon County - 20. Project Tundra - 21. Integrated Mid-Continent Stacked Carbon Storage Hub* - 22. Oxy and White Energy Ethanol EOR Facility - 23. Oxy and Carbon Engineering Direct Air Capture and EOR Facility - 24. Project ECO₂S: Early CO₂ Storage Complex in Kemper County | NO | LOCATION | PROJECT NAME | PROJECT
TYPE | INDUSTRY | DESCRIPTION | CO ₂ CAPTURED/
YEAR | STARTING DATE
(OPERATION) | STATUS OF THE PROJECT | PARTICIPANTS | IOGP MEMBERS | |----|-----------------------------------|---|---|--
--|-----------------------------------|------------------------------|------------------------|---|--------------| | 18 | USA
Wyoming | Dry Fork Integrated Commercial CCS | Power and capture (postcompbustion), EOR | Power
generation | Dry Fork coal-fired power station in Wyoming, targeting adjacent geological storage formations currently under study. EOR under consideration | 3 Mtpa | 2025 | Advance
development | The Basin Electric Power
Cooperative | | | 19 | USA
Illinois | CarbonSAFE
Illinois -Macon
County | Power and industrial capture (postcombustion), EOR | Power
genration
and ethanol
production | CCS integration of a compression and dehydration facilities to an ethanol plant, transportation and injection in a dedicated geological storage | 2-5 Mtpa | 2025 | Advance
development | Carbon Storage Assurance
Facility Enterprise
(CarbonSAFE) of the U.S.
Department of Energy
National Energy Technolo-
gy Laboratory (DOENETL) | | | 20 | USA
North Dakota | Project Tundra | Power and capture (postcombustion), EOR | Power
generation | Retrofit CO ₂ capture plant to the Milton R.
Young coal fire power station in North Dakota
with a dedicated storage site. EOR under
study | 3.1-3.6 Mtpa | 2025-2026 | Advance
development | Minnkota Power
Cooperative | | | 21 | USA
Nebraska,
Kansas | Integrated Mid-
Continent Stacked
Carbon Storage
Hub | Ethanol
production,
power
generation
and/or
refinery,
EOR | Ethanol
production,
power gener-
ation and/or
refinery | CO2 collection from ethanol plants, power plants and refineries with integrated storage in Kansas and Nebraska | Approx 2 Mtpa | 2025-2035 | Advance
development | The team is led by Battelle Memorial Institute and includes: Archer Daniels Midland Company (ADM), the Kansas Geologic Survey (KGS), the Energy and Environmental Research Center (EERC) at the University of North Dakota, Schlumberger, the Conservation and Survey Division (CSD) at the University of Nebraska-Lincoln (UNL) and others | Schlumberger | | 22 | USA
Texas | Oxy and White
Energy Ethanol
EOR Facility | Industrial
capture,
EOR | Ethanol
production | CO ₂ capture from two ethanol facilities in
Hereford and Plainview, Texas. The captured
CO ₂ will be stored via EOR at Occidental's oil
fields in Premian basin | 0.6-0.7 Mtpa | 2021 | Early development | Occidental Petroleum
Corporation and White
Energy | | | 23 | USA
Texas | Oxy and Carbon
Engineering Direct
Air Capture and
EOR Facility | Direct air
capture,
EOR | N/A | CO ₂ capture from an Occidental oil field in
the Permian Basin, and used for EOR | 1 Mtpa | 2025 | Early development | Oxy Low Carbon Ventures
and Carbon Engineering
Ltd | | | 24 | USA
Mississippi | Project ECO ₂ S:
Early CO ₂ Storage
Complex in
Kemper County | Under
evaluation | N/A | Regional CO ₂ storage hub near the Keper
County Energy Facility in Missisipi from
power and industrial sources | 3 Mtpa | 2026 | Early development | In identification
(capture) - Project
ECO ₂ S, a DOE-supported
CarbonSAFE program | | # **ABBREVIATIONS** | BECCS | Biomass energy with carbon capture and storage | |-----------------|--| | ccus | Carbon capture, use and storage | | CO ₂ | Carbon dioxide | | CRL | Commercial readiness level | | DACCS | Direct air carbon capture and storage | | ЕСВМ | Enhanced coal bed methane | | EGR | Exhaust gas recirculation | | EOR | Enhanced oil recovery | | GHG | Greenhouse gas | | Gt | Gigatonne | | NET | Negative emissions technologies | | R&D | Research and development | | SRL | Social readiness level | | TRL | Technology readiness level | | UNECE | United Nations Economic Commission for Europe | | UNFC | United Nations Framework Classification | ### **REFERENCES** Adderley, B., J. Carey, J. Gibbins, M. Lucquiaud and R. Smith, 2016, Post-Combustion Carbon Dioxide Capture Cost Reduction to 2030 and beyond, Faraday Discussion on CCS, July 2016, http://pubs.rsc.org/en/Content/ArticleLanding/2016/FD/c6fd00046k#!-divAbstract accessed September 2020 BloombergNEF, 2020, CCUS costs and opportunities for long-term CO₂ disposal, March 2020 Bradshaw, J. and T. Dance, 2004, Mapping geological storage perspectivity of CO₂ for the world's sedimentary basins and regional source to sink matching, in (E.S. Rubin, D.W. Keith and C.F. Gilboy eds.), GHGT-7, Proc. Seventh International Conference on Greenhouse Gas Control Technologies, Vancouver, B.C., Canada, September 5-9, 2004 Bui, M. (et. al), 2018, Carbon capture and storage (CCS): the way forward, Energy Environ. Sci., 2018, 11, page 1062-1176, doi: 10.1039/C7EE02342A Celia, M. A., S. Bachu, J. M. Nordbotten, and K. W. Bandilla 2015, Status of CO₂ storage in deep saline aquifers with emphasis on modeling approaches and practical simulations, WaterResour. Res.,51, 6846–6892, doi:10.1002/2015WR017609 Consoli, C., N. Wildgust, 2017, Current status of global storage resources, Energy Procedia 114 (2017) 4623 – 4628, doi:10.1016/j.egypro.2017.03.1866 Global CCS Institute, 2019, Targeting Climate Change: Growing Momentum for Carbon Capture and Storage, https://www.globalccsinstitute.com/resources/global-status-report/ accessed August 2020 GoldmanSachs, Equity Research, Carbonomics Q&A: Five key questions from investors, published on 3 February 2020 Greg Kelsall, "CCUS – status, barriers and potential", April 2020, IEA Clean Coal Centre Hefny M., C. Qin, M. Saar and A. Ebigbo, 2020, Synchrotron-based pore-network modeling of two-phase flow in Nubian Sandstone and implications for capillary trapping of carbon dioxide Hicks, D., 2020, Improved forecasting of the Energy Transition? The use of simple Technology Readiness and Social Readiness Levels (TRL and SRL) in energy transition models, July 2020 $IOGP\ 2020a, CCUS\ Projects\ in\ Europe,\ \underline{https://gtw1h238bgv3dmbvo37kcoow-wpengine.netdna-ssl.com/wp-content/up-loads/2020/06/Map-of-EU-CCS-Projects.pdf}\ accessed\ January\ 2021$ IOGP 2020b, CCUS Global Projects, https://32zn56499nov99m251h4e9t8-wpengine.netdna-ssl.com/bookstore/wp-content/uploads/sites/2/2020/06/Global-CCS-Projects-Map.pdf accesses December 2021 IPCC, 2005, Special Report on Carbon Dioxide Capture and Storage, Prepared by Working Group III of the Intergovernmental Panel on Climate Change [Metz, B., O. Davidson, H. C. de Coninck, M. Loos, and L. A. Meyer (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, https://www.ipcc.ch/report/carbon-dioxide-capture-and-storage/ IPCC, 2018, Special Report on 1.5 degrees, Summary for Policymakers, https://www.ipcc.ch/sr15/chapter/spm/ accessed August 2020 International Energy Agency, 2015, Storing CO₂ through Enhanced Oil Recovery, https://www.iea.org/reports/storing-co2-through-enhanced-oil-recovery accessed September 2020 Kelsall, G., 2020, CCUS – status, barriers and potential, IEA Clean Coal Centre, https://www.iea-coal.org/report/carbon-cap-ture-utilisation-and-storage-status-barriers-and-potential-ccc-304/ accessed September 2020 McKinsey Quarterly, 2020, Driving CO₂ emissions to zero (and beyond) with CCUS, June 2020, https://www.mckinsey.com/business-functions/sustainability/our-insights/driving-co2-emissions-to-zero-and-beyond-with-carbon-capture-use-and-storage# accessed August 2020 National Academies of Sciences, 2015, Engineering and Medicine, Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration, Washington, DC: The National Academies Press. https://doi.org/10.17226/18805 National Academies of Sciences, 2019, Engineering and Medicine, Negative Emissions Technologies and Reliable Sequestration: A Research Agenda. Washington, DC: The National Academies Press. https://doi.org/10.17226/25259 Natural Petroleum Council, 2019, Meeting the dual challenge: A roadmap at scale deployment of CCUS, https://dualchallenge.npc.org/downloads.php, accessed October 2020 Panel on Climate Change [Metz, B., O. Davidson, H. C. de Coninck, M. Loos, and L. A. Meyer (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, https://www.ipcc.ch/report/carbon-dioxide-capture-and-storage/ Royal Society, 2018, Greenhouse Gas Removal, https://royalsociety.org/topics-policy/projects/greenhouse-gas-removal/ accessed August 2020
UNECE, 2020a, Pathways to Sustainable Energy - Accelerating Energy Transition in the UNECE Region, https://unece.org/filead-min/DAM/energy/se/pdfs/CSE/Publications/Final_Report_PathwaysToSE.pdf UNECE, 2020b, United Nations Framework Classification for Resources, Update 2019, https://unece.org/fileadmin/DAM/energy/se/pdfs/UNFC/publ/UNFC_ES61_Update_2019.pdf World Resources Institute, 2015, A Recommended Methodology for Estimating and Reporting the Potential Greenhouse Gas Emissions from Fossil Fuel Reserves, https://www.wri.org/publication/methodology-calculating-potential-emissions-fossil-fuel-reserves accessed January 2021 ### Information Service United Nations Economic Commission for Europe Palais des Nations CH - 1211 Geneva 10, Switzerland Telephone: +41(0)22 917 12 34 Fax: +41(0)22 917 05 05 E-mail: unece_info@un.org Website: http://www.unece.org