Synthetic Data for Small Area Estimation in the U.S. Federal Statistical System

Joseph W. Sakshaug

Institute for Social Research, University of Michigan Institute for Employment Research, Nürnberg, Germany Ludwig-Maximilian University of Munich, Germany

UNECE/Eurostat Work Session on Statistical Data Confidentiality October 27, 2011

Outline

- Background
- Small Area Estimation Programs in the United States

 Pros/Cons
- Synthetic Microdata for Small Area Estimation
- Applications
 - American Community Survey
 - National Health Interview Survey
- Conclusions
- Future directions

Background/Motivation

- Increasing demand for small area estimates (Tranmer et al., 2005)
 - states, counties, cities/towns, neighborhoods, etc.
- Small area effects can impact policy decisions and interventions at local levels
- Microdata for small areas typically not released to the public due to disclosure concerns
- Thus, statistical agencies are responsible for producing the majority of small area information

Small Area Estimation Programs in the United States

- SAIPE U.S. Census Bureau
 - County-level estimates on income and poverty rates
- SAHIE U.S. Census Bureau
 - County-level estimates of health insurance coverage
- National Cancer Institute
 - County-level prevalence of smoking, mammography, pap smear test
 - Combines two surveys (Raghunathan et al., 2007)
 - ➢ National Health Interview Survey (NHIS)
 - Behaviorial Risk Factor Surveillance Survey (BRFSS)

Pros/Cons of Small Area Programs

- Advantages
 - Provides important estimates at the local level
 - Sufficient for basic analytic purposes
 - Often used to inform policy decisions
 - Data confidentiality is maintained
- Disadvantages
 - No microdata available for small areas
 - Customized analyses not feasible
 - Variable recodes, subgroup analysis, alternative definitions of construct of interest
 - Multivariate estimates usually not released
 - Correlations, regression coefficients, etc.

Microdata for Small Geographic Areas

Two main data dissemination approaches:

- 1) Release microdata files for areas with > 100,000 residents (U.S. Census Bureau)
 - 626 (out of 3141) counties meet this minimum
 - Other counties are combined with larger counties until threshold is met
- 2) Access restricted data via Research Data Centers
 - Limited # of Census RDCs in U.S. (13 locations)
 - Proposal and special sworn status required

Alternative Method: Release Synthetic Microdata (Rubin, 1993)

- Treat unsampled portion of population as missing data
- Replace missing data with imputed (or synthetic) values drawn from a posterior predictive distribution
- Release samples of synthetic data which comprise the public-use microdata
- Apply standard combining rules to obtain valid inferences (Raghunathan, Reiter, and Rubin, 2003)
- Released data need not contain any observed records

Previous Applications of Synthetic Data

- IAB Establishment Panel (Drechsler et al., 2008)
- SIPP/SSA/IRS (Abowd et al., 2006)
- ACS Group Quarters (Rodriguez, 2007)
- Longitudinal Business Database (Kinney & Reiter, 2008)
- Applications focus on preserving statistics about the entire sample, but ignores small area statistics.

Synthetic Small Area Microdata Project

- Jointly funded by the U.S. Census Bureau and the Centers for Disease Control and Prevention
- Project goals
- 1) Develop synthetic data generation method
 - Hierarchical Bayesian model
- 2) Generate synthetic microdata for counties
 - American Community Survey (Northeast region)
 - National Health Interview Survey (sampled/nonsampled areas)
- 3) Compare inferences obtained from synthetic and actual data
 - Descriptive and analytic statistics

Selected Items

- Household items:
 - Household size, income, tenure (own, mortgage, rent), electricity payment, number of rooms
- Person items:
 - Age, sex, race, ethnicity, poverty status, selfreported health status, body mass index, smoking status, moderate activity, hypertension

Rooms

Bedrooms

11

Average County-Level Estimates: Household

	Avg. County Means		Avg. County Standard Errors	
Household variables	Actual	Synthetic	Actual	Synthetic
Household size	2.12	2.12	0.02	0.01
Sampling weight	9.99	10.20	0.11	0.11
Number of bedrooms	2.88	2.82	0.01	0.01
Electricity cost/month	118.89	119.37	1.25	1.10
Number of rooms	3.23	3.18	0.02	0.02
Income	67983.89	67382.38	1067.29	692.56
Tenure: Mortgage/loan (%)	49.00	47.03	0.82	0.74
Tenure: Own free & clear (%)	31.12	30.37	0.77	0.72
Tenure: Rent (%)	19.88	22.60	0.63	0.63

County Means: Actual vs. Synthetic

Cross-Validation Study: Nonsampled County Means (N=63)

A) Mean Income by Household Tenure

B) Household Income > 50th, 75th, and 90th percentiles

Average County-Level Regression Estimates

	Avg. County Coefficients		Avg. County Standard Errors	
Linear regression of	Actual	Synthetic	Actual	Synthetic
household income on				
Intercept	24.34	24.26	1.11	1.09
Household size	1.52	1.44	0.14	0.14
Sampling weight	-0.04	-0.05	0.24	0.26
Number of bedrooms	1.15	1.23	0.19	0.18
Electricity cost/month	0.99	1.04	0.18	0.17
Number of rooms	1.25	1.26	0.14	0.13
Tenure: Mortgage/loan	Ref	Ref	Ref	Ref
Tenure: Own free & clear	-3.47	-3.05	0.37	0.34
Tenure: Rent	-6.01	-6.84	0.44	0.476

Conclusions

- Synthetic data preserves small area statistics reasonably well in most cases
 - Univariate/multivariate, subgroup estimates
- Modeling approach could be improved
 - non-standard distributions, multinomial distributions
- Practical Strengths
 - Easy to implement; doesn't require MCMC
 - Data can presumably be released to the public without restriction (needs disclosure risk analysis)
 - Method could be adopted for large scale survey projects

Thanks for your attention!

joesaks@umich.edu

Modeling Approach

- Extension of SRMI (Raghunathan et al., 2001)
- Hierarchical Bayesian Model
 - Two levels; e.g., <u>c</u>ounties nested within <u>s</u>tates
- Fit sequential regression models within each small area,

 $f(Y_{cs,1}), f(Y_{cs,2}|Y_{cs,1}), \dots, f(Y_{cs,P}|Y_{cs,1}, \dots, Y_{cs,P-1})$

• Approximate distribution of design-based parameter estimates,

$$\hat{\beta}_{cs,p} \sim MVN(\beta_{cs,p}, \hat{V}_{cs,p})$$

- Assign proper prior to the unknown population parameter , $\beta_{cs,p} \sim MVN(\hat{\beta}_p Z_s, \hat{\Sigma}_p)$
- Draw unknown parameter from posterior distribution,

$$\tilde{\beta}_{cs,p} \sim MVN \left[\left(\hat{V}_{cs,p}^{-1} + \hat{\Sigma}_{p}^{-1} \right)^{-1} \left(\hat{V}_{cs,p}^{-1} \hat{\beta}_{cs,p} + \hat{\Sigma}_{p}^{-1} \hat{\beta}_{p} Z_{s} \right), \left(\hat{V}_{cs,p}^{-1} + \hat{\Sigma}_{p}^{-1} \right)^{-1} \right]$$

Model Setup

• Estimate weighted $\hat{\beta}_{cs,p}$ by fitting sequential regression models

$$\hat{\beta}_{cs,p} \sim MVN(\beta_{cs,p}, \hat{V}_{cs,p})$$

$$\beta_{cs,p} \sim MVN(\beta_{s,p}Z_{cs}, \Sigma_{s,p})$$

$$\hat{\beta}_{s,p} \sim MVN(\beta_{s,p}, \hat{V}_{s,p})$$

$$\beta_{s,p} \sim MVN(\beta_{p}Z_{s}, \Omega_{p})$$

$$[1]$$

- Hyperparameters estimated using EM algorithm (Dempster et al., 1977) $\tilde{\beta}_{s,p} \sim MVN \left[\left(\hat{V}_{s,p}^{-1} + \hat{\Omega}_{p}^{-1} \right)^{-1} \left(\hat{V}_{s,p}^{-1} \hat{\beta}_{s,p} + \hat{\Omega}_{p}^{-1} \hat{\beta}_{p} Z_{s} \right), \left(\hat{V}_{s,p}^{-1} + \hat{\Omega}_{p}^{-1} \right)^{-1} \right]$ $\tilde{\beta}_{cs,p} \sim MVN \left[\left(\hat{V}_{cs,p}^{-1} + \hat{\Sigma}_{s,p}^{-1} \right)^{-1} \left(\hat{V}_{cs,p}^{-1} \hat{\beta}_{cs,p} + \hat{\Sigma}_{s,p}^{-1} \hat{\beta}_{s,p} Z_{cs} \right), \left(\hat{V}_{cs,p}^{-1} + \hat{\Sigma}_{s,p}^{-1} \right)^{-1} \right]$
- Models [2] and [4] used to simulate coeffs for nonsampled areas
- Simulated coefficients used as inputs for drawing synthetic values

Generating Synthetic Values

- Simulating a synthetic variable \tilde{Y}_{cs} is achieved by drawing from the posterior predictive distribution in sequential order, $f(\tilde{Y}_{cs,1}|\tilde{\beta}_{cs}), f(\tilde{Y}_{cs,2}|\tilde{Y}_{cs,1},\tilde{\beta}_{cs}), ..., f(\tilde{Y}_{cs,P}|\tilde{Y}_{cs,1},\tilde{Y}_{cs,2},...,\tilde{Y}_{cs,P-1},\tilde{\beta}_{cs})$
- For continuous variables,

$$\tilde{Y}_{cs,p} \sim N\left[\left(X_{cs}, \tilde{Y}_{cs,1}, \tilde{Y}_{cs,2}, \tilde{Y}_{cs,p-1}\right) \tilde{\beta}_{cs}, \hat{\sigma}_{cs}^2\right]$$

• For binary variables,

$$\tilde{Y}_{cs,p} \sim Bin[1, \hat{p}\{(X_{cs}, \tilde{Y}_{cs,1}, \tilde{Y}_{cs,2}, \dots, \tilde{Y}_{cs,p-1})\tilde{\beta}_{cs}\}]$$

- Extension to count and multinomial distributions is possible
- Process is repeated *M* times to produce *M* synthetic data sets
 - M = 5 (or 10) is usually sufficient to obtain valid inferences (Reiter, 2005)
- Valid inferences obtained using standard combining rules (Raghunathan, Reiter, Rubin, 2003)

Application 1: American Community Survey

- American Community Survey (2005-2009)
- "Small areas" defined as counties
- Northeast Region (N=217 counties)
- N = 599,450 households; 1,506,011 persons
- M = 10 synthetic data sets
- Household-level variables
 - Sampling weight, electricity cost/mo., income, household size, # bedrooms, # total rooms, household tenure (mortgage/loan, own free & clear, rent)

Bedrooms

23

PSU Means: Actual vs. Synthetic (sampled)

Cross-Validation Study: Nonsampled County Means (N=63)

A) Mean Income by Household Tenure

B) Household Income > 50th, 75th, and 90th percentiles

Linear Regression of Income on: HH Income = HH Size HH Income = Sampling Weight HH Size ŝ Sampling weight 2.0 Electricity cost/mo. Synthetic 5.1 # Bedrooms # Total rooms 1.0 Tenure: Own Free & Clear 0.5 -1.5 Tenure: Rent 0.5 1.0 1.5 2.0 2.5 -1.0 -0.5 0.0 0.5 1.0 1.5 Actual Actua HH Income = Intercept HH Income = Electricity Cost HH Income = Rooms 5 2.0 Ю 2.0 1.5 8 ŝ. Synthetic Synthetic 1.0 32 20 0.5 5.0 2 25 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 2.5 20 Actual Actua Actual HH Income = Rent HH Income = Own Free & Clear HH Income = SE(Bedrooms) 0.5 Ņ 0.4 0.3 Synthetic Synthetic 0.2 ĥ 0.1 0.0 0.0 0.1 0.2 0.3 0.4 0.5 Actual Actual

Actual

Simulation Study: CI Coverage – PUMA Means

		Unconditional		
	Conditional	Synthetic	Actual	
Household size	0.99	0.98	0.98	
Sampling weight	0.95	0.99	0.98	
Number of bedrooms	0.89	0.93	0.98	
Electricity cost/month	0.86	0.91	0.98	
Number of rooms	0.97	0.98	0.98	
Income	0.90	0.94	0.98	
Tenure: Own free & clear	0.93	0.96	0.98	
Tenure: Rent	0.94	0.96	0.98	
Coverage mean	0.93	0.96	0.98	

Application 2: National Health Interview Survey

- NHIS 2003-2005; Complex sample survey
- Treat PSUs as "small areas" nested within strata
- Generate synthetic data for both sampled PSUs and nonsampled counties
- Incorporate PSU/county-level and stratum/state-level covariates into hierarchical model
- N=93,606 sampled adults
- Continuous and binary items
 - Age, body mass index, smoker, sex, moderate activity, hypertension, fair/poor health rating

Actual vs. Synthetic (sampled/nonsampled)

PSU Means: Actual vs. Synthetic (sampled)

Cross-Validation Study: Nonsampled County Means (N=63)

Simulation Study: CI Coverage (Means & Regression Coefficients)

	Conditional Inference	Unconditional Inference	
	CIC	CIC	Actual
BMI	0.99	0.99	0.97
Age	0.91	0.99	0.98
Smoker	0.99	0.99	0.98
Moderate activity	0.99	0.99	0.98
Male	0.99	0.99	0.98
Hypertension	0.99	0.99	0.97
Fair/poor health	0.99	0.99	0.97

	Conditional Inference	Unconditional Inference	
Covariates	CIC	CIC	Actual
Regression of			
BMI(log) on			
Intercept	0.99	0.99	0.97
Age	0.99	0.99	0.97
Smoker	0.99	0.99	0.98
Moderate activity	0.99	0.99	0.97
Male	0.99	0.99	0.98
Hypertension	0.99	0.99	0.98
Fair/poor health	0.99	0.99	0.96

Future Work

- Application to *smaller* areas is always desirable
 - Census tracts, block groups
- Additional variable distributions
 - E.g., mixed-type,
- Cross-classified tables
 - add more details in public-use summary files
- Incorporate auxiliary information to improve efficiency of synthetic data estimates

E.g., Administrative data, external survey data (e.g., BRFSS)

• Longitudinal small area estimates (e.g., HRS, PSID)

PUMA Subgroup Means & Percentiles (Synthetic vs. Actual)

A) Mean Income by Household Tenure

B) Household Income > 50th, 75th, and 90th percentiles

Standard Errors of PUMA Means (Synthetic vs. Actual)

PUMA Regression Coefficients (Synthetic vs. Actual)

HH Income (y) = Intercept + HH Size + Sampling Weight + Bedrooms + Electricity + Rooms + Own Free & Clear + Rent + Error

Standard Errors (Household-Level Regression Coefficients)

Average ACS County-Level Estimates: Household

	Avg. County Means		Avg. County Standard Errors	
Household variables	Actual	Synthetic	Actual	Synthetic
Household size	2.12	2.12	0.02	0.01
Sampling weight	9.99	10.20	0.11	0.11
Number of bedrooms	2.88	2.82	0.01	0.01
Electricity cost/month	118.89	119.37	1.25	1.10
Number of rooms	3.23	3.18	0.02	0.02
Income	67983.89	67382.38	1067.29	692.56
Tenure: Mortgage/loan (%)	49.00	47.03	0.82	0.74
Tenure: Own free & clear (%)	31.12	30.37	0.77	0.72
Tenure: Rent (%)	19.88	22.60	0.63	0.63

Average ACS County-Level Regression Estimates

	Avg. County Coefficients		Avg. County Standard Errors	
Linear regression of household income on	Actual	Synthetic	Actual	Synthetic
Intercept	24.34	24.26	1.11	1.09
Household size	1.52	1.44	0.14	0.14
Sampling weight	-0.04	-0.05	0.24	0.26
Number of bedrooms	1.15	1.23	0.19	0.18
Electricity cost/month	0.99	1.04	0.18	0.17
Number of rooms	1.25	1.26	0.14	0.13
Tenure: Mortgage/loan	Ref	Ref	Ref	Ref
Tenure: Own free & clear	-3.47	-3.05	0.37	0.34
Tenure: Rent	-6.01	-6.84	0.44	0.474

Synthetic Data Inference

- Estimating a scalar quantity Q is achieved using standard combining rules (Raghunathan, Reiter, and Rubin, 2003)
- Point estimate \overline{q}_M is obtained by averaging point estimates across the M = (l = 1, 2, ..., M) synthetic data sets,

$$\bar{q}_M = \sum_{l=1}^M q^{(l)} / M$$

• Variance of point estimate T_M consists of within- and between-variance components,

$$T_M = (1 + M^{-1})b_M - v_m$$

where $b_M = \sum_{l=1}^{M} (q^{(l)} - \bar{q}_M)^2 / (M - 1)$ and $\bar{v}_M = \sum_{l=1}^{M} v^{(l)} / M$

- When *n*, *n*_{syn}, and *M* are large, inferences for scalar *Q* can be based on normal distributions.
 - For moderate *M*, inferences can be based on *t*-distributions

Synthetic (samp) vs. Synthetic (nonsamp)

Synthetic (sampled) Synthetic (nonsampled)

Synthetic (sampled) Synthetic (nonsampled)

Synthetic (sampled)

Synthetic (nonsampled)

Propensity Score Balance Check

- Actual and synthetic data sets stacked
- Fit logistic regression of belonging to actual data set
- Predicted probabilities sorted, grouped into deciles
- χ^2 -test of equality of synthetic data proportions across deciles

	Mean	Min	Мах
Estimated	0.30	0.18	0.48
probabilities \hat{p}			
χ^2 statistic	14.80	7.92	42.90
P-value	0.23	0.01	0.57