

On balancing disclosure risk and data utility in transaction data sharing using R-U condentiality map

G. Loukides¹ <u>A. Gkoulalas-Divanis² J. Shao¹</u>

{g.loukides, j.shao}@cs.cf.ac.uk Cardiff University, UK agd@zurich.ibm.com IBM Research – Zurich

Joint UNECE/Eurostat Work Session on Statistical Data Confidentiality, 2011

Individuals' data is increasingly collected and shared

- Applications
 - NETFLIX

published movie ratings of 500K subscribers

sold customers' location (GPS) data to the Dutch police

published patient data related to genome-wide association studies (GWAS) to biorepositories

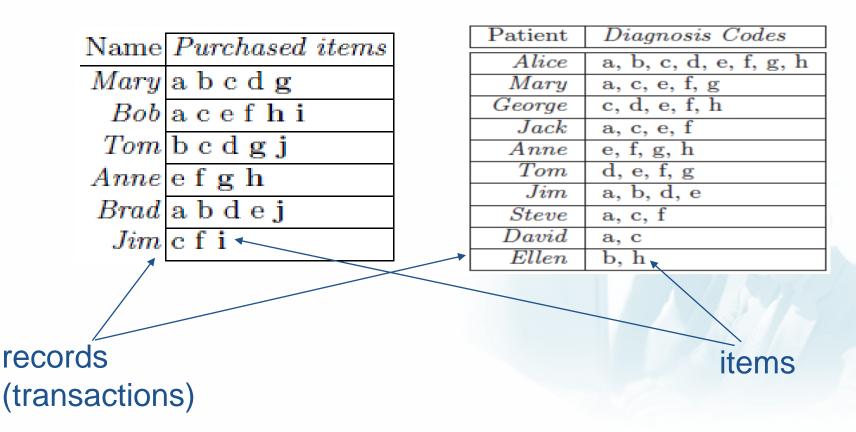
GWAS associate diseases with DNA - important for personalized medicine

Data sharing is useful

- Benefits
 - Personalization
 - INTELIX data mining contest (\$1M prize) to improve movie recommendation based on personal preferences
 - Marketing
 TESCO made £53M from selling shopping patterns to retailers and manufacturers (e.g., Nestle and Unilever) last year
 - Science advancement
 - Personalized medicine, low-cost social studies

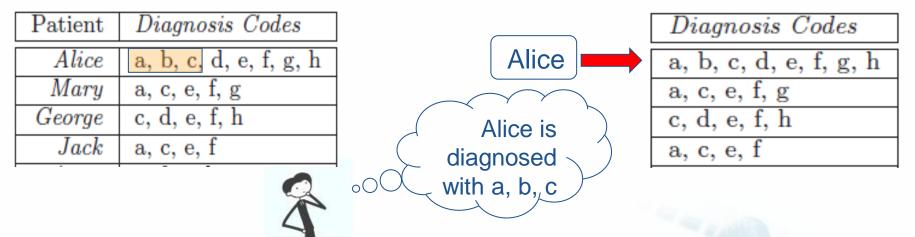
- Transaction data anonymization
- R-U Confidentiality map
- Experimental evaluation
- Conclusions & future work

- A type of data used in many data sharing scenarios
- A record (*transaction*) per individual, comprised of a set of items



De-identification & identity disclosure

 Identity disclosure: An individual is linked to her transaction (an attacker learns all her items)



Background knowledge

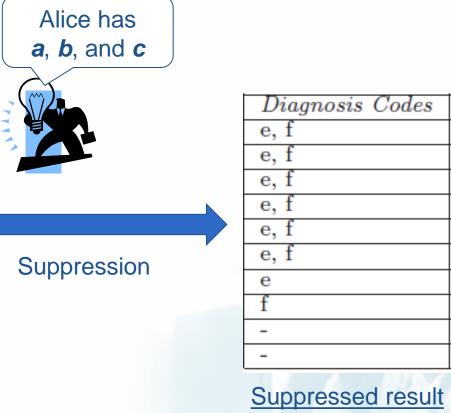
 Netflix data – movie rates can be linked to individuals based on IMDB data^[1]

 EMR data – diagnosis codes can be linked to patients based on public hospital discharge summaries^[2]

Data transformation techniques to prevent identity disclosure

Item suppression: Removes items from the published data^[2]

Diagnosis Codes
a, b, c, d, e, f, g, h
a, c, e, f, g
c, d, e, f, h
a, c, e, f
e, f, g, h
d, e, f, g
a, b, d, e
a, c, f
a, c
b, h



a, b, c, d, g, h are not released!

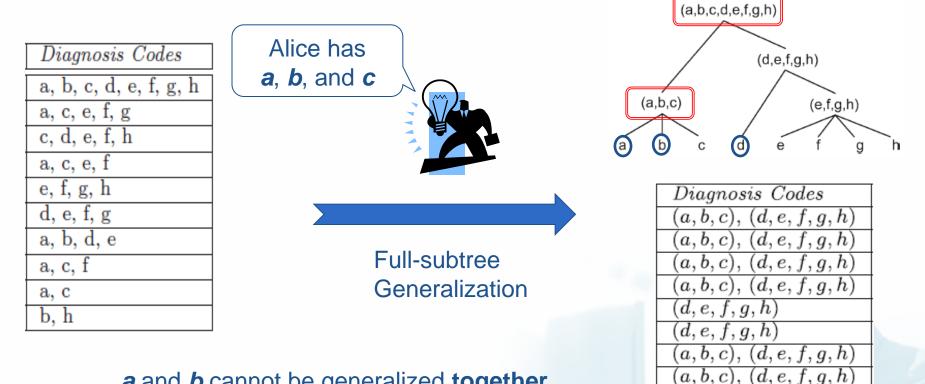
Data transformation techniques to prevent identity disclosure

[a, b, c),

(a,b,c), (d,e,f,g,h)

(a, b, c)

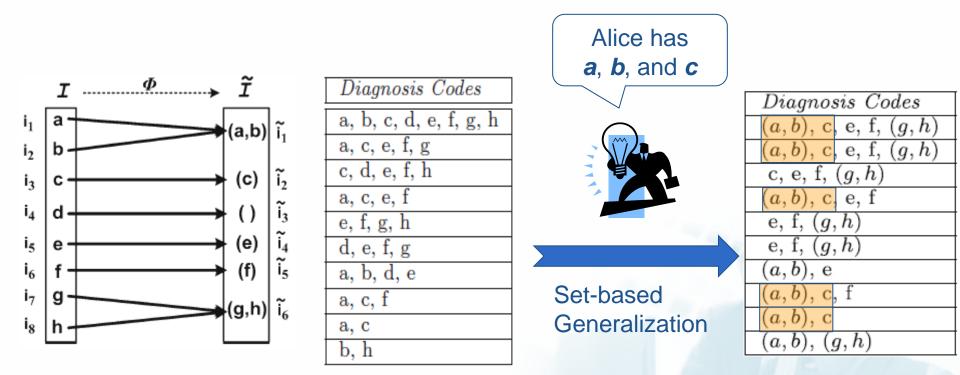
Full-subtree generalization: Replaces entire subtrees of items in a hierarchy with one of their ancestors



a and b cannot be generalized together **High information loss!**

Data transformation techniques to prevent identity disclosure

Set-based generalization: maps items to generalized items^[3]

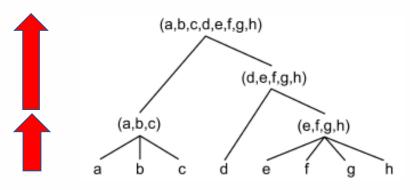


Learn a mapping function **Φ** *(hierarchies are not necessary)*

a and b are generalized together

- Both suppression and generalization reduce data utility
 Information loss
- Data utility and privacy can only be traded-off
 - Max utility \rightarrow Min privacy
 - Max privacy \rightarrow Min utility
- Most research so far focused on developing anonymization methods (models and algorithms)
- This paper's focus How to use anonymization methods to balance data utility and privacy

- k^m-anonymity: Knowing that an individual is associated with <u>any m-itemset</u>, an attacker should not be able to associate this individual to less than k transactions^[4]
- <u>Apriori Anonymization</u> (Rough Sketch)
 - Start with original data
 - While(<u>km-anonymity</u> is not satisfied)
 - Generalize items <u>using full-subtree generalization</u> and with <u>minimum information loss</u>
 - Release anonymized data



Diagnosis Codes
(a,b,c), (d,e,f,g,h)
(a,b,c), (d,e,f,g,h)
(a,b,c), (d,e,f,g,h)
(a,b,c), (d,e,f,g,h)
(d, e, f, g, h)
(d, e, f, g, h)
(a,b,c), (d,e,f,g,h)
(a,b,c), (d,e,f,g,h)
(a, b, c)
(a,b,c), (d,e,f,g,h)

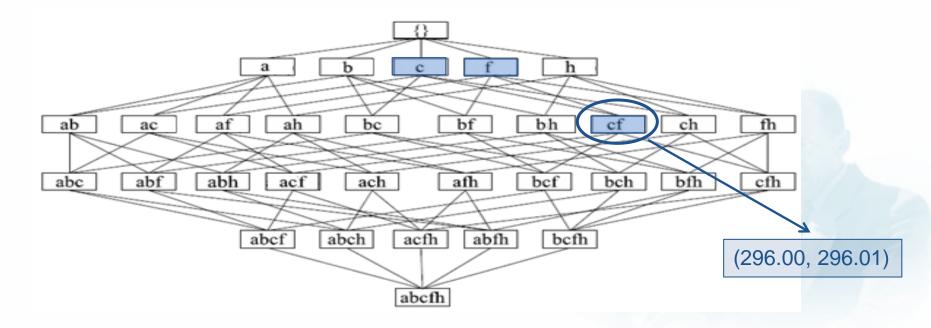
 Assumes that the anonymization with the best data utility, for a given privacy requirement (*parameter m*) needs to be found

- Privacy-constrained Anonymity: Knowing that an individual is associated with one or more privacy constraints (sets of identifying items), an attacker should not be able to associate this individual to less than k transactions^[5]
- <u>PCTA</u> (Rough Sketch)
 - Start with original data
 - For each privacy constraint
 - While (the privacy constraint is not satisfied)
 - Generalize items using <u>set-based generalization</u> and

with minimum information loss

- Release anonymized data
- Assumes that the anonymization with the best data utility, for a given privacy requirement (set of privacy constraints) needs to be found

- Privacy and utility constrained anonymity: Privacy constraints are satisfied; the level of data generalization and suppression is less than what is specified by utility constraints (sets of items that are allowed to be mapped to the same generalized item)^[3]
- Satisfying utility constraints guarantees data utility in aggregate query answering and in Genome-Wide Association Studies (GWAS)



- <u>COAT</u> (Rough Sketch)
 - Start with original data
 - While (there exists a privacy constraint that is not satisfied)
 - Select the privacy constraint *p* that can be protected with minimal information loss
 - While (*p* is not satisfied)
 - Select the least supported item *i* in *p*
 - If (*i* can be anonymized according to the utility constraints)

generalize i to (i,i')

Else

suppress items in *p*, starting from the least supported item

- Release anonymized data
- Assumes that the anonymization with the best data utility, for a given privacy requirement (set of privacy constraints) and a given utility requirement (set of utility constraints) needs to be found

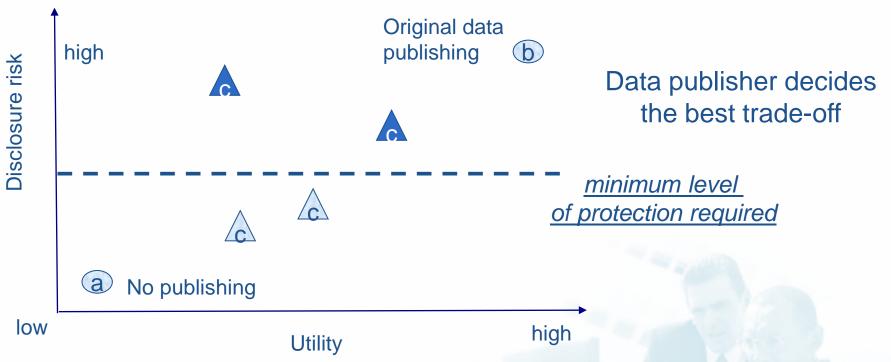
Utility constraints in Electronic Medical Record data anonymization

		VNEC			
	Disease	CBA	UGACLIP	ACLIP	
Diseases related to all GWAS conducted until 2008*	Asthma	\checkmark	\checkmark		no utility constraints
	Attention deficit with				, ,
	hyperactivity	\checkmark			
	Bipolar I disorder		\checkmark		
	Bladder cancer	\checkmark			Result of ACLIP is useless for
	Breast cancer	\checkmark	\checkmark		
	Coronary disease		\checkmark		
	Dental caries	\checkmark	\checkmark		validating GWAS
	Diabetes mellitus type-1		\checkmark		
	Diabetes mellitus type-2		\checkmark		
	Lung cancer	\checkmark	\checkmark		UGACLIP preserves
	Pancreatic cancer	\checkmark	\checkmark		11 out of 18 GWAS
	Platelet phenotypes	\checkmark			
	Pre-term birth	\checkmark	\checkmark		
	Prostate cancer	\checkmark	\checkmark		CBA 14 out of 18
	Psoriasis	\checkmark			GWAS simultaneously
	Renal cancer	\checkmark			OVAS Sindianeously
	Schizophrenia	\checkmark			
	Sickle-cell disease	\checkmark			

15 * Manolio et al. A HapMap harvest of insights into the genetics of common disease. J Clinic. Inv. '08.

Tracking the utility/privacy trade-off

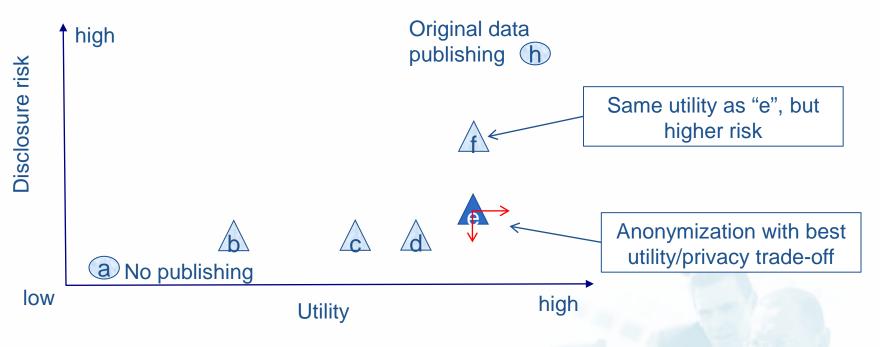
R-U confidentiality map^[6]



- Proposed for additive noise, applied to k-anonymization and randomization^[7]
- What does it offer?
- Can it be used for transaction data anonymization?

Tracking the utility/privacy trade-off

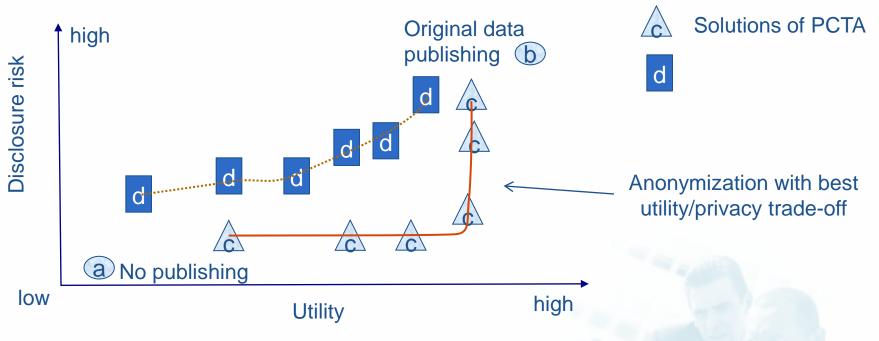
R-U confidentiality map^[6]



Data publishers attempt to configure an anonymization method
 → R-U confidentiality map can help them find a solution with the best utility/privacy trade-off

Tracking the utility/privacy trade-off

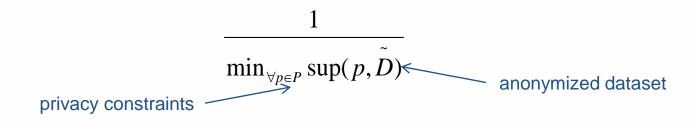
R-U confidentiality map^[6]



Data publishers want to select an anonymization method to use
 →R-U confidentiality map allows comparing different methods

Applying R-U confidentiality map to transaction data anonymization

- A measure for disclosure risk
 - Risk inverse of the maximum probability identity disclosure occurs



- A measure for Utility
 - Utility inverse of the Average Relative Error (ARE) $\frac{1}{ARE}$
 - ARE average number of transactions retrieved *incorrectly*, when answering a workload of queries on anonymized data

SELECT COUNT (T_n) FROM \mathcal{D} WHERE I supports T_n in \mathcal{D} Query on original data SELECT COUNT (\tilde{T}_n) FROM $\tilde{\mathcal{D}}$ WHERE \tilde{I} supports \tilde{T}_n in $\tilde{\mathcal{D}}$ Query on anonymized data

Experimental evaluation

Datasets

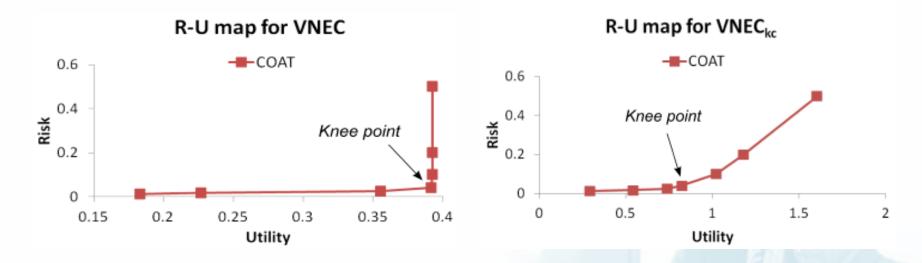
- BMS-WebView 2 (BMS2) click-stream data from an e-commerce site^[7]
- **VNEC** Electronic Medical Record dataset from Vanderbilt contains the diagnosis codes of patients involved in a GWAS^[8]
- VNEC_{kc} subset of VNEC, we know which diseases are controls for others^[9]
- Algorithms Apriori, COAT, PCTA

We constructed R-U maps for

- Privacy and utility-constrained anonymity
- k^m-anonymity

Identify anonymizations with best utility/privacy trade-off

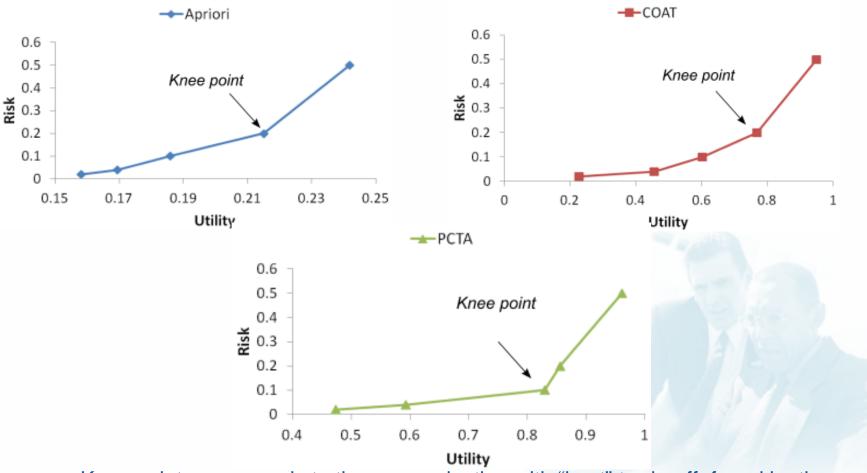
- Medical datasets VNEC and VNEC_{kc} COAT algorithm
 - privacy constraints to prevent attacks using hospital discharge summaries [8]
 - utility constraints to guarantee utility for 18 Genome-Wide Association Studies [8]



 Knee point corresponds to the anonymization with "best" trade-off, found by the Angle-based method ^[9]

Find anonymizations with best utility/privacy trade-off

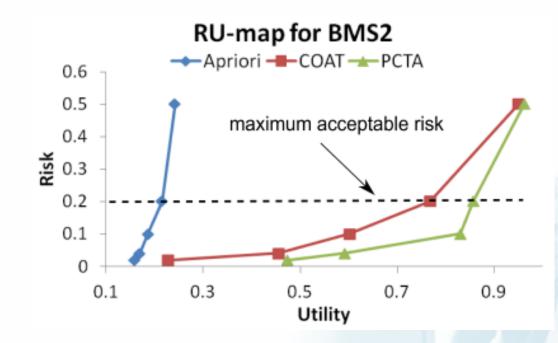
BMS2 dataset – k²-anonymity & Apriori, COAT, PCTA algorithms



 Knee point corresponds to the anonymization with "best" trade-off, found by the Angle-based method ^[9]

Select anonymization method, given a maximum level of *Risk*

- **BMS2 dataset** k²-anonymity & Apriori, COAT, PCTA algorithms
 - Data publishers want to release anonymized data with Risk no more than 0.2



• They should use PCTA, because it produces anonymized data with higher *Utility* when *Risk* is 0.2 or less.

- Need for publishing transaction data
- Several recent methods for anonymizing transaction data
- How to trade-off data utility and privacy using R-U map

In the future

- Apply R-U map to compare methods using different privacy models
 - Generalization vs. noise addition
- Different ways to balance data utility and privacy
 - Methods that optimize the utility/privacy trade-off

References & Acknowledgements

- 1. A. Narayanan and V. Shmatikov. Robust De-anonymization of Large Sparse Datasets. IEEE Symposium on Security and Privacy, 2008.
- 2. Y. Xu et al. Anonymizing transaction databases for publication. ACM SIGKDD International Conference on Knowledge Discovery and Data mining, 2008.
- 3. G. Loukides, A. Gkoulalas-Divanis and B. Malin. COAT: Constraint-based Anonymization of Transactions. Knowledge and Information Systems: An International Journal (KAIS).
- 4. M. Terrovitis, N. Mamoulis, and P. Kalnis. Local and Global Recoding Methods for Anonymizing Set-valued Data. VLDB Journal, 2010.
- 5. A. Gkoulalas-Divanis and G. Loukides. Privacy-constrained Clustering-based Transaction Data Anonymization. EDBT International Workshop on Privacy and Anonymity in the Information Society.
- 6. G.T.Duncan, S.A.Keller-McNulty, and S.L. Stokes. Disclosure risk vs. data utility: The R-U Confidentiality Map. Los Alamos National Library Technical Report, LAUR-01-6428. 2001.
- 7. Z. Zheng, R. Kohavi, and L. Mason. Real world performance of association rule algorithms. In KDD, pages 401{406, 2001.
- 8. G. Loukides, A. Gkoulalas-Divanis, and B. Malin. Anonymization of Electronic Medical Records for Validating Genome- Wide Association Studies. Proceedings of the National Academy of Sciences, 2010.
- 9. Q. Zhao, V. Hautamaki, and P. Frnti. Knee point detection in BIC for detecting the number of clusters. In Advanced Concepts for Intelligent Vision Systems, pages 664-673, 2008.
- Dr. Loukides' research is partly supported by

