On Differential Privacy and Data Utility in SDC

J. Soria-Comas J. Domingo-Ferrer

Department of Computer Engineering and Mathematics Universitat Rovira i Virgili

UNESCO Chair in Data Privacy

UNECE/Eurostat Work Session on SDC, 2011

3

Differential Privacy

2 Data Utility

- Optimal Data-Independent Noise
- Data-Independent vs Data-Dependent Noise
- Comparing Neighborhood Relationships

3 Evaluating Query Functions

< ∃ →

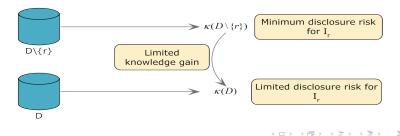
Differential Privacy

• Limit the knowledge gain achievable by performing a query over data sets that differ in one individual (a.k.a. neighbor data sets)

ϵ -differential privacy

A randomized function gives ε -differential privacy if for all neighbor data sets D and D', and all $S \subset Range(\kappa)$

$$P(\kappa(D) \in S) \leq e^{\varepsilon} P(\kappa(D') \in S)$$



Types of Noises

- Data-Independent Noise
 - Distribution of data-independent noise is constant across data sets
 - The required amount of noise depends on the maximum change in the query function between neighbor data sets
 - Commom procedure: Add independent Laplace distributed noise with zero mean and and $\Delta f/\varepsilon$ scale, to each component of the query response
- Data-Dependent Noise
 - The distribution of a data-dependent noise is adjusted to the sensitivity of the query function local to each data set
 - Eligible distributions must be heavy tailed.
 - The proposal is to use $\frac{4\delta \times S^*_{f,\beta}}{\varepsilon}Z$, where Z is a random noise with density function proportional to $\frac{1}{1+|x|^{\delta}}$.

э

프 문 문 프 문

Outline

1 Differential Privacy

2 Data Utility

- Optimal Data-Independent Noise
- Data-Independent vs Data-Dependent Noise
- Comparing Neighborhood Relationships

Evaluating Query Functions

Optimal Noise Distribution

- Several criteria are commonly used: variance, expectation of the L₁ norm, size of a confidence region, etc.
- The essence is to take smaller noise values with greater probability.

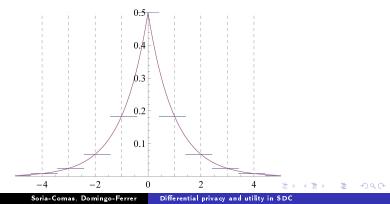
Definition

Let N_1 and N_2 be random noises.

- N_1 is smaller than N_2 , $N_1 \le N_2$, if for all α , $P(|N_1| \le \alpha) \ge P(|N_2| \le \alpha)$
- N_1 is strictly smaller than N_2 , $N_1 < N_2$, if the above inequality is strict
- $N_1 \in \mathscr{C}$ is optimal within \mathscr{C} , if for any $N_2 \in \mathscr{C}$ it holds $N_2 \not< N_1$
- A family of optimal distributions exists. Another criterion may be used to further refine the search.

Laplace is not Optimal

- It is possible to modify the Laplace density function in such a way that:
 - ε -differential privacy still holds
 - The probability mass is more concentrated towards the zero.
- Idea: Split the range into disjoint intervals and redistribute the probability mass inside each interval.

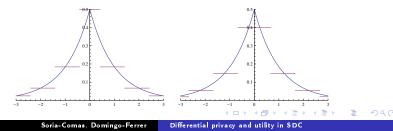


Optimal A. C. Data-Independent Noise

- Idea: Apply to a generic distribution a procedure similar to the one applied to the Laplace distribution.
- The density of an optimal a.c. data-independent distribution has the form

$$pdf(x) = \begin{cases} M & |x| \in [0,d] \\ Me^{-i\varepsilon} & |x| \in [d+i\Delta f, d+(i+1)\Delta f] \end{cases}$$

for some values M and d such that $d \in [0, \Delta f]$ and the total probability mass equals one.



Optimal Data-Independent Noise Data-Independent vs Data-Dependent Noise Comparing Neighborhood Relationships

Comparison (I): Single Query

• The table compares the variance of Laplace to the minimum variance achievable with a data-independent noise.

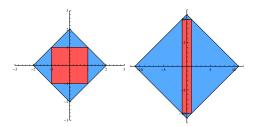
Laplace		ε			
Optimal		0.1	1	10	
	0.1	2	0.02	$2 imes 10^{-4}$	
Δf		1.999	0.0192	$8.47 imes10^{-6}$	
	1	200	2	0.02	
		199.9	1.92	$8.47 imes10^{-4}$	
	10	20000	200	2	
	10	19991	191.8	$8.47 imes10^{-2}$	

- For the case of a single query function, the improvement is relatively small. Only for large values of ε the improvement is relatively significant, but the disclosure risk for such ε is large.
- If Laplace does not provide the desired data quality, there is not much we can do with a data-independent noise.

-∢ ≣ ▶

Comparison (II): Multiple Queries

• With Laplace all the points with the same L₁-norm have the same density.



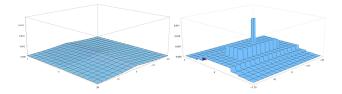
• The density function is similar to the one for a single query: it is a stepwise function that reaches its maximum in a set that contains zero.

Optimal Data-Independent Noise Data-Independent vs Data-Dependent Noise Comparing Neighborhood Relationships

< ∃ →

Comparison (III): Multiple Queries

• Sample density functions when using Laplace and one optimal a.c. distribution .



Conf. Level	Laplace	Optimal
0.99	10663	1790
0.95	5445	916

프 문 문 프 문

Outline

Differential Privacy

2 Data Utility

- Optimal Data-Independent Noise
- Data-Independent vs Data-Dependent Noise
- Comparing Neighborhood Relationships

Evaluating Query Functions

글 🖌 🔺 글 🕨

Data-Independent vs Data-Dependent Noise

- Data-dependent noise makes sense only if the smooth sensitivity at the actual data set is small compared to the L_1 -sensitivity.
- By comparing the variances we may come up with a rule of thumb to choose between data-independent and data-dependent noise:

$$V_{Laplace} = 2 \times (\Delta f/\epsilon)^2$$

 $V_{Dependent} = 14 \delta^{2} \sin(\pi/\delta) / \sin(3\pi/\delta) \times (S^*_{f,\beta}(D)/\epsilon)^2$

• The smooth sensitivity at the actual data set must be at least 10.96 times smaller than the L_1 -sensitivity.

프 문 문 프 문

Outline

Differential Privacy

2 Data Utility

- Optimal Data-Independent Noise
- Data-Independent vs Data-Dependent Noise
- Comparing Neighborhood Relationships

Evaluating Query Functions

・ 同 ト ・ ヨ ト ・ ヨ ト

Adding/Removing vs Modifying Records

- There are two main definition of what neighbor data sets are:
 - Two data sets D and D' are said to be neighbors if one can be obtained from the other by adding or removing a record (Neighborhood 1)
 - Two data sets D and D' are said to be neighbors if one can be obtained from the other by modifying a record (Neighborhood 2)
- Modifying a record does not change the cardinality of the data set
 - With Neighborhood 2 we may restrict the comparison to data sets with the same cardinality as the actual data set *D*
- It may seem that Neighborhood 2 may provide more accurate results when the query function has reduced sensitivity over the set of data sets with equal size

Example: The Relative Frequency

- Let f be a query function that returns the relative frequency of some property
- Let Δ_i be the sensitivity under Neighborhood i
- When querying the whole data set we have:

$$\Delta_1 f = \frac{1}{2}$$
$$\Delta_2 f = \frac{1}{|D|}$$

• When querying some subset we have:

$$\begin{array}{l} \Delta_1 f = \frac{1}{2} \\ \Delta_2 f = \frac{1}{2} \end{array}$$

- To get some benefit from Neighborhood 2, we must query the whole data set
- Neighborhood 2 may lead to higher sensitivity than Neighborhood 1 with multiple queries
- We only consider Neighborhood 1 in what follows

Absolute Frequency

• The local sensitivity is constant and equal to the L₁-sensitivity. Using data-dependent noise makes no sense.

	arepsilon=0.1	arepsilon=1
Confidence intervals at 95%		
Laplace	[m-29.9, m+29.9]	[m-2.99, m+2.99]
Smooth Sensitivity $\delta=$ 4.37	[m-285, m+285]	[m-28.5, m+28.5]
Variance		
Laplace	200	2
Smooth Sensitivity $\delta=$ 4.52	24045	240

• The utility of the result depends on the actual value *m* of the absolute frequency. The greater *m*, the less relative error introduced.

물 제 문 제 문 제

э

Relative Frequency (I)

• The local sensitivity depends on both the size of the data set *n*, and on the number of records satisfying the property *m*.

$$\Delta f = \frac{1/2}{LS_f(D)} = \max\{\frac{n-m}{n(n-1)}, \frac{m}{n(n-1)}\} < 1/n-1$$

• With data-independent Laplace distributed noise we have

Laplace	arepsilon=0.1	$\epsilon = 1$
Confidence intervals at 95%	$[\frac{m}{n}-15,\frac{m}{n}+15]$	$\left[\frac{m}{n}-1.5,\frac{m}{n}+1.5\right]$
Variance	50	5

 \Rightarrow Data-independent noise is not usable for the relative frequency

글 🖌 🔺 글 🕨

э

Relative Frequency (II)

• With the corresponding data-dependent noise that minimizes the size of the confidence interval and the variance, we have

Conf.Int.		п			
Variance		100	1000	10000	
	0	$m/n \pm 8.34$	$m/n \pm 0.285$	$m/n \pm 0.0285$	
m	U	30.2	0.024	0.00024	
	0.5 m	$m/n \pm 8.60$	$m/n \pm 0.143$	$m/n \pm 0.0143$	
	0.5 <i>n</i>	32.0	0.006	0.00006	

• Data-dependent noise improves a lot over data-independent noise; however the size of the data set needs to be quite big for the results to be acceptable.

< ∃ >

Maximum/Minimum Queries

- Let f return the maximum value in a field with range [0,1]
- The L_1 -sensitivity equals the size of the range of the function: data-independent noise is not usable.

Laplace	arepsilon=0.1	arepsilon=1
Confidence intervals at 95%	$f(D) \pm 15$	$f(D) \pm 1.5$
Variance	50	5

- The smooth sensitivity depends on the actual values in the data set. A systematic approach is not possible.
- We simulate data set values following a uniform distribution in [0,1], and a beta distribution with $\alpha = 2$ and $\beta = 5$. Results are only good for very large *n*.

Confidence intervals at 95%		$\mathscr{U}[0,1]$	Be(2,5)
	100	$f(D) \pm 39.4$	$f(D) \pm 92.3$
п	1000	$f(D)\pm 3.99$	$f(D)\pm 55.4$
	10000	$f(D) \pm 0.399$	$f(D) \pm 34.1$
イロト (命) (法) (法)			

Thank you

Soria-Comas, Domingo-Ferrer Differential privacy and utility in SDC

・ロト ・四ト ・ヨト ・ヨト

Ξ.