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Di�erential Privacy

Limit the knowledge gain achievable by performing a query over
data sets that di�er in one individual (a.k.a. neighbor data sets)

ε-di�erential privacy

A randomized function gives ε-di�erential privacy if for all neighbor data
sets D and D ′, and all S ⊂ Range(κ)

P(κ(D) ∈ S)≤ eεP(κ(D ′) ∈ S)
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Types of Noises

Data-Independent Noise

Distribution of data-independent noise is constant across data sets
The required amount of noise depends on the maximum change in
the query function between neighbor data sets

Commom procedure: Add independent Laplace distributed noise with
zero mean and and ∆f/ε scale, to each component of the query
response

Data-Dependent Noise

The distribution of a data-dependent noise is adjusted to the
sensitivity of the query function local to each data set
Eligible distributions must be heavy tailed.

The proposal is to use
4δ×S∗

f ,β

ε
Z , where Z is a random noise with

density function proportional to 1
1+|x |δ .
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Optimal Noise Distribution

Several criteria are commonly used: variance, expectation of the L1
norm, size of a con�dence region, etc.

The essence is to take smaller noise values with greater probability.

De�nition

Let N1 and N2 be random noises.

N1 is smaller than N2, N1 ≤ N2, if for all α,
P(|N1| ≤ α)≥ P(|N2| ≤ α)

N1 is strictly smaller than N2, N1 < N2, if the above inequality is
strict

N1 ∈ C is optimal within C , if for any N2 ∈ C it holds N2 ≮ N1

A family of optimal distributions exists. Another criterion may be
used to further re�ne the search.
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Laplace is not Optimal

It is possible to modify the Laplace density function in such a way
that:

ε-di�erential privacy still holds
The probability mass is more concentrated towards the zero.

Idea: Split the range into disjoint intervals and redistribute the
probability mass inside each interval.
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Optimal A. C. Data-Independent Noise

Idea: Apply to a generic distribution a procedure similar to the one
applied to the Laplace distribution.

The density of an optimal a.c. data-independent distribution has the
form

pdf (x) =

{
M |x | ∈ [0,d ]

Me−iε |x | ∈ [d + i∆f ,d + (i +1)∆f ]

for some values M and d such that d ∈ [0,∆f ] and the total
probability mass equals one.
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Comparison (I): Single Query

The table compares the variance of Laplace to the minimum
variance achievable with a data-independent noise.

Laplace ε

Optimal 0.1 1 10

∆f

0.1
2

1.999
0.02
0.0192

2×10−4

8.47×10−6

1
200
199.9

2
1.92

0.02
8.47×10−4

10
20000
19991

200
191.8

2
8.47×10−2

For the case of a single query function, the improvement is relatively
small. Only for large values of ε the improvement is relatively
signi�cant, but the disclosure risk for such ε is large.

If Laplace does not provide the desired data quality, there is not
much we can do with a data-independent noise.
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Comparison (II): Multiple Queries

With Laplace all the points with the same L1-norm have the same
density.
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The density function is similar to the one for a single query: it is a
stepwise function that reaches its maximum in a set that contains
zero.
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Comparison (III): Multiple Queries

Sample density functions when using Laplace and one optimal a.c.
distribution .

Conf. Level Laplace Optimal
0.99 10663 1790
0.95 5445 916
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Data-Independent vs Data-Dependent Noise

Data-dependent noise makes sense only if the smooth sensitivity at
the actual data set is small compared to the L1-sensitivity.

By comparing the variances we may come up with a rule of thumb
to choose between data-independent and data-dependent noise:

VLaplace = 2× (∆f/ε)2

VDependent = 14δ 2sin(π/δ )/sin(3π/δ )× (S∗f ,β (D)/ε)2

The smooth sensitivity at the actual data set must be at least 10.96
times smaller than the L1-sensitivity.
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Adding/Removing vs Modifying Records

There are two main de�nition of what neighbor data sets are:

1 Two data sets D and D ′ are said to be neighbors if one can be
obtained from the other by adding or removing a record
(Neighborhood 1)

2 Two data sets D and D ′ are said to be neighbors if one can be
obtained from the other by modifying a record (Neighborhood 2)

Modifying a record does not change the cardinality of the data set

With Neighborhood 2 we may restrict the comparison to data sets
with the same cardinality as the actual data set D

It may seem that Neighborhood 2 may provide more accurate results
when the query function has reduced sensitivity over the set of data
sets with equal size
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Example: The Relative Frequency

Let f be a query function that returns the relative frequency of some
property

Let ∆i be the sensitivity under Neighborhood i

When querying the whole data set we have:

∆1f = 1/2
∆2f = 1/|D|

When querying some subset we have:

∆1f = 1/2
∆2f = 1/2

To get some bene�t from Neighborhood 2, we must query the whole
data set

Neighborhood 2 may lead to higher sensitivity than Neighborhood 1
with multiple queries

We only consider Neighborhood 1 in what follows
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Absolute Frequency

The local sensitivity is constant and equal to the L1-sensitivity.
Using data-dependent noise makes no sense.

ε = 0.1 ε = 1

Con�dence intervals at 95%
Laplace [m−29.9,m+29.9] [m−2.99,m+2.99]
Smooth Sensitivity δ = 4.37 [m−285,m+285] [m−28.5,m+28.5]

Variance
Laplace 200 2
Smooth Sensitivity δ = 4.52 24045 240

The utility of the result depends on the actual value m of the
absolute frequency. The greater m, the less relative error introduced.
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Relative Frequency (I)

The local sensitivity depends on both the size of the data set n, and
on the number of records satisfying the property m.

∆f = 1/2
LSf (D) = max{ n−m

n(n−1) ,
m

n(n−1)}< 1/n−1

With data-independent Laplace distributed noise we have

Laplace ε = 0.1 ε = 1

Con�dence intervals at 95% [m
n
−15, m

n
+15] [m

n
−1.5, m

n
+1.5]

Variance 50 5

⇒ Data-independent noise is not usable for the relative frequency
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Relative Frequency (II)

With the corresponding data-dependent noise that minimizes the
size of the con�dence interval and the variance, we have

Conf.Int. n

Variance 100 1000 10000

m
0

m/n±8.34
30.2

m/n±0.285
0.024

m/n±0.0285
0.00024

0.5n
m/n±8.60

32.0

m/n±0.143
0.006

m/n±0.0143
0.00006

Data-dependent noise improves a lot over data-independent noise;
however the size of the data set needs to be quite big for the results
to be acceptable.
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Maximum/Minimum Queries

Let f return the maximum value in a �eld with range [0,1]
The L1-sensitivity equals the size of the range of the function:
data-independent noise is not usable.

Laplace ε = 0.1 ε = 1

Con�dence intervals at 95% f (D)±15 f (D)±1.5
Variance 50 5

The smooth sensitivity depends on the actual values in the data set.
A systematic approach is not possible.
We simulate data set values following a uniform distribution in [0,1],
and a beta distribution with α = 2 and β = 5. Results are only good
for very large n.

Con�dence intervals at 95% U [0,1] Be(2,5)

n

100 f (D)±39.4 f (D)±92.3
1000 f (D)±3.99 f (D)±55.4
10000 f (D)±0.399 f (D)±34.1
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